第3章 圆的基本性质单元复习例题讲义
北师大版 九年级数学下册 第三章 圆 专题课讲义 圆章节复习(解析版)

圆章节复习课前测试【题目】课前测试如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.【答案】;存在,DE=;y=(0<x<).【解析】(1)如图(1),∵OD⊥BC,∴BD=BC=,∴OD==;(2)如图(2),存在,DE是不变的.连接AB,则AB==2,∵D和E分别是线段BC和AC的中点,∴DE=AB=;(3)如图(3),连接OC,∵BD=x,∴OD=,∵∠1=∠2,∠3=∠4,∴∠2+∠3=45°,过D作DF⊥OE.∴DF==,由(2)已知DE=,∴在Rt△DEF中,EF==,∴OE=OF+EF=+=∴y=DF•OE=••=(0<x<).总结:本题考查的是垂径定理、勾股定理、三角形的性质,综合性较强,难度中等.【难度】4【题目】课前测试如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.【答案】OD=3;AE是⊙O的切线;【解析】(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.总结:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:圆是九年级下册的内容,是初中几何三大模块(三角形、四边形、圆)之一,也是中考几何必考内容,包含与园有关的圆性质、与圆有关的位置关系及与圆有关的计算三部分,相比三角形与四边形,圆部分的知识点更多,需要记忆的概念和公式也就更多,另外它还要跟三角形和四边形结合,综合考查几何知识,难度骤然提升,解题思维更要灵活。
新浙教版初三上第三章《圆的基本性质》各节知识点及典型例题

圆的基本性质第一节 圆 第二节 图形的旋转 第三节 垂径定理(选学) 第四节 圆心角 第五节 圆周角 第六节 圆内接四边形第七节 正多边形 第八节 弧长及扇形的面积十二大知识点:1、圆的概念及点与圆的位置关系2、三角形的外接圆3、旋转的概论及性质4、垂径定理5、垂径定理的逆定理及其应用6、圆心角的概念及其性质 【课本相关知识点】1、圆的定义:在同一平面内,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。
2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。
3、弧:圆上任意 叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。
小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。
4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆5、点与圆的三种位置关系:若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则: 点P 在⊙O 外⇔ ; 点P 在⊙O 上⇔ ; 点P 在⊙O 内⇔ 。
6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上7、过一点可作 个圆。
过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。
8、过 的三点确定一个圆。
9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。
三角形的外心是三角形三条边的【典型例题】【题型一】证明多点共圆例1、已知矩形ABCD ,如图所示,试说明:矩形ABCD 的四个顶点A 、B 、C 、D 在同一个圆上【题型二】相关概念说法的正误判断 例1、(甘肃兰州中考数学)有下列四个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧。
圆的基本性质知识点及经典例题总复习

