初中数学竞赛教程二元一次方程组
七年级数学竞赛 第13讲 二元一次方程组

阅读材料,善于思考的小军在解方程组
2x +5y 2x +11y
=3 =5
①
时,采用了一种“整体代换”的解法。
②
解:将方程②变形:4x+10y+y=5,即 2(2x+5y)+y=5。③
把方程①代入③得:2×3+y=5,∴ y=−1,
把
y=−1
代人①得,x=4。∴方程组的解为
x=4 y = −1
。
|
x |
− x
y +
|= x y |=
+ x
y +
− 2
2
;
(3)
xy
3x + 2y
xy
= =
1 8 1
。
2x + 3y 7
(《数学周报》杯全国竞赛题) (“五羊杯”竟赛题)
13.整体方法 整体思考方法是将问题看成一个整体,从大处着眼由整体入手,突出对问题的整体结构的分析与改造,
从整体上把握问题的特征和解题方向。
刻意练习
1.已知方程组
2a − 3b = 13 3a + 5b = 30.9
的解为
a b
= =
8.3 1.2
,则方程组
2(x + 2) − 3( y −1) = 13 3(x + 2) + 5( y −1) = 30.9
的解是
。
(山东省枣庄市中考题)
2.已知关于
x,y
的方程组
2x − ay = 6
例 8.能否找到 7 个整数,使得这 7 个整数沿圆周排成一圈后,任 3 个相邻数的和都等于 29?如果能,请举 一例;如果不能,请简述理由。 解题思路:假设存在 7 个整数 a1,a2,a3,a4,a5,a6,a7 排成一圈后满足题意,
初中数学 优质课大赛 二元一次方程组的解法课件精品

2x-3y=4 ① 3x+2y=1 ②
用加减法消x的方法是
;
用加减法消y的方法是
。
化归转化
用加减法解方程组:
2x 3y 11 ① 6x 5y 9 ②
x 1
y
3
问题1.这两个方程直接相加减能 消去未知数吗?为什么?
问题2.那么怎样使方程组中某一 未知数系数的绝对值相等呢?
化归转化
本题可以用加减消元法来解吗?
法二:把②式转化为2x=3y+17③,把2x看成一个
整体,直接把③代入①解关于y的方程,求
出y再求x;
法三:因为2x=2x,把①-②消去x,得关于y的方
程,求出y,再求x。
解方程组:
2x 5y 9 2x 3y 17
Байду номын сангаас
① ②
如果把这两个方程的左边与左边相减,右边与右边相减, 能得到什么结果?
分析: 2x5y 2x3y= 9 17
当两个二元一次方程中同一个未 知数的系数相反或相等时,把两个方 程的两边分别相加或相减,就能消去 这个未知数,得到一个一元一次方程。 这种方法叫做加减消元法,简称加减 法。
口决:同减异加
3x+4y=15
1.已知方程组
两个方程只要两边
y 2x-4y=10
分别相加 就可以消去未知数
2x-3y=4
2.已知方程组
(1)22xx
3y 4y
5 2
(2)
3a 2a
2b 5 b8
(3)84xx
7y 5y
13 11
(4)
1 2 1 3
m m
1 3 1 2
n n
8 1
2、(选做题)解方程组
二元一次方程组竞赛题集答案解析

【例1】方程组的解*,y满足方程5*-y=3,求k的值.【思考与分析】此题有三种解法,前两种为一般解法,后一种为巧解法.〔1〕由方程组消去k,得*与y的关系式,再与5*-y=3联立组成方程组求出*,y的值,最后将*,y的值代入方程组中任一方程即可求出k的值.〔2〕把k当做数,解方程组,再根据5*-y=3建立关于k的方程,便可求出k的值. 〔3〕将方程组中的两个方程相加,得5*-y=2k+11,又知5*-y=3,所以整体代入即可求出k的值.把代入①,得,解得k=-4.解法二:①×3-②×2,得17y=k-22,解法三:①+②,得5*-y=2k+11.又由5*-y=3,得2k+11=3,解得k=-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解知识提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。
〔∵两个方程等效〕 ② 当212121c c b b a a ≠=时,方程组无解。
