功能陶瓷PPT
合集下载
6 功能陶瓷(5)磁性陶瓷

6.5.3 磁性陶瓷
6.5.3.1 软磁铁氧体
应用 主要用于通讯、广播、电视等领域中广泛应用的磁性材料, 主要作为各种电感元件的磁芯。 变压器铁芯:根据电磁感应原理,初级线圈中施以电 讯号,则次级线圈中感生电压感生电流产生,从而获 得电压升高、降低和稳压的作用。根据讯号的不同, 可有音频变压器、脉冲变压器、选频倒相变压器等。 电感元件:如谐振回路中的电感、日光灯镇流器、天 线的磁芯、变压器磁芯、天线磁芯、偏转磁芯以及磁 带录音磁头等。 主要性能指标: 要求: 磁导率m 品质因子Q 高磁导率 工作频率 低剩磁和矫顽力 工作温度
6.5.2.2 磁性来源
自发磁化
1)存在未填满电子的内存 2)相邻原子距离与未填满电子层 的半径比大于3
克尔显微镜下的NdFeB颗粒中的磁畴
铁磁性
亚铁磁性
反铁磁性
6.5.2铁氧体
6.5.2.2 磁性来源
超交换作用
(a)基态
(b)激发态
3d5
2P6
3d5
6.5.3 磁性陶瓷
6.5.3.1 软磁铁氧体
6.5.3 磁性陶瓷
6.5.3.2 硬磁铁氧体
特点
(1)剩余磁感应强度Br较高。剩余磁感应强度即材料经外场磁 化达饱和并除去外场后,在闭合磁路中所剩余的磁感应强度, 正是由于Br的存在,硬磁材料才能在没有外磁场时,对外保持一 定的磁场。一般Br为0.3-0.5T。
(2)矫顽力Hc大。矫顽力Hc即处于饱和磁化状态的磁性材料, 将磁场单调减小至零并反向增加,使磁化强度沿饱和磁滞回线 减小到零时的磁场强度。它表示材料抵抗退磁的能力。一般为 0.1-0.4T左右。 (3)最大磁能积(BH)max高。磁能积是衡量硬磁材料的一项重 要参数,它是指磁滞回线在第II象限(退磁曲线)内磁感应强度 B和磁场强度H的乘积。
个人ppt 功能陶瓷的分类

5、光敏陶瓷
光敏陶瓷也称光敏电阻瓷,属半导体陶瓷。 由于材料的电特性不同以及光子能量的差 异,它在光的照射下吸收光能,产生不同的光 电效应:光电导效应和光生伏特效应。
四、超导陶瓷
四、超导陶瓷
具有超导性的陶瓷材料。其主要特性是在 一定临界温度下电阻为零即所谓零阻现象。 超导体的分类,从材料来分,可分为三大 类,即元素超导体、合金或化合物超导体、氧 化物超导体(即陶瓷超导体)。
三、敏感陶瓷
定义:当作用于材料元件上的某一外界条件如温度、 压力、湿度、气氛、电场、磁场、光及射线等改变 时,能引起该材料某种物理性能的变化,从而能从 这些元件上准确迅速地获得某种有用的信号。
分类:热敏、压敏、湿敏、气敏、声波敏感陶瓷、 磁敏和多敏性陶瓷
三、敏感陶瓷—热敏陶瓷
1、热敏陶瓷
热敏陶瓷是一类电阻率随温度发生明显变 化的材料,用于制作温度传感器、线路温度补 偿及稳频的元件-------热敏电阻。 其优点是品种繁多,可以满足不同用途的 需要;灵敏度高、稳定性好、容易制造、价格 便宜。 按照热敏陶瓷的阻温特性,可把热敏陶瓷分为 负温度系数NTC热敏陶瓷:正温度系数PTC 热敏陶瓷;临界温度热敏电阻CTR及线性阻 温特性热敏陶瓷四大类。
一、电子陶瓷—电介质陶瓷
一、电子陶瓷—电介质陶瓷
(3). 压电陶瓷
电介质陶瓷中的第三大类即为压电陶瓷,它
包括压电陶瓷、热释电陶瓷和铁电陶瓷三种。
陶瓷在外加力场作用下出现宏观的压电效应, 称为压电陶瓷。
压电陶瓷的优点是价格便宜,可以批量生产,
能控制极化方向,添加不同成分,可改变压电特 性。
一、电子陶瓷—导电陶瓷
2、导电陶瓷
众所周知,通常陶瓷不导电,是良好的绝缘 体。例如在氧化物陶瓷中,原子的外层电子受原 子核吸引,束缚在原子周围,不能自由运动。使 氧化物陶瓷不能导电。然而,某些氧化物陶瓷加 热时,处于原子外层的电子可以获得足够的能量, 以便克服原子核对它的吸引力,而成为可以自由 运动的自由电子,这种陶瓷就变成导电陶瓷。
光敏陶瓷也称光敏电阻瓷,属半导体陶瓷。 由于材料的电特性不同以及光子能量的差 异,它在光的照射下吸收光能,产生不同的光 电效应:光电导效应和光生伏特效应。
四、超导陶瓷
四、超导陶瓷
具有超导性的陶瓷材料。其主要特性是在 一定临界温度下电阻为零即所谓零阻现象。 超导体的分类,从材料来分,可分为三大 类,即元素超导体、合金或化合物超导体、氧 化物超导体(即陶瓷超导体)。
