初中数学线段的长短比较相关练习(含答案)
七年级数学上册第四章第二节比较线段的长短练习题(附答案)

C. 与 D. 与
10.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 千米处,是黄河上最具气势的自然景观.其落差约 米,年平均流量 立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )
A. 立方米/时 B. 立方米/时
C. 立方米/时 D. 立方米/时
火车往返于 两个城市,不同的车站往来需要不同的车票,所以共有30种不同的车票.
21.答案:5
解析:因为 互为相反数, 互为倒数,所以 ,
又m的绝对值为 ,所以 ,则原式 .
22.答案:2
解析:
23.答案:5cm或11cm
解析:有两种情况,如答图所示.
24.答案:0
解析:∵从数轴可知: ,
∴ , , ,
3.答案:B
解析:因为 的长为 ,点D为线段 的中点,所以 .
分两种情况:
(1)如图1,C为线段 的一个三等分点,所以
所以 ;
(2)如图2,因为C为线段 的一个三等分点,所以
所以 .故选B.
4.答案:B
解析:因为点M在线段 上,所以再加下列条件之一,即可确定点M是 的中点:① ;② ;③ .而无论点M在 上的什么位置,都有 ,所以选项B不能确定点M是 的中点.
24.已知有理数 表示的点在数轴上的位置如图所示,化简 =_______.
参考答案
1.答案:C
解析:从“数”“形”两个角度理解线段的中点.
(1)由形到数:若点M是线段 的中点,则 .
(2)由数到形:若点M在线段 上,且 或 ,则点M是线段 的中点.
2.答案:C
解析:两条直线相交最多有 (个)交点,三条直线相交最多有 (个)交点,四条直线相交最多有 (个)交点,五条直线相交最多有 (个)交点,六条直线相交最多有 (个)交点.故选C.
比较线段的长短练习题

比较线段的长短练习题线段的长短是数学中一个基本的概念,也是我们日常生活中常常遇到的问题。
通过比较线段的长短,我们可以培养自己的观察力和思维能力。
下面,我们来做一些关于线段长短的练习题,通过解题来加深对这个概念的理解。
练习题一:小明有一条长为8厘米的线段,小红有一条长为5厘米的线段,那么小明的线段比小红的线段长多少厘米?解答:小明的线段长为8厘米,小红的线段长为5厘米。
我们可以通过减法来计算小明的线段比小红的线段长多少厘米。
8厘米 - 5厘米 = 3厘米所以,小明的线段比小红的线段长3厘米。
练习题二:小华有一条长为15厘米的线段,小李有一条长为10厘米的线段,那么小华的线段比小李的线段长多少厘米?小华的线段比小红的线段长多少倍?解答:小华的线段长为15厘米,小李的线段长为10厘米。
我们可以通过减法来计算小华的线段比小李的线段长多少厘米。
15厘米 - 10厘米 = 5厘米所以,小华的线段比小李的线段长5厘米。
我们还可以通过除法来计算小华的线段比小李的线段长多少倍。
15厘米÷ 10厘米 = 1.5倍所以,小华的线段比小李的线段长1.5倍。
通过这两道练习题,我们可以看出,比较线段的长短可以通过减法和除法来解决。
在解决问题的过程中,我们需要运用数学知识,进行计算和推理。
这样的练习可以培养我们的思维能力和逻辑思维能力。
练习题三:小明有一条线段长为12厘米,小红有一条线段长为10毫米,那么小明的线段比小红的线段长多少厘米?解答:小明的线段长为12厘米,小红的线段长为10毫米。
我们需要将小红的线段的单位转换为厘米,然后再进行比较。
10毫米 = 1厘米所以,小红的线段长为0.1厘米。
现在我们可以通过减法来计算小明的线段比小红的线段长多少厘米。
12厘米 - 0.1厘米 = 11.9厘米所以,小明的线段比小红的线段长11.9厘米。
通过这道练习题,我们可以看出,比较线段的长短时,需要注意单位的转换。
在解决问题的过程中,我们需要灵活运用数学知识,进行单位转换和计算。
人教版2020-2021年初一数学上册同步练习:线段长短的比较【含答案】

人教版2020-2021年初一数学上册同步练习:线段长短的比较【含答案】一.选择题1.经过平面上的四个点,可以画出来的直线条数为()A.1B.4C.6D.前三项都有可能【答案】D【解析】解:(1)如果4个点,点A、B、C、D在同一直线上,那么只能确定一条直线,如图:(2)如果4个点中有3个点(不妨设点A、B、C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图:(3)如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B、C、D确定3条直线,点B分别与点C、D确定2条直线,最后点C、D确定一条直线,这样共确定6条直线,如图:综上所述,过其中2个点可以画1条、4条或6条直线.故选D.2.平面内有n条直线(n≥2),这n条直线两两相交,最多可以得到a个交点,最少可以得到b个交点,则a+b的值是()A. B. C. D.【答案】D【详解】如图:2条直线相交有1个交点;3条直线相交有1+2个交点;4条直线相交有1+2+3个交点;5条直线相交有1+2+3+4个交点;6条直线相交有1+2+3+4+5个交点;…n条直线相交有1+2+3+4+5+…+(n-1)=个交点.所以a=,而b=1,∴a+b=.故选D.3.题目;已知:线段a,b.求作:线段AB,使得AB=a+2b.小明给出了四个步骤①在射线AM上画线段AP=a;②则线段AB=a+2b;③在射线PM上画PQ=b,QB=b;④画射线AM.