〔∵两个方程是矛盾的〕 ③ 当2121b b a a ≠〔即a 1b 2-a 2b 1≠0〕时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x 〔这个解可用加减消元法求得〕 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,假设要求整数解,可按二元一次方程整数解的求法进展。
3. 求方程组中的待定系数的取值,一般是求出方程组的解〔把待定系数当己知数〕,再解含待定系数的不等式或加以讨论。
〔见例2、3〕例题例1. 选择一组a,c 值使方程组⎩⎨⎧=+=+c y ax y x 275 1.有无数多解, 2.无解, 3.有唯一的解【例2】解方程组【思考与分析】本例是一个含字母系数的方程组.解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零.解:由①,得 y=4-m*,③把③代入②,得 2*+5〔4-m*〕=8,解得〔2-5m 〕*=-12,当2-5m =0,即m =时,方程无解,则原方程组无解. 当2-5m ≠0,即m ≠时,方程解为将代入③,得 故当m ≠时, 原方程组的解为例3. a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数? 例4. m 取何整数值时,方程组⎩⎨⎧=+=+1442y x my x 的解*和y 都是整数? 二元一次方程组的特殊解法1.二元一次方程组的常规解法,是代入消元法和加减消元法。
初中数学竞赛教程及练习之二元一次方程的整数解附答案

二元一次方程的整数解【知识精读】1, 二元一次方程整数解存在的条件:在整系数方程ax+by=c 中,若a,b 的最大公约数能整除c,则方程有整数解。
即 如果(a,b )|c 则方程ax+by=c 有整数解显然a,b 互质时一定有整数解。
例如方程3x+5y=1, 5x-2y=7, 9x+3y=6都有整数解。
返过来也成立,方程9x+3y=10和 4x-2y=1都没有整数解, ∵(9,3)=3,而3不能整除10;(4,2)=2,而2不能整除1。
一般我们在正整数集合里研究公约数,(a,b )中的a,b 实为它们的绝对值。
2, 二元一次方程整数解的求法:若方程ax+by=c 有整数解,一般都有无数多个,常引入整数k 来表示它的通解(即所有的解)。
k 叫做参变数。
方法一,整除法:求方程5x+11y=1的整数解解:x=5111y -=y yy y 2515101--=-- (1) , 设k k y(51=-是整数),则y=1-5k (2) , 把(2)代入(1)得x=k-2(1-5k)=11k-2 ∴原方程所有的整数解是⎩⎨⎧-=-=ky k x 51211(k 是整数)方法二,公式法:设ax+by=c 有整数解⎩⎨⎧==00y y x x 则通解是⎩⎨⎧-=+=ak y y bkx x 00(x 0,y 0可用观察法)3, 求二元一次方程的正整数解:① 出整数解的通解,再解x,y 的不等式组,确定k 值 ② 用观察法直接写出。
【分类解析】例1求方程5x -9y=18整数解的能通解解x=53235310155918yy y y y -++=-++=+ 设k y=-53(k 为整数),y=3-5k, 代入得x=9-9k ∴原方程整数解是⎩⎨⎧-=-=k y kx 5399 (k 为整数)又解:当x=o 时,y=-2, ∴方程有一个整数解⎩⎨⎧-==2y x 它的通解是⎩⎨⎧--=-=k y y x 5290(k 为整数)从以上可知整数解的通解的表达方式不是唯一的。
初中数学竞赛精品标准教程及练习二元一次方程组解的讨论

初中数学竞赛精品标准教程及练习二元一次方程组解的讨论一、二元一次方程组的定义二元一次方程组是由两个方程组成的方程集合,其中每个方程都是二元一次方程。
二元一次方程的一般形式为:ax + by = cdx + ey = f其中a、b、c、d、e、f是已知的实数,而x和y是未知数。
二、二元一次方程组的求解方法1.消元法:通过消去其中一个未知数的系数,将方程组化简为只包含一个未知数的方程。
然后可以通过代入的方法求解另一个未知数的值,从而得到方程组的解。
2. Cramer法则:利用行列式的性质求解二元一次方程组。
具体步骤如下:a)计算系数行列式:D=,abdb)x的系数行列式:Dx=,cbfc)y的系数行列式:Dy=,acdd)计算方程组的解:x=Dx/D,y=Dy/D3.代入法:将一个方程的解代入另一个方程中,从而得到只包含一个未知数的方程。
然后可以通过消元法或其他方法求解。