圆的基本性质总复习(一)【知识理解】知识点一:圆的定义及相关概念1.圆:在同一平面内,线段OP绕它固定的一个端点 O旋转一周,另一端点P所经过的封闭曲线叫做圆,定点O叫做圆心,线段OP叫做圆的半径.记作“⊙O”.第二种定义:到定点O的距离等于定长r的点的集合.弦;直径;注:在同一个圆中,直径是最长的弦,一个圆中有无数条弦和直径.弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号“⌒”表示.半圆;优弧;劣弧;等弧2. 等圆:半径相等的圆.同圆:同一个圆.同心圆:圆心相同,半径不相等的圆.知识点二:点与圆的位置关系设⊙O的半径为r,平面内任一点P到圆心的距离为d,则:⇔点在圆外⇔点在圆上⇔点在圆内知识点三:确定圆的条件不在同一条直线上的三个点确定一个圆知识点四:三角形的外接圆1、经过三角形的各个顶点的圆叫做三角形的外接圆,这个外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形.2、三角形的外心是三角形三条边的垂直平分线的交点注:一个三角形有且只有一个外接圆,而一个圆有无数个内接三角形知识点五:圆的对称性1、圆是轴对称图形,对称轴是直径所在的直线,每个圆都有无数条对称轴2、圆是中心对称图形,对称中心是圆心知识点六:图形的旋转由一个图形变为另一个图形,在运动的过程中,原图形上的所有点 都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形改变叫做图形的旋转变换,简称旋转.这个固定的点叫做旋转中心.(1)旋转的三要素旋转中心、旋转方向、旋转角度(2)图形旋转的性质①图形经过旋转所得的图形和原图形全等;②对应点到旋转中心的距离相等;③任何一对对应点与旋转中心连线所成的角度等于旋转的角度.知识点七:垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的弧.弦心距:圆心到圆的一条弦的距离叫做弦心距.垂径定理的逆定理:定理1.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.定理2:平分弧的直径垂直平分弧所对的弦.总结: 如图, 对于一个圆和一条直线来说,如果在下列五个条件中:只要具备其中两个条件,就可推出其余三个结论.CD 是直径,CD ⊥AB, AM=BM,⌒AC =⌒BC ,⌒AD =⌒BD .知识点七:圆心角及圆心角定理圆心角:顶点在圆心的角叫做圆心角.圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对量都相等.知识点八:圆周角及圆心角定理圆周角:顶点在圆上,两边都和角相交的角.注:同一条弦所对的圆周角有2个圆周角定理:圆周角的度数等于它所对的弧上的圆心角度数的一半.推论1:半圆(或直径)所对的圆周角是直角●O A B C D M └推论2:90°的圆周角所对的弦是直径推论3:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.知识点九:圆的内接四边形圆的内接四边形:如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.定理一:圆内接四边形的对角互补.定理二:圆内接四边形的外角等于它的内对角(内角的对角).判定定理:(1)定理:如果一个四边形的对角互补,那么它的四个顶点在同一个圆上(简称四点共圆).(2)推论:如果四边形的一个外角等于它内对角,那么这个四边形的四个顶点共圆.知识点十:正多边形各边相等、各内角也相等的多边形叫做正多边形.经过一个正多边形的各个顶点的圆叫做这个正多边形的外接圆,这个正多边形叫做圆内接正多边形.任何正多边形都有一个外接圆.性质:(1)正n边形的内角度数的和为:,正n边形每个内角的度数为:;(2)任意正n边形的外角度数的和都为360°,正n边形每个外角的度数为;(3)正多边形是对称图形.当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.知识点十一:弧长及扇形的面积1. 弧长公式半径为R的圆,周长公式为C=2πR半径为R的圆中,n°圆心角所对的弧长为:l=2. 扇形面积公式半径为R的圆,面积公式为S=πR2扇形半径为R,圆心角为n°,扇形弧长为l,扇形面积为S,则:S= =【知识应用】(例题)例1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧。
《圆的基本性质》的知识点及典型例题

第三章 《圆的基本性质》的知识点及典型例题1、垂径定理:垂直于弦的直径 ,并且平分 垂径定理的逆定理1:平分弦( )的直径垂直于弦,并且平分2、圆心角定理:在同圆或等圆中,相等的圆心角所对的 ,所对的圆心角定理的逆定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么 都相等。
3、圆周角定理:一条弧所对的圆周角都 ;且等于它所对的 一半。
圆周角定理推论:半圆(或直径)所对的圆周角是 ;90°的圆周角所对的弦是 5、拓展一下:圆内接四边形的对角之和为6、弧长公式:在半径为R 的圆中,n °的圆心角所对的弧长l 的计算公式为l =7、扇形面积公式1:半径为R ,圆心角为n °的扇形面积为 。