三、敏感陶瓷
定义:当作用于材料元件上的某一外界条件如温度、 压力、湿度、气氛、电场、磁场、光及射线等改变 时,能引起该材料某种物理性能的变化,从而能从 这些元件上准确迅速地获得某种有用的信号。
分类:热敏、压敏、湿敏、气敏、声波敏感陶瓷、 磁敏和多敏性陶瓷
三、敏感陶瓷—热敏陶瓷
1、热敏陶瓷
热敏陶瓷是一类电阻率随温度发生明显变 化的材料,用于制作温度传感器、线路温度补 偿及稳频的元件-------热敏电阻。 其优点是品种繁多,可以满足不同用途的 需要;灵敏度高、稳定性好、容易制造、价格 便宜。 按照热敏陶瓷的阻温特性,可把热敏陶瓷分为 负温度系数NTC热敏陶瓷:正温度系数PTC 热敏陶瓷;临界温度热敏电阻CTR及线性阻 温特性热敏陶瓷四大类。
一、电子陶瓷—电介质陶瓷
一、电子陶瓷—电介质陶瓷
(3). 压电陶瓷
电介质陶瓷中的第三大类即为压电陶瓷,它
包括压电陶瓷、热释电陶瓷和铁电陶瓷三种。
陶瓷在外加力场作用下出现宏观的压电效应, 称为压电陶瓷。
压电陶瓷的优点是价格便宜,可以批量生产,
能控制极化方向,添加不同成分,可改变压电特 性。
一、电子陶瓷—导电陶瓷
2、导电陶瓷
众所周知,通常陶瓷不导电,是良好的绝缘 体。例如在氧化物陶瓷中,原子的外层电子受原 子核吸引,束缚在原子周围,不能自由运动。使 氧化物陶瓷不能导电。然而,某些氧化物陶瓷加 热时,处于原子外层的电子可以获得足够的能量, 以便克服原子核对它的吸引力,而成为可以自由 运动的自由电子,这种陶瓷就变成导电陶瓷。
功能陶瓷

四、压电陶瓷
4.5压电陶瓷的应用
四、压பைடு நூலகம்陶瓷
4.5压电陶瓷的应用
五、热敏陶瓷
5.1热敏陶瓷 5.2 热敏陶瓷的分类 5.3 热敏陶瓷的应用 定义:电阻率明显随温度变化的一类功能陶瓷。在工作温度范围内,零功率 热敏陶瓷按阻温特性分为: 几十年来,在世界众多科学工作者的努力下,在许多方面取得了重大突破不
六、光电陶瓷
6.4光电陶瓷的应用 光电陶瓷在信息的检测、转化、处理和存储显示中应用广泛,是信息技术中 基础元器件的关键材料。
结束语
随着现代高新技术的发展,功能陶瓷及其应用正向精细化、多功能、智能化、 集成化、高性能、高可靠和复合结构发展。 虽然中国是世界上制造陶瓷最早的国家,但是我国在新型功能陶瓷方面与国 外水平相比还有较大的差距,这方面已经成为我国信息技术和产业发展的瓶 颈。
功 能 陶 瓷
二、功能陶瓷的基本性质
功能陶瓷的基本性质包括电、光、声、热、磁、生物、力学和化学等方面的 物理性能。 功能陶瓷是一类颇具灵性的材料,它们或能感知光线,或能区分气味,或能 储存信息……因此,说它们多才多能一点都不过分.它们在电、磁、声、光、 热等方面具备的许多优异性能令其他材料难以企及,有的功能陶瓷材料还是 一材多能。而这些性质的实现往往取决于其内部的电子状态或原子核结构, 又称电子陶瓷。
电阻随温度变化而变化的陶瓷材料。主要用于制作热敏电阻器、温度传感器、 仅理论日臻成熟,其应用范围也在不断扩大。随着研发和设计工程师对热敏 (1)负温度系数热敏电阻陶瓷,简称NTC热敏陶瓷; 加热器以及限流元件等。 电阻的了解越来越深刻,许多新用途不断被开发出来,目前已渗透到日常生 ( 2)正温度系数热敏电阻陶瓷,简称PTC热敏陶瓷; 活、工业技术、军事科学、通讯、宇航等各个领域。 (3)临界温度热敏电阻陶瓷,简称CTR热敏陶瓷。不同类型的热敏陶瓷性能 参数不同。
《功能陶瓷材料》PPT课件

《材料物理导论》
第7章
功能陶瓷材料物理
编辑ppt
1
前言
材料可以分成三大类,金属、陶瓷、有机高分子。
金属材料的基本特征是:由金属元素原子构成,原子之间 的结合是金属键,含有许多自由电子。
有机高分子材料的基本特征是:主要由碳、氧、氢、硅等 非金属元素原子构成,原子之间的结合主要是共价键,一般 没有自由电子。
为了提高陶瓷质量,人们对粉料制备进行了许 多研究,发明了多种制备超细陶瓷粉料的方法。其 中,湿化学法尤其重要。
编辑ppt
14
1、共沉淀法