三、解的情况讨论1.唯一解:当二元一次方程组存在一个有序数对(x,y)使得方程组的两个方程同时成立时,方程组有唯一解。
2.无解:当二元一次方程组不存在有序数对(x,y)使得方程组的两个方程同时成立时,方程组无解。
3.无穷多解:当二元一次方程组存在无穷多个有序数对(x,y)使得方程组的两个方程同时成立时,方程组有无穷多解。
这种情况下,方程组的两个方程是两个平行直线。
四、实例演示考虑以下二元一次方程组:2x+3y=74x-y=2通过消元法可得:2x+3y=78x-2y=4将第二个方程化为y的表达式:y=4x-2将y的表达式代入第一个方程:2x+3(4x-2)=7化简得到:2x+12x-6=7合并同类项:14x-6=7解方程得到:14x=13,x=13/14将x的值代入y的表达式:y=4(13/14)-2,化简得到:y=3/7所以,方程组的解为(x,y)=(13/14,3/7)。
总结:二元一次方程组的解的讨论涉及到三种情况:唯一解、无解和无穷多解。
最新【竞赛讲座】七年级上学期数学竞赛专家讲座:第10讲-二元一次方程组资料

第十讲:二元一次方程组一、相关知识点1、 二元一次方程的定义:经过整理以后,方程只有两个未知数,未知数的次数都是1,系数都不为0,这样的整式方程称为二元一次方程。
2、二元一次方程的标准式: ()00,0ax by c a b ++=≠≠3、 一元一次方程的解的概念:使二元一次方程左右两边的值相等的一对x 和y 的值,叫做这个方程的一个解。
4、 二元一次方程组的定义:方程组中共含有两个未知数,每个方程都是一次方程,这样的方程组称为二元一次方程组。
5、 二元一次方程组的解:使二元一次方程组的二个方程左右两边的值相等的两个未知数的值,叫做二元一次方程组的解。
二、典型例题1.下列方程组中,不是二元一次方程组的是( C )A.123x y =⎧⎨+=⎩,. B.10x y x y +=⎧⎨-=⎩,. C.10x y xy +=⎧⎨=⎩,.D.21y x x y =⎧⎨-=⎩,. 2.有这样一道题目:判断31x y =⎧⎨=⎩,是否是方程组2502350x y x y +-=⎧⎨+-=⎩,的解? 小明的解答过程是:将3x =,1y =代入方程250x y +-=,等式成立.所以31x y =⎧⎨=⎩,是方程组2502350x y x y +-=⎧⎨+-=⎩,的解. 小颖的解答过程是:将3x =,1y =分别代入方程250x y +-=和2350x y +-=中,得250x y +-=,2350x y +-≠.所以31x y =⎧⎨=⎩,不是方程组2502350x y x y +-=⎧⎨+-=⎩,的解.你认为上面的解答过程哪个对?为什么?3.若下列三个二元一次方程:3x-y=7;2x+3y=1;y=kx-9有公共解,那么k 的取值应是( B ) A 、k=-4 B 、k=4 C 、k=-3 D 、k=3 分析:利用方程3x-y=7和2x+3y=1组成方程组,求出x 、y ,再代入y=kx-9求出k 值。
解⎩⎨⎧=+=-②y x ①y x 13273 得:⎩⎨⎧-==12y x将⎩⎨⎧-==12y x 代入y=kx-9,k=44.解方程组()()63101321002m n m n -+=⎧⎪⎨+-=⎪⎩ 方法一:(代入消元法) 解:由(2),得 ()10332mn -=把(3)代入(1),得 43m = 把43m =代入(3),得 3n = ∴ 433m n ⎧=⎪⎨⎪=⎩方法二:(加减消元法)解:(2)×2: 6m+4n-20=0 (3) (3)-(1): 7n=21 n=3把3n =代入(3),得43m = ∴433m n ⎧=⎪⎨⎪=⎩ 方法三:(整体代入法)解:由(1)得:()()2327103m n n +-+=由(2)得:()32104m n += 把(4)代入(3),得 3n = 把3n =代入(4),得43m = ∴ 433m n ⎧=⎪⎨⎪=⎩方法三:(整体代入法)解:由(1)得:()()2321072103m n n +--+=由(2)代入(3),得3n =把3n =代入(2),得43m = ∴ 433m n ⎧=⎪⎨⎪=⎩5.已知方程组⎩⎨⎧=+=-9.30531332b a b a 的解是⎩⎨⎧==2.13.8b a ,则方程组()()()()⎩⎨⎧=-++=--+9.301523131322y x y x 的解是( C )A .⎩⎨⎧==2.13.8y x B .⎩⎨⎧==2.23.10y x C .⎩⎨⎧==2.23.6y x D .⎩⎨⎧==2.03.10y x6.4513453x y x y⎧+=⎪⎪⎨⎪-=⎪⎩解:设11,a b x y ==,则原方程组可化为()()451314532a b a b +=⎧⎪⎨-=⎪⎩ 解得:21a b =⎧⎨=⎩∴121x y ⎧=⎪⎨⎪=⎩ 7.解方程组()():3:213532x y x y =⎧⎪⎨-=⎪⎩ 解:(参数法)∵32x y = ∴设3,2x k y k ==。