扇形面积公式2:半径为R ,弧长为l 的扇形面积为8、沿圆锥的母线把圆锥剪开并展平,可得圆锥的侧面展开图是一个 ,圆锥的侧面积等于这个扇形的面积,其半径等于圆锥的 ,弧长等于圆锥的9、圆锥的母线长l ,高h ,底面圆半径r 满足关系式10、已知圆锥的底面圆半径r 和母线长l ,那么圆锥的侧面展开图的圆心角为练习一、选择题1、下列命题中:① 任意三点确定一个圆;②圆的两条平行弦所夹的弧相等;③ 任意一个三角形有且仅有一个外接圆;④ 平分弦的直径垂直于弦;⑤ 直径是圆中最长的弦,半径不是弦。
正确的个数是( ) A.2个 B.3个 C.4个 D.5个2、如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA AB BO -- 的路径运动一周.设OP 为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( )3、如图所示,在△ABC 中,∠BAC=30°,AC=2a ,BC=b ,以AB 所在直线为轴旋转一周得到一个几何体,则这个几何体的全面积是( )A. 2πaB. πabC. 3πa2+πabD. πa (2a+b )4、如图,有一圆心角为120°,半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是( )A. 42cmB. 35C. 26D. 23PA OB stOs Ot Os tOstA .B .C .D .AC第4题第3题GED A CF O B5、如图所示,长方形ABCD 中,以A 为圆心,AD 长为半径画弧,交AB 于E 点。
2020初三数学:《第3章 圆的基本性质》章节知识点复习专题

【文库独家】第3章 圆的基本性质章节知识点复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
九年级上第章圆的基本性质复习提纲教案

第三章圆的基本性质复习一、 点和圆的位置关系:如果P 是圆所在平面内的一点,d 表示P 到圆心的距离,r 表示圆的半径,则:(1)d<r →(2)d=r →(3)d>r →1、两个圆的圆心都是O ,半径分别为1r 、2r ,且1r <OA <2r ,那么点A 在( )A 、⊙1r 内B 、⊙2r 外C 、⊙1r 外,⊙2r 内D 、⊙1r 内,⊙2r 外2、一个点到圆的最小距离为4cm ,最大距离为9cm ,则该圆的半径是( )A 、 cm 或 cmB 、 cmC 、 cmD 、5 cm 或13cm3. ⊙0的半径为13cm ,圆心O 到直线l 的距离d=OD=5cm .在直线l 上有三点P,Q,R ,且PD = 12cm , QD<12cm , RD>12cm ,则点P 在 ,点Q 在 ,点R 在 .4. AB 为⊙0的直径,C 为⊙O 上一点,过C 作CD ⊥AB 于点D ,延长CD 至E ,使DE=CD ,那么点E 的位置 ( )A .在⊙0 内B .在⊙0上C .在⊙0外D .不能确定二、几点确定一个圆问题:(1)经过一个已知点可以画多少个圆?(2)经过两个已知点可以画多少个圆?这样的圆的圆心在怎样的一条直线上?(3)过同在一条直线上的三个点能画圆吗?定理:经过 确定一个圆。
1、三角形的外心恰在它的一条边上,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、不能确定2、作下列三角形的外接圆:312:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧31的长为 _______.2⊙ O 的半径为 。
3 O 中过点A 的最短弦长=2,PO =5,求⊙O 的半径。
5四、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
圆周角定理:一条弧所对的圆周角等于它所对的。
推论:半圆(或直径)所对的圆周角是,90°圆周角所对的弦是。
专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)

专题30 圆的基本性质【知识要点】知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)知识点二垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造RT△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑷圆心;⑸半径,⑹其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