你认为顺序正确的是()A.①②③④B.④①③②C.④③①②D.④②①③【答案】B【解析】由题意可知,正确的画图顺序是:④画射线AM;①在射线AM上画线段AP=a;③在射线PM上画PQ=b,QB=b;②则线段AB=a+2b.故选B.4.如图,点C是线段AB上的点,点D是线段BC的中点,AB=10,AC=6,则线段AD的长是()A.6B.2C.8D.4【答案】C【解析】试题解析:∵BC=AB-AC=4,点D是线段BC的中点,∴CD=DB=BC=2,∴AD=AC+CD=6+2=8;故选C.5.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b【答案】A【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.6.已知线段AB=10 cm,点C是直线AB上一点,点D是线段BC的中点,AC=4 cm,则AD的长为()A.3 cm B.5 cm C.7 cm D.3 cm或7 cm【答案】D【详解】试题解析:①如图1所示,∵AB=10cm,AC=4cm,∴BC=AB-AC=10-4=6cm,∵D是线段BC的中点,∴AD= =×6=7cm;②如图2所示,∵AB=10cm,AC=4cm,∴BC=AB+AC=10+4=14cm,∵D是线段BC的中点,∴AD=BC-AC=×14-4=3cm.故选D.7.如图,点A,B,C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点,若想求出MN的长度,那么只需条件()A.AB=16B.BC=3C.AM=4=1【答案】A【解析】因为MN=BM+BN=MC-B C+ = =,故选A.8.点C在线段AB上,下列条件不能确定点C为线段AB中点的是()A.AB=2ACB.AC=2BCC.AC=BCD.BC=AB【答案】B【详解】A、若点C在线段AB上,AB=2AC,则点C为线段AB的中点;B、若点C在线段AB上,AC=2BC,则点C不是线段AB的中点;C、若点C在线段AB上,AC=BC,则点C为线段AB的中点;D、若点C在线段AB上,BC=AB,则点C为线段AB的中点.故选:B.9.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是()A.两点之间的所有连线中,线段最短B.经过两点有一条直线,并且只有一条直线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过一点有且只有一条直线与已知直线垂直【答案】B【详解】根据两点确定一条直线.故选:B.10.如图所示,已知线段a,b,c(a>b+c),求作线段AB,使AB=a-b-c.下面利用尺规作图正确的是()A. B.C. D.【详解】解:用尺规先作线段AC=a,再从内部顺次截取CD=b,DB=c,则AB=a-b-c.故选D.二.填空题11.如图,、两点将线段分成2:3:4三部分,为线段的中点,,则线段______.【答案】1cm【分析】根据、两点将线段分成2:3:4三部分,设,然后表示出,再根据,求得x的值,进而求出AB的长;再计算出AE的长,然后利用AD﹣AE可得DE长.【详解】解:设∵∴解得:∴∵为线段的中点∴故答案为:1cm12.已知点A、B、C在同一直线上,AB=8厘米,BC=3AC,那么BC=_________厘米.【答案】6或12∵BC=3AC,∴AC=BC,如图1,点C在线段AB上时,BC+BC=8,解得C=6(厘米),如图2,点C在线段BA的延长线上时,BC-BC=8,解得BC=12(厘米),综上所述,BC=6或12厘米.故答案为:6或12.13.如图,C、D在线段AB上,且C为线段BD的中点,若AD=3,AB=11,则AC的长等于______.【答案】6.5【详解】∵AD=3,AB=10,∴BD=AB-AD=7,∵C为线段BD的中点,∴BC=DC=BD=3.5,∴AC=AD+DC=6.5;故答案为:6.5,14.点 C 在射线 AB上,若 AB=3,BC=2,则AC为_____.【答案】1或5.解:本题有两种情形:(1)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=1;(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=5.故答案为:5或1.15.已知点A、B、C都是直线l上的点,且AB=8cm,BC=5cm,那么点A与点C之间的距离是________________.【答案】3或13cm【详解】解: 根据A, B, C三点在同一直线上对应的位置不同,可分两种情况计算.如图所示,点B在线段AC上,根据题意,AC=AB+BC=8+5=13cm;如图所示,点C在线段AB上, AC=AB-BC=8-5=3cm.故答案为:3或13cm三.解答题16.如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点。
北师大版七年级上册数学 4.2比较线段的长短 同步测试(含解析)