初中数学竞赛精品标准教程及练习二元一次方程组解的讨论

初中数学竞赛精品标准教程及练习二元一次方程组解的讨论二元一次方程组是初中数学中的一个重要内容,也是数学竞赛中经常出现的题型。
解二元一次方程组的方法主要有代入法、消元法和等式法。
下面是对这三种方法进行详细讨论的精品标准教程。
一、代入法代入法是解二元一次方程组最常见的方法之一、它的基本思想是通过一个方程的解来代入另一个方程,从而得到另一个未知数的解。
例题1:解方程组2x+y=6x-y=2解析:由于第二个方程的形式比较简单,所以可以先解x,然后带入第一个方程来解y。
解方程x-y=2得到x=2+y将x=2+y代入第一个方程2x+y=6得到2(2+y)+y=6化简得4+2y+y=6化简得3y=2解得y=2/3带入第一个方程2x+y=6得到2x+2/3=6化简得2x=6-2/3化简得2x=16/3解得x=8/3所以,解得x=8/3,y=2/3二、消元法消元法是解二元一次方程组的另一种常见方法。
它的基本思想是通过消去一个未知数,得到只含有一个未知数的一次方程,从而求出这个未知数的值,然后代入原方程组来求出另一个未知数的值。
例题2:解方程组2x+y=6x-y=2解析:首先观察发现,两个方程都有x-y,所以可以消去y。
将第二个方程两边同时乘以2得到2x-2y=4将这个方程与第一个方程相加,得到(2x+y)+(2x-2y)=6+4化简得4x=10解得x=10/4=5/2将x=5/2带入第一个方程2(5/2)+y=6化简得5+y=6解得y=1所以,解得x=5/2,y=1三、等式法等式法是解二元一次方程组的另一种常见方法。
它的基本思想是将其中一个方程的左右两边都化成同样的形式,然后将两个方程相减或相加,从而消去一个未知数。
例题3:解方程组3x-2y=72x+3y=1解析:为了消去x或y,我们可以将第一个方程乘以3,将第二个方程乘以2,从而使得两个方程的x系数一样。
将第一个方程乘以3得到9x-6y=21将第二个方程乘以2得到4x+6y=2将两个方程相加,得到(9x-6y)+(4x+6y)=21+2化简得13x=23解得x=23/13将x=23/13带入第一个方程3(23/13)-2y=7化简得69/13-2y=7解得y=(69/13-7)/(-2)化简得y=5/13所以,解得x=23/13,y=5/13通过以上的讨论,我们可以看出代入法、消元法和等式法都是解二元一次方程组的有效方法。
初中数学 优质课大赛 二元一次方程组的解法课件

义务教育课程标准实验教科书
华师大版七年级(下)数学
3x 4 y 10 ① ② 5 x 6 y 42
初中数学
1、解二元一次方程组的基本思路是什么? 基本思路: 二元 消元 一元 2、用代入法解方程的步骤是什么?
主要步骤: 用含有一个未知数的代数式 ①变形
表示另一个未知数,写成 y=ax+b或x=ay+b 把变形后的方程代入到另一个方程 中,消去一个元 分别求出两个未知数的值
分析:
2 x 5 y 2 x 3 y = 9 17
①左边
②左边
= ①右边 ②右边
左边与左边相减所得到的代数式 和右边与右边 相减所得到的代数式有什么关系?
初中数学
联系上面法三的解法,想一想应怎样解方程组:
7 x 3 y 1 2 x 3 y 8
①
②
x 1 y 3
问题1.这两个方程直接相加减能 消去未知数吗?为什么? 问题2.那么怎样使方程组中某一 未知数系数的绝对值相等呢?
初中数学
化归转化
本题可以用加减消元法来解吗?
3x 4 y 16 5 x 6 y 33
①
②
x 6 1 y 2
上述哪种解法更好呢?
初中数学
用加减法解同一个未知数的系数 绝对值不相等,且不成整数倍的二元 一次方程组时,把一个(或两个)方 程的两边乘以适当的数,使两个方程 中某一未知数的系数绝对值相等,从 而化为第一类型方程组求解.