圆的基本性质知识点及典型例题

圆的基本性质一、知识点梳理★知识点一:圆的定义及有关概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。
2、有关概念:弦、直径; 弧、等弧、优弧、劣弧、半圆; 弦心距 ; 等圆、同圆、同心圆。
圆上任意两点间的部分叫做圆弧,简称弧。
连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。
在同圆或等圆中,能够重合的两条弧叫做等弧。
★知识点二:平面内点与圆的位置关系:r 表示圆的半径, d 表示同一平面内点到圆心的距离,则有点在圆外;点在圆上;点在圆内。
例 1、如图,在Rt△ ABC中,直角边AB3,BC4,点E,F分别是BC ,AC的中点,以点 A 为圆心,AB的长为半径画圆,则点 E 在圆 A 的 _________ ,点F在圆 A 的 _________.例2、在直角坐标平面内,圆O的半径为,圆心O的坐标为 (1, 4) .试判断5点 P(3, 1) 与圆 O 的位置关系.例 3、下列说法中,正确的是。
(1)直径是弦,但弦不一定是直径;(2)半圆是弧,但弧不一定是直径;(3)半径相等的两个半圆是等弧;( 4)一条弦把圆分成两段弧中,至少有一段优弧。
例 4、有下列四个命题:( 1)直径相等的两个圆是等圆;( 2)长度相等的两条弧是等弧;( 3)圆中最大的弦是通过圆心的弦;(4)一条弦把圆分成两条弧,这两条弧不可能是等弧,其中真命题是。
★知识点三:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论:平分弦()的直径垂直于这条弦,并且平分弦所对的弧。
平分弧的直径垂直平分弧所对的弦。
垂径定理最重要的应用是通过勾股定理来解决有关弦、半径、弦心距等问题例 1:下列语句中正确的是。
( 1)相等的圆心角所对的弧相等;( 2)相等的弧所对的弦相等;(3)平分弦的直径垂直于弦;(4)弦的垂直平分线必过圆心。
例 2、过⊙内一点 M的最长弦长为10cm,最短弦长为8cm,那么 OM的长为()( A) 3cm( B) 6cm( C)cm( D) 9cm例 3、如图所示 , 以为圆心的两个同心圆中 , 小圆的弦AB 的延长线交大圆于, 若AD BCO C =6,=1, 则与圆环的面积是OAB BC例 4、在半径为 5 厘米的圆内有两条互相平行的弦, 一条弦长为8 厘米 , 另一条弦长为 6 厘米 , 则两弦之间的距离为 _______.7 厘米或 1 厘米例 5、如图,矩形 ABCD与与圆心在 AB上的⊙ O交于点 G、 B、 F、 E, GB=8cm, AG=1cm,DE=2cm,则 EF=cm .例 6、如图所示,是一个直径为 650mm的圆柱形输油管的横截面,若油面宽 AB=600mm,求油面的最大深度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 圆的基本性质 单元复习3.1 圆3.1.1 圆·连接圆上任意两点的线段叫做弦。
圆上任意两点之间的部分叫做圆弧,简称弧。
3.1.2 垂直于弦的直径·垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧。
推论:平分弦的直径垂直于弦且平分弦所对的两条弧。
3.1.3 弧、弦、圆心角1、顶点在圆心的角叫做圆心角。
2、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
推论1:相等的弧所对的弦相等,所对的圆心角也相等。
推论2:相等的弦所对的弧相等,所对的圆心角也相等。
例2 如图,在⊙O 中,AB ⊥AC 且AB =AC ,OD ⊥AB 于D ,OE ⊥AC 于E ,.求证四边形ADOE 是正方形。
证明:∵AB ⊥AC ,OD ⊥AB ,OE ⊥AC∴∠OEA =∠EAD =∠ADO =90° ∴四边形ADOE 是矩形 ∵OD ⊥AB ,OE ⊥AC ∴D 、E 分别平分AB 、AC (垂径定理) ∵AB =AC ∴AD =AE ∴四边形ADOE 是正方形。
例1 赵州桥的主桥拱为圆弧形,它的跨度为37.4m ,拱高为7.2m ,求主桥拱的半径。
解: 如图,⌒AB 表示主桥拱,设⌒AB 所在的圆心为O ,半径为R ,过O 作OC ⊥AB 交AB 于D ,根据垂径定理,D 为AB 的中点。
已知:AB =37.4m ,CD =7.2m ,∴AD =AB ÷2=18.7m ,OD =R -7.2在Rt △AOD 中,R 2=18.72+(R -7.2)2,解得R ≈27.9m答:主桥拱的半径约为27.9m 。