共沉淀是指溶液中一种不溶或难溶成分在形成沉淀过程中, 将共存的某些其它组分一起带着沉淀下去的现象。
共沉淀的原理基于表面吸附、形成混晶、异电核胶态物质相 互作用及包藏等。
金属蒸汽真空弧离子源离子注入离子束增强辅助沉积等离子源离子注入激光表面合金化激光化学气相沉积等离子体辅助化学气相沉积双层辉光等离子体表面合金化脉冲高能量等离子体表面改性技术离子注入装置举例离子注入材料表面改性的强化机理离子注入后能显著提高材料表面的硬度耐磨性耐疲劳性抗腐蚀和抗氧化等性能其改性的机理认为主要有以下几种
高度均匀性,高纯性,可降低烧结温度,可在分子水平上进
行组元控制。
编辑ppt
17
例: YSZ粉的Sol-Gel法制备 异丙醇锆 醋酸钇
↓混合搅拌 均匀溶液
↓吸水;水解-聚合反应 溶胶 ↓干燥 凝胶
↓ 煅烧
↓ YSZ粉末 纳米级大小
编辑ppt
18
三、一些特殊的烧结方法:
1、热压烧结:
就是在对样品施加压力的条件下烧结。
吸附共沉淀:特征是主沉淀成分表面积大、吸附力强, 故吸附和富集效率高。
混晶共沉淀:两种金属离子和一种沉淀剂形成的晶形、 晶核相似的晶体,称为混晶。如PbSO4-SrSO4混晶。
第7章
功能陶瓷材料物理
编辑ppt
1
前言
材料可以分成三大类,金属、陶瓷、有机高分子。
金属材料的基本特征是:由金属元素原子构成,原子之间 的结合是金属键,含有许多自由电子。
有机高分子材料的基本特征是:主要由碳、氧、氢、硅等 非金属元素原子构成,原子之间的结合主要是共价键,一般 没有自由电子。
为了提高陶瓷质量,人们对粉料制备进行了许 多研究,发明了多种制备超细陶瓷粉料的方法。其 中,湿化学法尤其重要。
编辑ppt
14
1、共沉淀法
共沉淀是指溶液中一种不溶或难溶成分在形成沉淀过程中, 将共存的某些其它组分一起带着沉淀下去的现象。
共沉淀的原理基于表面吸附、形成混晶、异电核胶态物质相 互作用及包藏等。
金属蒸汽真空弧离子源离子注入离子束增强辅助沉积等离子源离子注入激光表面合金化激光化学气相沉积等离子体辅助化学气相沉积双层辉光等离子体表面合金化脉冲高能量等离子体表面改性技术离子注入装置举例离子注入材料表面改性的强化机理离子注入后能显著提高材料表面的硬度耐磨性耐疲劳性抗腐蚀和抗氧化等性能其改性的机理认为主要有以下几种
高度均匀性,高纯性,可降低烧结温度,可在分子水平上进
行组元控制。
编辑ppt
17
例: YSZ粉的Sol-Gel法制备 异丙醇锆 醋酸钇
↓混合搅拌 均匀溶液
↓吸水;水解-聚合反应 溶胶 ↓干燥 凝胶
↓ 煅烧
↓ YSZ粉末 纳米级大小
编辑ppt
18
三、一些特殊的烧结方法:
1、热压烧结:
就是在对样品施加压力的条件下烧结。
吸附共沉淀:特征是主沉淀成分表面积大、吸附力强, 故吸附和富集效率高。
混晶共沉淀:两种金属离子和一种沉淀剂形成的晶形、 晶核相似的晶体,称为混晶。如PbSO4-SrSO4混晶。
功能陶瓷

离子导电常存在明显的各向异性。
例如β-Al2O3在c方向上的电导比在其他方向上大许多,这是由于离子 通道存在明显的方向性。
Dept. of MSE, CQU
15
重庆大学材料科学与工程学院
离子电导率与温度T的关系满足Arrhenius关系:
ion
E A exp( ) kT
(4-9)
晶格中导电离子可能占据的位置比实际填充的离子数目多得多; 临近导电离子间的势垒不太大; 晶格中存在有导电离子运动的通道,如各种体积较大的八面体间隙 和四面体间隙相互连通。
Dept. of MSE, CQU
14
重庆大学材料科学与工程学院
正离子在晶格中可能占据位置的投影图 (a)绝缘体;(b)离子导体
Dept. of MSE, CQU
11
重庆大学材料科学与工程学院 缺陷对陶瓷导电的影响
晶体缺陷对陶瓷导电行为的影响比较复杂。陶瓷中点缺陷对材 料电性能影响较大,一般都是陶瓷材料的电导有所增加。
例如立方ZrO2,其结构中的正离子作立方密堆积,负离子占据全部 四面体间隙,而全部八面体间隙空着,这就便于其他例子在其间移动。 如果在立方ZrO2中加入8at%的Y2O3,Y3+部分替代Zr4+后在晶格中形成部 分氧离子空位,可使ZrO2的立方相在低温时稳定和称为离子导电的固体 电解质。