4.1比较线段的长短同步测试一.选择题1.如图,从A地到B地有四条路线,由上到下依次记为路线①、②、③、④,则从A地到B地的最短路线是路线()A.①B.②C.③D.④2.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm 3.如图,点D把线段AB从左至右依次分成1:2两部分,点C是AB的中点,若DC=3,则线段AB的长是()A.18B.12C.16D.144.如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4B.3C.2D.15.如图,已知线段AB的长为4,点C为AB的中点,则线段AC的长为()A.1B.2C.3D.46.如图,点C是线段AB上的点,点M、N分别是AC、BC的中点,若AC=6cm,MN=5cm,则线段MB的长度是()A.6cm B.7cm C.8cm D.10cm7.如图,点C、D为线段AB上两点,AC+BD=6,且AD+BC=AB,则CD等于()A.10B.8C.6D.48.下列说法不正确的是()A.因为M是线段AB的中点,所以AM=MB=ABB.在线段AM延长线上取一点B,如果AB=2AM,那么点M是线段AB的中点C.因为A,M,B在同一直线上,且AM=MB,所以M是线段AB的中点D.因为AM=MB,所以点M是AB的中点9.已知线段AB=4cm,延长线段AB到C使BC=AB,延长线段BA到D使AD=AC,则线段CD的长为()A.12cm B.10cm C.8cm D.6cm10.如图,AB=18,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.8B.10C.12D.15二.填空题11.已知点A、B、C在一条直线上,AB=5cm,BC=3cm,则AC的长为.12.如图,已知线段AB=8cm,AD=1.5cm,D为线段AC的中点,则线段CB=cm.13.如图,线段AB=6,AC=2BC,则BC=.14.同一直线上有两条等长的线段AB,CD(A在B左边,C在D左边),点M,N分别是线段AB,CD的中点,若BC=6cm,MN=4AB,则AB=cm.15.如图,线段AB=4cm,延长线段AB到C,使BC=1cm,再反向延长AB到D,使AD =3cm,E是AD中点,F是CD的中点.则EF的长度为cm.三.解答题16.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.17.如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且AM=2MC,BN=2NC.(1)若AC=9,BC=6,求线段MN的长;(2)若MN=5,求线段AB的长.参考答案1.解:根据两点之间线段最短可得,从A地到B地的最短路线是路线③.故选:C.2.解:∵C是线段AB的中点,AB=12cm,∴AC=BC=AB=×12=6(cm),点D是线段AC的三等分点,①当AD=AC时,如图,BD=BC+CD=BC+AC=6+4=10(cm);②当AD=AC时,如图,BD=BC+CD′=BC+AC=6+2=8(cm).所以线段BD的长为10cm或8cm,故选:C.3.解:∵D把线段AB从左至右依次分成1:2两部分,点C是AB的中点,∴AD=AB=AB,AC=AB,∴DC=AB﹣AB=AB,∵DC=3,∴AB=3×6=18.故选:A.4.解:∵AB=10cm,BC=4cm.∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=AC=7cm;∵M是AB的中点,∴AM=AB=5cm,∴DM=AD﹣AM=2cm.故选:C.5.解:因为点C为AB的中点,AB的长为4,所以AC=AB=4=2.则线段AC的长为2.故选:B.6.解:∵点M、N分别是AC、BC的中点,AC=6cm,∴MC=AC=3cm,CN=BN,∵MN=5cm,∴BN=CN=MN﹣MC=5﹣3=2cm,∴MB=MN+BN=5+2=7cm,故选:B.7.解:∵AD+BC=AB,∴5(AD+BC)=7AB,∴5(AC+CD+CD+BD)=7(AC+CD+BD),∵AC+BD=6,∴CD=4,故选:D.8.解:A、因为M是线段AB的中点,所以AM=MB=AB,故本选项正确;B、如图,由AB=2AM,得AM=MB;故本选项正确;C、根据线段中点的定义判断,故本选项正确;D、如图,当点M不在线段AB时,因为AM=MB,所以点M不一定是AB的中点,故本选项错误;故选:D.9.解:由线段的和差,得AC=AB+BC=4+4=6(cm),由线段中点的性质,得CD=AD+AC=2AC=2×6=12(cm),故选:A.10.解:∵AB=18,点C为AB的中点,∴BC=AB=×18=9,∵AD:CB=1:3,∴AD=×9=3,∴DB=AB﹣AD=18﹣3=15.故选:D.11.解:若C在线段AB上,则AC=AB﹣BC=5﹣3=2(cm);若C在线段AB的延长线上,则AC=AB+BC=5+3=8(cm),故答案为2cm或8cm.12.解:∵D为线段AC的中点,∴AC=2AD=2×1.5cm=3(cm),∵AB=8cm,∴CB=AB﹣AC=8﹣3=5(cm).故答案为:5.13.解:∵AB=6,AC=2BC,∴BC=AB﹣AC=AB=6=2,故答案为:2.14.解:如图1,设AB=CD=x,∵M,N分别是线段AB,CD的中点,∴AM=AB,DN=CD,∵BC=6cm,∴AD=AB+CD+BC=2x+6.∴MN=AD﹣AM﹣DN=2x+6﹣x=6+x;∵MN=4AB=4x,∴6+x=4x,∴x=2,∴AB=2,如图2,设AB=CD=x,∵M,N分别是线段AB,CD的中点,∴AM=AB,DN=CD,∵BC=6cm,∴AD=BC﹣CD﹣AB=6﹣2x,∴MN=AD+DN+AM=6﹣2x+x=6﹣x;∵MN=4AB=4x,∴6﹣x=4x,∴x=,∴AB=,综上所述,AB=2或.故答案为:2或.15.解:CD=AD+AB+BC=3+4+1=8cm;∵E是AD中点,F是CD的中点,∴DF=CD=×8=4cm,DE=AD=×3=1.5cm.∴EF=DF﹣DE=4﹣1.5=2.5cm,故答案为:2.5.16.解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.17.解:(1)如图,AC=9,BC=6,则AB=AC=BC=9+6=15,∵AM=2MC,BN=2NC.∴MC=AC,NC=BC,∴MN=MC+NC=(AC+BC)=AB=×15=5,答:MN的长为5;(2)由(1)得,MN═AB,若MN=5时,AB=15,答:AB的长为15.。