例3 如图,在⊙O 中,⌒AB =⌒AC ,∠ACB =60°,求证∠AOB =∠BOC =∠COA 。
证明:∵⌒AB =⌒AC∴AB =AC ,△ABC 为等腰三角形 (相等的弧所对的弦相等) ∵∠ACB =60° ∴△ABC 为等边三角形,AB =BC =CA ∴∠AOB =∠BOC =∠COA (相等的弦所对的圆心角相等)3.1.4 圆周角1、顶点在圆上,且两边都与圆相交的角叫做圆周角。
2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,且都等于这条弧所对的圆心角的一半。
推论1:在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧也一定相等。
推论2:半圆或直径所对的圆周角是直角,90°的圆周角所对的弦是直径。
3、如果一个多边形的所有顶点都在同一个圆上,那么这个多边形就叫做圆内接多边形,这个圆就叫做多边形的外接圆。
4、圆内接四边形的对角互补。
求证:圆内接四边形的对角互补。
证明:如图,四边形ABCD 是⊙O 的内接四边形,∵∠A 所对弧为⌒BCD ,∠C 所对弧为⌒BAD , 且⌒BCD 和⌒BAD 所对的圆心角的和为周角 ∴∠A +∠C =360°÷2=180° 同理∠B +∠D =180° ∴圆内接四边形的对角互补。
例5 如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于D , 求BC 、AD 、BD 的长度。
解: ∵AB 是直径(已知) ∴∠ACB =∠ADB =90°(直径所对的圆周角是直角) 在Rt △ABC 中,BC =102-62=8cm (勾股定理) ∵CD 平分∠ACB (已知) ∴∠ACD =∠BCD (角平分线定义) ∴⌒AD=⌒BD (两个圆周角相等,则所对的弧也相等) ∴AD =BD (相等的弧所对的弦相等) 在Rt △ABD 中,AD 2+BD 2=AB 2(勾股定理) ∴AD =BD =102÷2=52cm例4 求证:①如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角 .三角形。
②圆内接平行四边形是矩形。
证明①:如图,设OC 为AB 边上的中线,以OC 为半径画圆, ∵AB =2OC ∴AB 为⊙O 的直径 ∴∠ACB =90°(直径所对的圆周角是直角) ∴△ABC 为直角三角形。
证明②:∵它是平行四边形 ∴对角相等 ∵它是圆内接四边形 ∴对角互补 ∴一组对角为180°÷2=90° ∴它是矩形。
3.2 点、直线、圆和圆的位置关系24.2.1 点和圆的位置关系1、若⊙O的半径为r,点P到圆心的距离为d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r。
(“⇔”读作“等价于”,表示可以从符号“⇔”的一端得到另一端)2、经过已知的两个点的圆的圆心在这两个点的连线段的垂直平分线上。
3、不在同一直线上的三个点确定一个圆,确定方法:作三点的连线段的其中两条的垂直平分线,交点即为圆心,以圆心到其中一点的距离作为半径画圆即可。
4、若三角形的三个顶点在同一个圆上,那么这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做三角形的外心。
5、假设命题的结论不成立,经过推理得出矛盾,则假设不正确,故原命题成立,这种证明方法叫做反证法。
例6.求证:经过同一直线上的三个点无法作出一个圆。
证明:假设过同一直线l上的三个点A、B、C可以作出一个圆如图,设这个圆的圆心为O,则点O在AB、BC的垂直平分线l1、l2上即点O是l1、l2的交点,因为l1⊥l,l2⊥l与“过一点有且只有一条直线与已知直线垂直”相矛盾所以经过同一直线上的三个点无法作出一个圆。
3.2.2 直线和圆的位置关系1、当直线与圆有两个公共点时,叫做这条直线与圆相交,这条直线叫做圆的割线。
当有一个公共点时,叫做直线与圆相切,这条直线叫做圆的切线,这个点叫做切点。
当没有公共点时,叫做直线与圆相离。
2、若⊙O的半径为r,直线l到圆心的距离为d,则有:直线l与圆相交⇔d<r;直线l与圆相切⇔d=r;直线l与圆相离⇔d>r。
3、切线的判定定理:经过半径的外端并且垂直于这条半径的直线就是圆的切线。
切线的性质定理:圆的切线垂直于过切点的半径。
例7 如图,直线AB经过⊙O上的点C,OA=OB,AC=BC,求证直线AB是⊙O的切线。
证明:连接OC∵OA=OB∴△AOB是等腰三角形∵AC=BC∴OC是AB边上的中线∴OC⊥AB(三线合一)∴直线AB是⊙O的切线。