Ag在AgI晶胞中 的位置
Dept. of MSE, CQU
21
重庆大学材料科学与工程学院
具有β-Al2O3结构的氧化物
β-Al2O3结构属于六角晶系。这种结构的导电性源于一价碱金属离子A+ 的高迁移性和高可交换性。晶胞中阳离子采取立方堆积,铝粒子处在八 面体和四面体间隙位置上。A+和氧层连接在一起,这种疏松的连接层是 无序的,它提供了原子通道,使晶格中的A离子很容易移动。 一价A离子的半径过大或过小均会 引起电导率的下降。这是因为离子 半径过大时,其迁移能力变差;而 离子半径过小会使正离子在电导通 道中作漩涡式的迅速移动,也会阻 碍其运动。 这类材料的导电行为是极端各向异 性的,垂直于c方向的电导率比于c 方向的电导率大得多。
例如β-Al2O3在c方向上的电导比在其他方向上大许多,这是由于离子 通道存在明显的方向性。
Dept. of MSE, CQU
15
重庆大学材料科学与工程学院
离子电导率与温度T的关系满足Arrhenius关系:
ion
E A exp( ) kT
(4-9)
晶格中导电离子可能占据的位置比实际填充的离子数目多得多; 临近导电离子间的势垒不太大; 晶格中存在有导电离子运动的通道,如各种体积较大的八面体间隙 和四面体间隙相互连通。
Dept. of MSE, CQU
14
重庆大学材料科学与工程学院
正离子在晶格中可能占据位置的投影图 (a)绝缘体;(b)离子导体
Dept. of MSE, CQU
11
重庆大学材料科学与工程学院 缺陷对陶瓷导电的影响
晶体缺陷对陶瓷导电行为的影响比较复杂。陶瓷中点缺陷对材 料电性能影响较大,一般都是陶瓷材料的电导有所增加。
例如立方ZrO2,其结构中的正离子作立方密堆积,负离子占据全部 四面体间隙,而全部八面体间隙空着,这就便于其他例子在其间移动。 如果在立方ZrO2中加入8at%的Y2O3,Y3+部分替代Zr4+后在晶格中形成部 分氧离子空位,可使ZrO2的立方相在低温时稳定和称为离子导电的固体 电解质。
Ag在AgI晶胞中 的位置
Dept. of MSE, CQU
21
重庆大学材料科学与工程学院
具有β-Al2O3结构的氧化物
β-Al2O3结构属于六角晶系。这种结构的导电性源于一价碱金属离子A+ 的高迁移性和高可交换性。晶胞中阳离子采取立方堆积,铝粒子处在八 面体和四面体间隙位置上。A+和氧层连接在一起,这种疏松的连接层是 无序的,它提供了原子通道,使晶格中的A离子很容易移动。 一价A离子的半径过大或过小均会 引起电导率的下降。这是因为离子 半径过大时,其迁移能力变差;而 离子半径过小会使正离子在电导通 道中作漩涡式的迅速移动,也会阻 碍其运动。 这类材料的导电行为是极端各向异 性的,垂直于c方向的电导率比于c 方向的电导率大得多。
稀土功能陶瓷材料-课件

气敏传感器
稀土功能陶瓷材料的表面活性和 气敏性能使其在气体传感器中具 有广泛应用。
储氢材料
稀土功能陶瓷材料的孔结构和特 殊吸附性能使其成为理想的储氢 材料。
生物医学材料
稀土功能陶瓷材料的生物相容性 和药物传输性能使其在生物医学 领域具有潜在应用。
市场前景
1 全球市场概览
稀土功能陶瓷材料市场正在迅速增长,预计 未来几年将保持良好发展态势。
2 发展趋势与前景
随着新技术的不断涌现和应用领域的扩大, 稀土功能陶瓷材料有望在未来发展中发挥更 大的作用。
总结
稀土功能陶瓷材料具有独特的特点和广泛的应用领域,但也存在一些挑战。 未来发展的重点将是提高材料性能和拓宽应用领域。
制备方法
1 热处理制备法
通过高温烧结和热处理将稀土氧化物与其他 化合物反应得到陶瓷材料。
2 溶胶-凝胶法
通过溶胶和凝胶的形成过程控制陶瓷材料的 结构和性能。
3 液相制备法
通过液相反应得到稀土功能陶瓷材料。
4 物理-化学合成法
结合物理和化学方法制备稀土功能陶瓷材料。
性能表征
1
结构表征
使用X射线衍射和扫描电子显微镜等技术分析稀土功能陶瓷材料的结构。
稀土功能陶瓷材料-课件
欢迎来到稀土功能陶瓷材料的课件!在本课件中,我们将了解稀土功能陶瓷 材料的特点、制备方法、性能表征、应用领域和市场前景。
概述