初中数学线段的长短比较(含答案)

7.3.1 线段的长短比较课内练习 A 组1.下列图形能比较大小的是( )(A )直线与线段 (B )直线与射线; (C )两条线段 (D )射线与线段 2.如图,AB=CD ,则AC 与BD 的大小关系是( )(A )AC>BD (B )AC=BD(C )AC<BD (D )不能确定3.已知线段AB=3厘米,延长BA 到C 使BC=5厘米,则AC (A )11厘米 (B )8厘米 (C )3厘米 (D )2厘米4.已知A ,B ,C 是数轴上的三个点,点B 表示2,点C 表示-4,AB=3,则AC 的长是( ) (A )3 (B )6 (C )3或6 (D )3或95.比较两条线段的大小的方法有两种:一种是________;另一种是_________. 6.如图,已知直线上四点A ,B ,C ,D ,那么,AD=BD+_______+______=AB+_____=AC+________7.用恰当的方法比较长方形ABCD 中AC ,AC ,AD D CAB 组8.如图中AB=8cm ,AD=5cm ,BC=5cm ,则CD 的长是( )(A )1cm (B )2cm (C )3cm (D )4cm 9.下列四个图中,能表示线段x=a+c-b 的是( )10.如图,用直尺和圆规画图:(1)画线段MN ,使MN=AB+AC ; (2)画线段PQ ,使PQ=DB+DC ;(3)比较线段MN ,PQ ,BC 的大小,用“>”把它们连结起来.课外练习 A 组1.如图,点C ,D ,E 是线段AB 上的三个点,下面关于线段CE 的表示:①CE=CD+DE; ②CE=BC-EB;③CE=CD+BD-AC; ④CE=AE+BC-AB. 其中正确的是________(填序号). 2.P 是线段AB 的延长线上一点,且满足AP 与BP 4cm ,则AB=_________.3.已知A ,B 是数轴上两点,AB=2,点B 表示-1,那么点A 表示________. 4.如图,从A 地去B 地,哪一条路比较近?5.如图,如何比较两个三角形的周长?请你设计出一种方法,写出比较结果.B 组 6.如图,10条20厘米长的线条首尾黏合成一个纸圈,•黏合部分的长度为1.5,则纸圈的周长是( ) (A )200厘米 (B )198.5厘米 (C )186.5厘米 (D )185厘米7.A 市辖区内的B 、C 、D 、E 四县市正被日益严重的水污染所困扰,居民的饮用水长期达不到较高的标准.为了人民的身体健康,该市与四个县市的领导、专家多次研究,计划从A市某水库引水,供给四县市的城市居民.五个市县间的距离如图所示(单位:千米).已知铺设引水管道每千米需费用14500元.如果不考虑其他因素,•请你设计出几种不同的引水管道铺设方案,并指出哪种铺设方案最经济.7.3 线段的长短比较(一)答案:课内练习:1.C 2.B 3.D 4.D5.叠合法、测量法6.AB,CD,BD,CD;AB,•BD,AB,CD 7.AD<AB<AC 8.B 9.D10.略课外练习:1.①②④ 2.6cm 3.-3或14.A→D→B5.画线段分别等于两个三角形的周长,再比较6.D。
七年级数学比较线段长短专项练习题(附答案)

七年级数学比较线段长短专项练习题一、解答题1.如图,点C 是AB 的中点,,D E 分别是线段,AC CB 上的点,且23,35AD AC DE AB ==,若24cm AB =,求线段CE 的长.2.如图,P 是线段AB 上一点, 12cm AB =,,C D 两点分别从,P B 出发以1/2/cm s ,cm s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上),运动的时间为t .(1)当1t =时,2PD AC =,请求出AP 的长; (2)当2t =时,2PD AC =,请求出AP 的长;(3)若,C D 运动到任一时刻时,总有2PD AC =,请求出AP 的长;(4)在(3)的条件下,Q 是直线AB 上一点,且AQ BQ PQ -=,求PQ 的长.3.如图,已知,C D 为线段AB 上顺次两点,点,M N 分别为AC 与BD 的中点,若20,8AB CD ==,求线段MN 的长.4.已知点C 是线段AB 上一点,6cm,4cm AC BC ==,若.M N 分别是线段,AC BC 的中点,求线段MN 的长.5.如图,点C 在线段AB 上,3:2AC BC =:,点M 是AB 的中点,点N 是BC 的中点,若3cm MN =,求线段AB 的长.6.已知线段6AB =,在直线AB 上取一点P ,恰好使2AP PB =,点Q 为PB 的中点,求线段AQ 的长.7.如图,N 为线段AC 中点,点M 、点B 分别为线段AN NC ,上的点,且满足::1:4:3AM MB BC =(1)若6AN =,求AM 的长; (2)若2NB =,求AC 的长. 8.