初中数学
第一类:……
第二类:……
初中数学
1、用加减法解下列方程组时,你认为先消哪个 未知数较简单,填写消元的过程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年暑期初一数学竞赛第五讲:二元一次方程组(1)
【典型例题】
例1、二元一次方程组的解
x?3?m2?2ymx?的值是?1、已知是方程的一个解,则?y?5?
x?y?2?mm的值为多少?使方程组62、若,则的解的和为?x?2y?m?
ax?by??16x?8??c抄错了,得到解的解应为,小明解题时把3、已知方程组
??cx?20y??224y??10??x?12?222a?b?c值为多少?,则?y??13?
例2、二元一次方程组的两种通用解法
x?1?y? 1、用代入法解方程组?2x?3y?5?
2x?3y?1? 2、用加减法解方程组?3x?5y?1?
例3、解二元一次方程组及高元一次方程组(综合)
21???1?63y?23x?173y?x?16??、解方程组1、解方程组
2??1117x?23y?57????0?2x?22y?1?
?115???xy16?zyy?x????8y?23x?711???、解方程组、解方程组43 ??y?zz?x12xy1?????2x?3y7311????
z?xx?y4?
1 / 5
a?a?a?aa?a?a?aa?a?a?aa?a?a?a5324245553112431??? 5、若
aaaa4132a?a?a?a4312a?a?a?a?a?0k??k的值。
,求,且51432a5
bcdef??4?a?acdef?9??b?abdef?16??c(a?c?e)?,d,ef(b?d?f),ab,c,的满足解方程组,求6、已知正数?abcef1??4d??abcdf1??
e9??abcde1??f16?值。
x?x?x?x?x?x?...?x?x?x?x?1?19994219972199831199837、解方程组?x?x?...?x?x?1999?1219981999
例4、含绝对值的方程组
|x|?|y|?7|x?y|?1??1、解方程组2、解方程组??2|x|?3|y|??1|x|?2|y|?3??
2 / 5
例5、含字母系数方程组的解及杂题
y?kx?b?bk,有唯一解,无解,有无穷多解?为何值时,方程组、当1?y?(3k?1)x?2?
a0a?a(?2)y?5?2(a?1)x?y,x每取一个值时就有一的二元一次方程,、已知关于2 个方程,而这些方程有一个公共解,你能求出这个解吗?
222z??25xy4x?3y?6z?0,x?2y?7z?0(xyz?0)则代数式的值为多少?、若3
2222x?3y?10z
4x?3y?6?mm的值。
是整数,方程组4、已知有整数解,求?6x?my?26?
x,x,...xx?x?...?x??17,2,0,1?中每一个数值只能取5、已知中的一个,且满足
n2211n223332?x?...?x?37,x?xx?...?x求的值。
n12n21
【拓展训练】
1、若一个两位正整数的十位上的数字与个位数上数字的和为6,那么符合条件的两位数的个数是()个
4567..A.B. D C x?y?5k?k、26?3yx2?y,x值为的方程组的解也是二元一次方程若关于的解,则?x?y?9k?()
3 / 5
3344?? D.A..BC.44332a、3b1)a?b?(1|b?|a?的大小关系是(若互为相反数,则与)与
a?ba?ba?ba?b D.A.C..B ax?2y?7x?5x?3???a、4看错后得到,而正确的解是,解方程组时,一学生把???cx?dy?4y?1y??1???a,c,d值为(则)
a?3,c?1,d?1a?3,c,da?3,c?2,d??2.不能确定C.DA.不能确定B.ax?3y?9?a、5y,x的值为(若关于无解,则)的方程组?2x?y?1??66930..B.DA.C6、ax?b1,1,2,4?,abx?的值,依次得到下列是给定的整数,某同学分别计算时代数式四个结果,已知其中3个是正确的,那么错误的是()
?a?b??1a?b?52a?b?74a?b?14 C B.A..D.x?2y?3z?0?7、x,y,zx:y:z是()都不为0,由方程组可得若?2x?3y?4z?0?1:2:11:(?2):1(?1):2:11:2:(?1)...A. D C B1233211118、???7????5,??。
,则若xyzxyzxyz2x?y?7?9、x?y?x?y?。
,则已知二元一次方程组,?x?2y?8?ax?by?4x?2??10、2a?3b?。
的解为已知方程组,则??ax?by?2y?1??2x?ay?6?aa?、11y,x________。
的方程组的解是整数,已知关于是正整数,那么?4x?y?7?2a?3b?13a?8.32(x?2)?3(y?1)?13???12、已知方程组的解为,则方程组???3a?5b?30.93(x?2)?5(y?1)?30.9b?1.2???的解是。
4 / 5
5 / 5。