稀土功能陶瓷材料是一类具有特殊功能和优异性能的材料。它们具有高温稳 定性、电学性能、机械性能等特点,广泛应用于储能器件、光伏电池、气敏 传感器、储氢材料和生物医学材料等领域。
2
物理性质表征
通过测量热膨胀系数、热导率和电阻率等参数来评估稀土功能陶瓷材料的物理性 能。
光催化抗菌功能陶瓷介绍PPT

涂次数( 1,2,5,10) 可得到厚度不同的光催化膜。其抗 菌性能显示,黑光灯光照条件下,5 次浸涂的膜比2 次和1 次浸涂膜具有更大的光催化活性。这主要是由于随着膜厚 的增加,光催化反应表面积增大,对光的吸收能力增强, 光催化活性提高。但10 次浸涂膜与5 次浸涂膜相比,两者 的抗菌性能基本上没有什么差异。这是由于膜厚的过分增 大,表面凝聚加著,在烧结过程中晶粒粒径增大, 薄膜 中有效粒子表面积相对减少的缘故
五、TiO2纳米粒子的光催化
• 5.1什么是光催化 • 光催化特性是半导体具有的独特性能之一。光照射下
把光能转化为化学能,促进化合物的合成或降解的过 程称为光催化。 • 光催化的具体过程 • 半导体材料中电子分布的特征是在它的导带和价带之 间有带隙存在。许多化合物半导体的价带是满的,导 带是空的。当它们受到光照时,只要光子能量超过半 导体的带隙能()时, 就能使电子从价带跃迁到导带, 从而产生导带电子和价带空穴。这类导带电子有很强 的还原力而价带空穴则有很强的氧化力。只要能够抑 制或延缓电子-空穴的复合过程,就有可能利用这类光 生载流子来氧化或还原半导体表面上的吸附物。
• 氧化钛剂抗菌陶瓷适于建筑卫生陶瓷高温烧成, 但烧成温度越高,抗菌性越低。因此要做抗菌率 较高的内墙砖比较容易,地板次之,卫生陶瓷最 难。
• 氧化钛抗菌陶瓷存在薄膜与坯体结合不紧密的问 题,这主要是由于烧成温度过低造成的。这样的 薄膜抗洗刷能力较差,由于薄膜厚度不均易产生 彩虹效应。解决这些问题除了要注意烧成温度外 还可以在釉料中适量添加改性剂以改善其结合性 能。
氧化钛系抗菌
• 纳米Ti02经光催化产生的空穴和形成于表面的活
性氧类能与细菌细胞或细胞内的组成成分进行生 化反应,使细菌单元失活而导致细胞死亡,并且 使细菌死亡后产生的内毒素分解 • 日本最近开发出用于Ti涂覆的抗菌陶瓷,在光照 下可完全杀死其表面的细菌。最近福州大学也研 制出坚固的掺杂Ti02膜的陶瓷材料,对大肠杆菌 和空气中的浮游菌具有稳定的杀灭作用和抑制细 菌生长的能力
五、TiO2纳米粒子的光催化
• 5.1什么是光催化 • 光催化特性是半导体具有的独特性能之一。光照射下
把光能转化为化学能,促进化合物的合成或降解的过 程称为光催化。 • 光催化的具体过程 • 半导体材料中电子分布的特征是在它的导带和价带之 间有带隙存在。许多化合物半导体的价带是满的,导 带是空的。当它们受到光照时,只要光子能量超过半 导体的带隙能()时, 就能使电子从价带跃迁到导带, 从而产生导带电子和价带空穴。这类导带电子有很强 的还原力而价带空穴则有很强的氧化力。只要能够抑 制或延缓电子-空穴的复合过程,就有可能利用这类光 生载流子来氧化或还原半导体表面上的吸附物。
• 氧化钛剂抗菌陶瓷适于建筑卫生陶瓷高温烧成, 但烧成温度越高,抗菌性越低。因此要做抗菌率 较高的内墙砖比较容易,地板次之,卫生陶瓷最 难。
• 氧化钛抗菌陶瓷存在薄膜与坯体结合不紧密的问 题,这主要是由于烧成温度过低造成的。这样的 薄膜抗洗刷能力较差,由于薄膜厚度不均易产生 彩虹效应。解决这些问题除了要注意烧成温度外 还可以在釉料中适量添加改性剂以改善其结合性 能。
氧化钛系抗菌
• 纳米Ti02经光催化产生的空穴和形成于表面的活
性氧类能与细菌细胞或细胞内的组成成分进行生 化反应,使细菌单元失活而导致细胞死亡,并且 使细菌死亡后产生的内毒素分解 • 日本最近开发出用于Ti涂覆的抗菌陶瓷,在光照 下可完全杀死其表面的细菌。最近福州大学也研 制出坚固的掺杂Ti02膜的陶瓷材料,对大肠杆菌 和空气中的浮游菌具有稳定的杀灭作用和抑制细 菌生长的能力
第7次课-功能陶瓷

饱和极化强度Ps 剩余极化强度Pr
矫顽电场强度Ec
饱和电场强度Esat 铁电体的电滞回线
电极化的微观机制
电子位移极化, 响应 时 间 10-1410-16s 可见光频段, e a3