读题计算并作答线段3cm AB =,在线段AB 上取一点K ,使AK BK =,在线段AB 的延长线上取一点C ,使3AC BC =,在线段BA 的延长线取一点D ,使12AD AB =. (1)求线段,BC DC 的长? (2)点K 是哪些线段的中点?9..如图,已知,C D 为线段AB 上顺次两点,点M N ,分别为AC 与BD 的中点,若10AB =,4CD =,求线段MN 的长.10.如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长; (2)若,8AB a BC ==,求MN 的长; (3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?11.已知点C 在线段AB 上,线段7cm,5cm AC BC ==,点,M N 分别是,AC BC 的中点,求MN 的长度.12.已知线段10cm AB =,直线AB 上有一点,6cm,C BC M =为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.13.如图,,B C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6cm BM =,求CM 和AD 的长.14.如图,点C 是线段AB 上一点,点,,M N P 分别是线段,,AC BC AB 的中点.(1)若12cm AB =,求线段MN 的长度; (2)若3cm,1cm AC CP ==,求线段PN 的长度.15.如图,已知线段AB 上有两点,C D ,且AC BD =,,M N 分别是线段,AC AD 的中点,若cm,cm AB a AC BD b ===,且,a b 满足2(10)|4|02ba -+-=.(1)求,AB AC 的长度. (2)求线段MN 的长度.16.如图,已知E 是AB 的中点,F 是CD 的中点,且11,10cm 34BD AB CD EF ===,求AC 的长.17.如图,已知线段65AB =cm ,点M 为AB 的中点,点P 在MB 上,且N 为PB 的中点,若6.5BN =cm ,试求线段MP 的长.18.如图,,M N 两点把线段AB 分成2:3:4三部分,C 是线段AB 的中点,4NB = cm. (1)求CN 的长. (2)求:AM MC .19.如图,点,,,,A B E C D 在同一条直线上,且AC BD =,点E 是BC 的中点,那么点E 是AD 的中点吗?为什么?20.如图,已知111,,,333CB AB AC AD AB AE ===,且2CB =,求CD 的长.21.如图①,已知点M 是线段AB 上一点,点C 在线段AM 上,点D 在线段BM 上,C D 、两点分别从M B 、出发以1cm/s 3cm/s 、的速度沿直线BA 向左运动,运动方向如箭头所示. (1)若10cm AB =,当点C D 、运动了2s ,求AC MD +的值. (2)若点C D 、运动时,总有3MD AC =,则:AM = AB . (3)如图②,若14AM AB =,点N 是直线AB 上一点,且AN BN MN -=,求MNAB的值.22.如图,D 是AB 的中点,E 是BC 的中点,12cm 5BE AC ==,求线段DE 的长.23.画线段3cm MN =,在线段MN 上取一点Q ,使MQ NQ =;延长线段MN 到点A ,使12AN MN =;延长线段NM 到点B ,使3BN BM =. (1)求线段AN 的长; (2)求线段BM 的长;(3)试说明点Q 是哪些线段的中点.24.如图,点C 在线段AB 上,8cm,6cm AC CB ==,点,M N 分别是,AC BC 的中点.(1)求线段MN 的长.(2)若点C 为线段AB 上任意一点,满足cm AC CB a +=,其他条件不变,你能猜想MN 的长度吗?并说明理由.(3)若C 在线段AB 的延长线上,且满足cm AC BC b -=,,M N 分别为,AC BC 的中点,你能猜想MN 的长度吗?并说明理由.参考答案1.答案:10.4cm CE =. 解析:2.答案:(1)4cm ;(2)4cm ;(3)4cm ;(4)4cm 或12cm 解析:3.答案:14MN = 解析:4.答案:线段MN 长5cm . 解析:5.答案:10cm 解析:6.答案:AQ 的长度为5或9. 解析:7.答案:(1)32AM =;(2)16AC = 解析:8.答案:(1) 1.5cm 6cm BC DC ==,; (2)点K 是线段AB 和DC 的中点. 解析: 9.答案:7 解析:10.答案:(1)因为20,8AB BC ==,所以28AC AB BC =+=, 因为点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点, 所以1114,422MC AC NC BC ====, 所以14410MN MC NC =-=-=.(2)根据(1)得111()222MN AC BC AB a =-==.(3)根据(1)得111()222MN AC BC AB a =-==.(4)从(1)(2)(3)的结果中能得到线段MN 的长度始终等于线段AB 的一半,与C 点的位置无关. 解析:11.答案:【解】因为7cm,5cm AC BC ==,点,M N 分别是,AC BC 的中点, 所以113.5cm, 2.5cm 22MC AC CN BC ====. 