(切线的判定定理)4、经过圆外一点作圆的切线,这个点到切点的长度叫做这点到圆的切线长。
5、切线长定理:从圆外一点可以引出两条切线,它们的切线长相等,这个点与圆心的连线平分两条切线的夹角。
6、与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条边的角平分线的交点,叫做三角形的内心。
确定内切圆方法:作出角平分线,以交点为圆心,以它到任意一边的距离为半径作圆即可。
例8.如图,△ABC的内切圆⊙O分别与三边相切于D、E、F,已知AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长度。
解:设AF=x cm,则AE=x cmCE=CD=(13-x)cm(切线长定理)BF=BD=(9-x)cm(同上)∵BD+CD=BC∴(13-x)+(9-x)=14解得x=4∴AF=4cm,BD=9-4=5cm,CE=13-4=9cm3.2.3 圆和圆的位置关系1、如果两个圆没有公共点,就叫做这两个圆相离(如(1)(5)(6))。
其中(1)叫做外离,(5)(6)叫做内含,(6)中两圆同心是内含的一种特殊情形。
2、如果两个圆只有一个公共点,就叫做这两个圆相切(如(2)(4))。
其中(2)叫做外切,(4)叫做内切。
3、如果两个圆有两个公共点,就叫做这两个圆相交(如(3))。
4、若两个圆的半径分别为r1、r2(r1>r2),圆心距(两圆圆心的距离)为d,则外离d>r1+r2内含d<r1-r2外切d=r1+r2内切d=r1-r2相交r1-r2<d<r1+r2例9如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的切线CD垂直,.求证AC平分∠BAD。
证明:连接OC∵CD与⊙O相切(已知)∴OC⊥CD(切线的性质定理)∵AD⊥CD(已知)∴AD∥OC(平行于同一直线的两条直线平行)∴∠CAD=∠OCA(两直线平行,内错角相等)∵OA=OC(所有的半径长度相等)∴∠OAC=∠OCA(等边对等角)∴∠OAC=∠CAD(等量代换)∴AC平分∠BAD(角平分线定义)3.3 正多边形和圆1、将一个圆分成n 段相等的弧,再将弧的端点顺次连接,即可得到圆内接正n 边形,这个圆就叫做正n 边形的外接圆。
2、正多边形的外接圆的圆心叫做正多边形的中心,其外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做中心角,中心到正多边形任意一边的距离叫做边心距。
3、画边长为R 的正六边形的方法:①以R 为半径作圆,用量角器画出一个(360°÷6=)60°的圆心角,它对着一段弧,在圆上依次截取与它相等的弧,得到圆的6等分点,顺次连接即可。
②以R 为半径作圆,找圆上一点依次截取等于R 的弦,便能六等分圆,连接分点即可。
4、尺规画正方形的方法:在圆内画两条互相垂直的直径,便能四等分圆,连接分点即可。
例12 如图,正方形ABCD 的边长为4cm ,剪去四个角后得到一个正八边形, .求它的边长和面积。
(保留根号)解:设正八边形的边长PQ =OP =x cm ,则AO =AP =4-x 2cm , 在Rt △AOP 中,2(4-x 2)2=x 2,解得x =±42-4 ∵x >0,∴舍去根-42-4∴边长=42-4,AO =4-2 2∴面积S 八边形=S 正-4S △=42-(4-22)2÷2×4=322-32 答:正八边形的边长为(42-4)cm ,面积为(322-32)cm 2。
例10 如图,将⊙O 分成相等的5段弧,顺次连接得到五边形ABCDE ,.求证五边形ABCDE 是⊙O 圆内接正五边形。
证明:∵⌒AB =⌒BC =⌒CD =⌒DE =⌒EA∴AB =BC =CD =DE =EA (相等的弧所对的弦相等)∵⌒BCE =⌒CDA =3⌒AB ∴∠A =∠B (等弧所对的圆周角相等)同理∠B =∠C =∠D =∠E∵五边形ABCDE 的顶点都在圆上∴五边形ABCDE 是⊙O 的圆内接正五边形。
例11 有一个亭子的地基如图所示,它是一个半径为4 m 的正六边形,.求地基的周长和面积(保留根号)。
解: 画正六边形的外接圆⊙O∵六边形ABCDEF 是正六边形 ∴中心角∠BOC =360°÷6=60° ∴△BOC 是等边三角形 ∴BC =R =4 m (正六边形的半径等于边长) ∴周长C =4×6=24 m 在Rt △COP 中,OC =4 m ,PC =4÷2=2 m ∴边心距r =42-22=23m ∴面积S =4×23÷2×6=123m 2正多边形补充知识:1、正多边形都有内切圆和外接圆,这两个圆是同心圆(即垂直平分线、角平分线的交点)。