离子位移极化,
1210-13s,
10-
微波频段,
I = a3
偶极子取向极化,
= 02/3KT
② 严格控制配方,避免杂质离子,尤其是碱金属和碱
土金属离子的引入,在必须引入金属离子时,充分利用 中和效应和压抑效应,以降低材料中玻璃相的电导率。
3.1 电介质陶瓷
3.1.3电介质陶瓷陶瓷生产工艺、性能及应用
1) 电绝缘陶瓷的生产特点——高体积电阻 ③ 由于玻璃的电导活化能小,因此应尽可能控制玻璃 相的数量,甚至达到无玻璃相烧结。 ④ 避免引入变价金属离子,以免产生自由电子和空穴,
氧化锆和氧化锌---提高材料机械强度。
3.1 电介质陶瓷
3.1.3电介质陶瓷陶瓷生产工艺、性能及应用
2) 镁质瓷 (以滑石瓷为例)
生产的关键问题及工艺:
① 滑石的预烧
② 防止滑石老化
③ 烧结
扩大烧结范围严格控制窑炉温度范围
3.1 电介质陶瓷
3.1.4 非铁电电容器陶瓷
非铁电高介电电容器陶瓷的品种繁多。按照材料介电 系数和温度系数的大小,可分为: 1)温度补偿电容器陶瓷;2)温度稳定电容器陶瓷 1)温度补偿电容器陶瓷 高频温度补偿电容器陶瓷的介电常数在650以下,介电 常数的温度系数较小,而且可通过组成的调整,使介电常 数的温度系数灵活地变化。 介电常数的温度系数常为负值,用来补偿回路中电感 的正温度系数,使回路的谐振频率保持稳定。
往往由于击穿而不能工作,因此提高它的耐压性能非常重 要。
矫顽电场强度Ec
饱和电场强度Esat 铁电体的电滞回线
电极化的微观机制
电子位移极化, 响应 时 间 10-1410-16s 可见光频段, e a3
离子位移极化,
1210-13s,
10-
微波频段,
I = a3
偶极子取向极化,
= 02/3KT
② 严格控制配方,避免杂质离子,尤其是碱金属和碱
土金属离子的引入,在必须引入金属离子时,充分利用 中和效应和压抑效应,以降低材料中玻璃相的电导率。
3.1 电介质陶瓷
3.1.3电介质陶瓷陶瓷生产工艺、性能及应用
1) 电绝缘陶瓷的生产特点——高体积电阻 ③ 由于玻璃的电导活化能小,因此应尽可能控制玻璃 相的数量,甚至达到无玻璃相烧结。 ④ 避免引入变价金属离子,以免产生自由电子和空穴,
氧化锆和氧化锌---提高材料机械强度。
3.1 电介质陶瓷
3.1.3电介质陶瓷陶瓷生产工艺、性能及应用
2) 镁质瓷 (以滑石瓷为例)
生产的关键问题及工艺:
① 滑石的预烧
② 防止滑石老化
③ 烧结
扩大烧结范围严格控制窑炉温度范围
3.1 电介质陶瓷
3.1.4 非铁电电容器陶瓷
非铁电高介电电容器陶瓷的品种繁多。按照材料介电 系数和温度系数的大小,可分为: 1)温度补偿电容器陶瓷;2)温度稳定电容器陶瓷 1)温度补偿电容器陶瓷 高频温度补偿电容器陶瓷的介电常数在650以下,介电 常数的温度系数较小,而且可通过组成的调整,使介电常 数的温度系数灵活地变化。 介电常数的温度系数常为负值,用来补偿回路中电感 的正温度系数,使回路的谐振频率保持稳定。
往往由于击穿而不能工作,因此提高它的耐压性能非常重 要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BaTiO3基压电陶瓷的研究进展
主要内容
研究背景
研究进展:性能改进 发展趋势展望
Page 2
研究背景
无铅压电陶瓷
某些各向异性的晶体,在外力作用下产生变形,使带电粒子发生相对 位移,从而在晶体表面出现束缚电荷,这种现象称为压电效应。某些 介质在受到机械压力时,会产生压缩或伸长等形状变化,引起介质表 面带电,这是正压电效应;反之,施加激励电场,介质产生机械变形 ,称为逆压电效应;晶体的这种性质称为压电性。具有压电效应的材 料称为压电材料。无铅压电陶瓷的直接含义就是不含铅的压电陶瓷。
Page 5
研究背景
钛酸钡基无铅压电陶瓷
2009年日本国立物质研究所Ren等人报道了 Ba(Tio.8Zro.2)03-x(Bao.7Cao.3)Ti03 陶瓷具有超高的压电性能d33=620pC/N, 研究和开发高性能BaTi03基陶瓷引起了研宄者们广泛关注。 研 究 重 点
化学组分改性 (掺杂)
性能 提升
制备工艺改进
Page 6