则 3.5 2.56(cm)MN MC CN =+=+=. 解析:12.答案:【解】第一种情况:若为图(1)情形,因为M 为AB 的中点,所以5cm MB MA ==. 因为N 为BC 的中点,所以3cm NB NC ==. 所以2cm MN MB NB =-=. 第二种情况:若为图(2)情形,因为M 为AB 的中点,所以5cm MB MA ==. 因为N 为BC 的中点,所以3cm NB NC ==.解析:13.答案:【解】设2cm,5cm,3cm AB x BC x CD x ===. 所以10cm AD AB BC CD =++=. 因为M 是AD 的中点, 所以15cm 2AM MD AD x ===. 所以523cm BM AM AB x x x =-=-=. 因为6cm BM =,所以36,2x x ==.故532224(cm)CM MD CD x x x =-=-==⨯=. 1010220(cm)AD x ==⨯-.解析:14.答案:(1)因为,M N 分别是,AC BC 的中点, 所以11,22MC AC CN BC ==. 所以1111()6cm 2222MN MC CN AC BC AC BC AB =+=+=+==. (2)因为3cm,1cm AC CP ==,所以4cm AP AC CP =+=. 因为P 是线段AB 的中点,所以28cm AB AP ==. 所以5cm CB AB AC =-=.因为N 是线段CB 的中点,12.5cm 2CN CB ==.所以 1.5cm PN CN CP =-=.解析:(1)根据,M N 分别是线段,AC BC 的中点及AB 的长度,可求出MN .(2)先求出AP ,再利用P 是AB 的中点,求出AB .进而利用BC AB AC =-求出BC .根据N 为BC 的中点又可求出12CN BC =.最后利用PN CN CP =-求出结果. 15.答案:解:(1)由题意可知2(10)0,|4|02ba -=-=, 所以10,8ab ==,所以10cm,8cm AB AC ==. (2)因为8cm BD AC ==, 所以2cm AD AB BD =-=.又因为,M N 分别是,AC AD 的中点,所以3cm MN AM AN =-=.解析:若几个非负数之和为0,则这几个非负数均为0. 16.答案:解:设BD x =, 因为1134AB CD BD ==,所以33,44AB BD x CD BD x ====, 因为E 为AB 的中点, 所以1322BE AB x ==. 因为F 为CD 的中点, 所以122DF CD x ==,所以2BF DF BD x x x =-=-=, 所以3522EF BE BF x x x =+=+=. 因为10EF =, 所以5102x =,解得4x =.所以312,416,4AB x CD x DB x ======, 所以16412BC CD BD =-=-=, 所以121224(cm)C AB BC =+=+=.解析:线段,AB CD 与BD 都有倍分关系,故把BD 设为x ,表示出,AB CD 的长. 17.答案:解:因为M 为AB 的中点,且65AB =cm 所以652AM MB ==cm. 又N 为PB 的中点,且 6.5BN =cm, 所以 6.5PN NB ==cm ,所以13PB =cm. 所以65391322MP MB PB =-=-= (cm). 解析:18.答案:解:(1)由题意得::2:3:4AM MN NB =,设 2AM x =,则3,4MN x NB x ==.又4NB =cm ,故2AM =cm,3MN =cm, 因此9AB =cm.又C 为AB 的中点,所以1922CB AB ==cm, 故91422CN CB BN =-=-= (cm) (2)由(1)知15322MC MN CN =-=-=(cm), 故5:2:4:52AM MC ==. 解析:19.答案:解:点E 是AD 的中点.理由如下:因为,,,,A B E C D 在同一条直线上,AC BD = (已知), 所以AC BC BD BC -=- (等式的性质),, 即AB CD = (线段和、差的意义). 因为点E 是BC 的中点(已知), 所以BE CE =(线段中点的定义), 所以AB BE CD CE +=+ (等式的性质), 即AE ED = (线段和、差的意义), 所以点E 是AD 的中点(线段中点的定义). 解析:20.答案:解:因为1,24CB AB CB ==,所以36AB CB ==. 所以4AC AB BC =-=.因为13AC AD =,所以312AD AC ==.所以1248CD AD AC =-=-=. 解析:21.答案:解:(1)当点C D 、运动了2s 时,2cm,6cm CM BD ==10cm,2cm,6cm AB CM BD ===10262cm AC MD AB CM BD ∴+=--=--= (2),C D 两点的速度分别为1cm/s,3cm/s , 3BD CM ∴=. 又3MD AC =,33BD MD CM AC ∴+=+,即3BM AM =,14AM AB ∴=;(3)当点N 在线段AB 上时,如图AN BN MN -=,又AN AM MN -=1142BN AM AB MN AB ∴==∴=,,即12MN AB =. 当点N 在线段AB 的延长线上时,如图AN BN MN -=,又AN BN AB -=MN AB ∴=,即1MNAB=. 综上所述12MN AB =或1. 解析:22.因为E 是BC 的中点,所以24cm BC BE ==. 