研究进展:化学组分改性
对 BaTiO3基压电陶瓷的离子取代改性是通过掺杂离子使陶瓷的正交-四方相 转变温度( TO-T )的移动至室温附近,由于在正交-四方相转变区 Gibbs 自 由能曲面变平,使得正交相和四方相的稳定性相似,在极化过程中自发极 化有更多的可转向方向,从而使得相结构处于正交-四方相转变区域的陶瓷 的压电性能较为优异。
正压电效应
机械能
逆压电效应
电能
Page 3
研究背景
发展无铅压电陶瓷的原因
传统的压电陶瓷 —PZT(锆钛酸铅)
2006 年 7月1日,欧盟颁布的 《关于在电子电气设备中限制使 用某些有害物质指令 》开始强 制实施, 对电子产业无铅化起 到了巨大的推动作用。但目前无 铅压电陶瓷的电性能没有达到铅 基陶瓷的性能, 仍然无法替代铅 基陶瓷。因此, 如何提高无铅压 电陶瓷的压电性能, 是目前国内 外无铅压电陶瓷研究的热点和难 点。
水热法
学者们对于每种制备方法的缺点也在做着改进研究,同时开发新的制备方法
Page 11
研究进展:制备工艺改进
烧结工艺
两步烧结法 微波法烧结
放电等离子体烧结法 其他
Page 12
研究进展:制备工艺改进
烧结工艺 优点
此工艺可以降低烧结温度和缩短烧结时间,得到的晶粒致 密且尺寸小
两步烧结法
微波法烧结
粉体制备 方法
传统的固相 合成法 溶胶-凝胶法
优点
工艺过程较简单,易于化 学计量 ,控制产物的 Ba/ Ti 比 原料均匀混合,化学反应也 较为充分,得到粉体粒径较 小 温度较低,粉粒晶体发育 完全,纯度高,粒径小, 成分均匀
缺点
合成温度高使得BaTiO3粉体粒径 大,团聚现象严重; 混合不均匀,导致化学组分不均 匀。 过程中所用到的金属醇盐价格较 高,有机溶剂具有毒性,过程需要的 时间长 TiO2/Ba (OH)2的固一液反应缺乏 热力数据 ,氯盐所引起腐蚀问题 , 以及团聚体 的形成等
Page 14
汇报完毕,谢谢!
较短的烧结时间,介质损耗降低,BaTiO3陶瓷晶粒更小 大大地缩短烧结时间,降低烧结温度,快速制备组织致密、 均匀的材料,同时,在同等晶粒度情况下获得较好的介电 性能
放电等离子体 烧结法
Page 13
发展趋势展望
1、压电陶瓷的无铅化发展已是必然趋势,BT基陶瓷研 究取得的成果,使其在中、低温压电器件领域恢复市场 主导地位的存在可能性 2、与铅基压电陶瓷相比,BT 基无铅压电陶瓷的性能 仍然存在一定的差距,在进一步提升钛酸钡陶瓷的性能 方面,还有很多工作要做。
Page 7
研究进展:化学组分改性
关于 BaTiO3陶瓷的离子掺杂取得了较多的成果
Page 8
研究进展:制备工艺改进
压电陶瓷的制作过程主要包括以下步骤:
粉体制备
烧结工艺
Page 9
研究进展:制备工艺改进
粉体制备
传统的固相合成法
溶胶-凝胶法 水热法 其他
Page 10
研究进展:制备工艺改进
无铅压电陶瓷
Page 4
研究背景
钛酸钡基无铅压电陶瓷
钛酸钡(BaTiO3)是最早发现 有压电性的陶瓷,属于ABO3型钙 钛矿结构(如图1所示)。
缺点:
1、居里点不高,工作温度范围狭窄 2、压电性能与含铅系列陶瓷相比,还有一定的差距 3、需要高温烧结(1 300~1 350°C),且烧结存在一定难度
能使 BaTiO3陶瓷的 TO-T升高的离子: Sn4+, Zr4+, Hf4+ 能使 BaTiO3陶瓷的 TO-T降低的离子: Ca2+, Pb2+ 大部分离子的掺杂会降低BaTiO3陶瓷的Tc(居里温度) 能使 BaTiO3陶瓷的 Tc升高的离子: Pb2+, Y3+ , Bi3+
钛酸钡(BaTiO3)压电陶瓷的压电常数d33为190 pC/N, 5℃时发生正交相-四方相相 转变 。
主要内容
研究背景
研究进展:性能改进 发展趋势展望
Page 2
研究背景
无铅压电陶瓷
某些各向异性的晶体,在外力作用下产生变形,使带电粒子发生相对 位移,从而在晶体表面出现束缚电荷,这种现象称为压电效应。某些 介质在受到机械压力时,会产生压缩或伸长等形状变化,引起介质表 面带电,这是正压电效应;反之,施加激励电场,介质产生机械变形 ,称为逆压电效应;晶体的这种性质称为压电性。具有压电效应的材 料称为压电材料。无铅压电陶瓷的直接含义就是不含铅的压电陶瓷。