因为D 是AB 的中点,解析:23.答案:(1)解:如图所示:因为1,3cm 2AN MN MN ==,所以 1.5cm AN => (2)因为3cm,MN MQ NQ ==,所以 1.5cm MQ NQ ==又因为13BM BN =,所以23MN BN =.所以34.5cm 2BN MN == 所以 1.5cm BM BN MN =-=.(3)因为 1.5 1.53(cm)BQ BM MQ =+=+=3cm AQ AN NQ =+=所以BQ AQ = 又MQ NQ =,所以Q 是MN 的中点,也是AB 的中点.解析:24.答案:(1)解:因为点,M N 分别是,AC BC 的中点,8cm,6cm AC CB == 所以114cm,3cm 22CM AC CN BC ====. 所以437(cm)MN CM CN =+=+= 所以线段MN 的长是7cm .(2)1cm 2MN a =.理由如下:因为点,M N 分别是,AC BC 的中点,cm AC CB a +=, 所以11,22CM AC CN BC ==, 所以1111()cm 2222MN CM CN AC BC AC BC a =+=+=+= 所以线段MN 的长是1cm 2a .(3)如图.1cm 2MN b =.理由如下:因为点,M N 分别是,AC BC 的中点,cm AC CB b -= 所以11,22CM AC CN BC == 所以1111()cm 2222MN CM CN AC BC AC BC b =-=-=-=, 即线段MN 的长是1cm 2b .解析:。
七年级数学上册《第四章 比较线段的长短》练习题-带答案(北师大版)

七年级数学上册《第四章比较线段的长短》练习题-带答案(北师大版)一、选择题1.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于( )A.3B.2C.3或5D.2或62.已知线段AB和线段CD,使A与C重合,若点D在AB的延长线上,则( )A.AB>CDB.AB=CDC.AB<CDD.无法比较AB与CD的长短3.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )A.AC=AD﹣CDB.AC=AB+BCC.AC=BD﹣ABD.AC=AD﹣AB4.已知数轴上三点A、B、C分别表示有理数x、1、﹣1,那么|x﹣1|表示( )A.A、B两点的距离B.A、C两点的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和5.下列说法中,不正确的是( )A.若点C在线段BA的延长线上,则BA=AC-BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段BA外D.若A、B、C三点不在一直线上,则AB<AC+BC6.如图,长度为18cm的线段AB的中点为M,点C是线段MB的一个三等分点,则线段AC的长为( )A.3cmB.6cmC.9cmD.12cm7.如图线段AB=9,C、D、E分别为线段AB(端点A.B除外)上顺次三个不同的点,图中所有的线段和等于46,则下列结论一定成立的是( )A.CD=3B.DE=2C.CE=5 EB=58.如图,已知线段AB长度为a,CD长度为b,则图中所有线段的长度和为( )A.3a+bB.3a﹣bC.a+3bD.2a+2b二、填空题9.已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC=_______.10.如图,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC= .11.已知A,B是数轴上的两点,AB=2,点B表示-1,则点A表示________12.如图,比较图中AB,AC,BC的长度,可以得出AB_____AC,AC____BC,AB+BC___AC.13.如图,已知线段AB=16 cm,点M在AB上,AM:BM=1:3,P、Q分别为AM、AB 的中点,则PQ的长为.14.如图,AB=9,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D 始终在点C右侧,图中所有线段的和等于30cm,且AD=3CD,则CD= cm.三、解答题15.如图,点M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM的长.16.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18 cm,求DE的长;(2)若CE=5 cm,求DB的长.17.如图,已知线段AB,请按要求完成下列问题.(1)用直尺和圆规作图,延长线段AB到点C,使BC=AB;反向延长线段AB到点D,使AD=AC;(2)如果AB=2cm;①求CD的长度;②设点P是线段BD的中点,求线段CP的长度.18.已知线段AB,延长线段AB到点C,使2BC=3AB,且BC比AB大1,D是线段AB 的中点,如图所示.(1)求线段CD的长.(2)线段AC的长是线段DB的几倍?(3)线段AD的长是线段BC的几分之几?19.如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.20.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.参考答案1.D2.C3.C4.A5.A6.D7.C8.A.9.答案为:2cm或8cm.10.