Page 5
研究背景
钛酸钡基无铅压电陶瓷
2009年日本国立物质研究所Ren等人报道了 Ba(Tio.8Zro.2)03-x(Bao.7Cao.3)Ti03 陶瓷具有超高的压电性能d33=620pC/N, 研究和开发高性能BaTi03基陶瓷引起了研宄者们广泛关注。 研 究 重 点
化学组分改性 (掺杂)
性能 提升
制备工艺改进
Page 6
研究进展:化学组分改性
对 BaTiO3基压电陶瓷的离子取代改性是通过掺杂离子使陶瓷的正交-四方相 转变温度( TO-T )的移动至室温附近,由于在正交-四方相转变区 Gibbs 自 由能曲面变平,使得正交相和四方相的稳定性相似,在极化过程中自发极 化有更多的可转向方向,从而使得相结构处于正交-四方相转变区域的陶瓷 的压电性能较为优异。
正压电效应
机械能
逆压电效应
电能
Page 3
研究背景
发展无铅压电陶瓷的原因
传统的压电陶瓷 —PZT(锆钛酸铅)
2006 年 7月1日,欧盟颁布的 《关于在电子电气设备中限制使 用某些有害物质指令 》开始强 制实施, 对电子产业无铅化起 到了巨大的推动作用。但目前无 铅压电陶瓷的电性能没有达到铅 基陶瓷的性能, 仍然无法替代铅 基陶瓷。因此, 如何提高无铅压 电陶瓷的压电性能, 是目前国内 外无铅压电陶瓷研究的热点和难 点。
水热法
学者们对于每种制备方法的缺点也在做着改进研究,同时开发新的制备方法
Page 11
研究进展:制备工艺改进
烧结工艺
两步烧结法 微波法烧结
放电等离子体烧结法 其他
Page 12
研究进展:制备工艺改进
烧结工艺 优点
此工艺可以降低烧结温度和缩短烧结时间,得到的晶粒致 密且尺寸小
两步烧结法
微波法烧结
粉体制备 方法
传统的固相 合成法 溶胶-凝胶法
优点
工艺过程较简单,易于化 学计量 ,控制产物的 Ba/ Ti 比 原料均匀混合,化学反应也 较为充分,得到粉体粒径较 小 温度较低,粉粒晶体发育 完全,纯度高,粒径小, 成分均匀
缺点
合成温度高使得BaTiO3粉体粒径 大,团聚现象严重; 混合不均匀,导致化学组分不均 匀。 过程中所用到的金属醇盐价格较 高,有机溶剂具有毒性,过程需要的 时间长 TiO2/Ba (OH)2的固一液反应缺乏 热力数据 ,氯盐所引起腐蚀问题 , 以及团聚体 的形成等
Page 14
汇报完毕,谢谢!
较短的烧结时间,介质损耗降低,BaTiO3陶瓷晶粒更小 大大地缩短烧结时间,降低烧结温度,快速制备组织致密、 均匀的材料,同时,在同等晶粒度情况下获得较好的介电 性能
放电等离子体 烧结法
Page 13
发展趋势展望
1、压电陶瓷的无铅化发展已是必然趋势,BT基陶瓷研 究取得的成果,使其在中、低温压电器件领域恢复市场 主导地位的存在可能性 2、与铅基压电陶瓷相比,BT 基无铅压电陶瓷的性能 仍然存在一定的差距,在进一步提升钛酸钡陶瓷的性能 方面,还有很多工作要做。
Page 7
研究进展:化学组分改性
关于 BaTiO3陶瓷的离子掺杂取得了较多的成果
Page 8
研究进展:制备工艺改进
压电陶瓷的制作过程主要包括以下步骤:
粉体制备
烧结工艺
Page 9
研究进展:制备工艺改进
粉体制备
传统的固相合成法
溶胶-凝胶法 水热法 其他
Page 10
研究进展:制备工艺改进
无铅压电陶瓷
Page 4
研究背景
钛酸钡基无铅压电陶瓷
钛酸钡(BaTiO3)是最早发现 有压电性的陶瓷,属于ABO3型钙 钛矿结构(如图1所示)。
缺点:
1、居里点不高,工作温度范围狭窄 2、压电性能与含铅系列陶瓷相比,还有一定的差距 3、需要高温烧结(1 300~1 350°C),且烧结存在一定难度
能使 BaTiO3陶瓷的 TO-T升高的离子: Sn4+, Zr4+, Hf4+ 能使 BaTiO3陶瓷的 TO-T降低的离子: Ca2+, Pb2+ 大部分离子的掺杂会降低BaTiO3陶瓷的Tc(居里温度) 能使 BaTiO3陶瓷的 Tc升高的离子: Pb2+, Y3+ , Bi3+
钛酸钡(BaTiO3)压电陶瓷的压电常数d33为190 pC/N, 5℃时发生正交相-四方相相 转变 。