答案为:6cm.11.答案为:1或-312.答案为:<>=.13.答案为:6cm.14.答案为:3.15.解:因为AB=4 cm,BC=2AB所以BC=8 cm所以AC=AB+BC=12 cm因为M是线段AC中点所以MC=AM=12AC=6 cm所以BM=AM-AB=2 cm 16.解:(1)∵C是AB的中点∴AC=BC=12AB=9 cm.∵D是AC的中点∴AD=DC=12AC=92cm.∵E是BC的中点∴CE=BE=12BC=92cm.又∵DE=DC+CE∴DE=92cm+92cm=9 cm.(2)由(1)知AD=DC=CE=BE∴CE=13 BD.∵CE=5 cm∴BD=15 cm.17.解:(1)如图所示,点C和点D即为所求;(2)①∵AB=2cm,B是AC的中点∴AC=2AB=4cm又∵A是CD的中点∴CD=2AC=8cm;②∵BD=AD+AB=4+2=6cm,P是线段BD的中点∴BP=3cm∴CP=CB+BP=2+3=5cm.18.解:(1)因为BC=32 AB所以BC∶AB=3∶2.设BC=3x,则AB=2x.因为BC比AB大1,所以3x-2x=1,即x=1所以BC=3x=3,AB=2x=2.又因为D是线段AB的中点,所以AD=DB=1所以CD=BC+BD=3+1=4.(2)因为AC=AB+BC=2+3=5所以AC=5DB,即线段AC的长是线段DB的5倍.(3)因为AD=1,BC=3,即3AD=BC所以AD=13BC,即线段AD的长是线段BC的三分之一.19.解:(1)∵C是线段BD的中点,BC=3∴CD=BC=3.又∵AB+BC+CD=AD,AD=8∴AB=8-3-3=2.(2)∵AD+AB=AC+CD+AB,BC=CD∴AD+AB=AC+BC+AB=AC+AC=2AC. 20.解:因为AC∶CD∶DB=2∶3∶4所以设AC=2x cm,CD=3x cm,DB=4x cm. 所以EF=EC+CD+DF=x+3x+2x=6x cm. 所以6x=2.4,即x=0.4.所以AB=2x+3x+4x=9x=3.6 cm.。
比较线段的长短(含答案)-

4.2 比较线段的长短◆基础训练一、选择题1.两点间的距离是指().A.连接两点的线段 B.连接两点的直线的长度 C.连接两点的直线的长度 D.连接两点的直线2.如果点B在线段AC上,那么下列各表达式中,AB=12AC=BC,AC=2AB,AB+BC=AC,能表示B是线段AC的中点的有().A.1个 B.2个 C.3个 D.没有3.线段AB=8cm,延长线段AB到C,使BC=4cm,则AC是BC的()倍.A.1 B.2 C.3 D.4二、填空题4.如图,M是AB的中点,N是BC的中点.(1)AB=5cm,BC=4cm,则MN=_______cm; (2)AB=5cm,NC=2cm,则AC=_______cm;(3)AB=5cm,NB=2cm,则AN=_______cm.5.P为线段AB上一点,且AP=25AB,M是AB的中点,若PM=2cm,则AB=______cm.三、解答题6.在直线L上有一点A,从A点出发,以同一方向在L上取点,使AB=3.5cm,•AC=2.5cm,AD=3.5cm,AE=4cm,观察C,D,E中哪个点落在A,B两点之间?哪个点在线段AB的延长线上?哪个点与点B重合?7.已知线段AB=10cm,在线段AB上有一点C,且BC=4cm,M是线段AC的中点,•求线段AM的长.◆能力提高一、选择题8.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=m,CD=n,则AB=().A.m-n B.m+n C.2m-n D.2m+n9.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是(). A.1cm B.9cm C.1cm或9cm D.以上答案都不对二、解答题10.把线段AB延长到D,使BD=32AB,再延长BA到C,使CA=AB.(1)CD是AB的几倍?(2)BC是CD的几分之几?11.已知线段AB=8cm,在直线AB上有一点C,且AC=4cm,M是线段BC的中点,求线段BM 的长.答案:1.C 2.B 3.C 4.(1)4.5,(2)9,(3)75.206.点C 落在AB 之间,点E 在线段AB 的延长线上,点D 与点B 重合7.3cm 8.C 9.C10.(1)CD=CA+AB+BD ,又CA=AB ,BD=32AB ,CD=AB+AB+32AB=72AB ,即CD 是AB 的72倍. (2)CB=BA+AC=2AB ,CD=72AB .则272BC AB CD AB ==47,即BC 是CD 的47. 11.(1)当点C 在线段AB 上时,如图因为M 是BC 的中点,所以BM=12BC . 又因为BC=AB-AC ,AB=8cm ,AC=4cm .所以BM=12(AB-BC )=12(8-4)=2(cm ). (2)当点C 在线段BA 的延长线上时,如图因为M 是BC 的中点,所以BM=12AC , 又因为BC=AB+AC ,AB=8cm ,AC=4cm ,所以BM=12AC=12(AB+AC )=12(8+4)=6(cm ). 所以BM 的长度为2cm 或6cm . 12.(1)5cm (2)2a b +cm (3)有变化,当点C 在线段AB 上时,MN=5cm ,当点C 在线段AB 的延长线上时,MN=1cm .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.3.2 线段的长短比较
课内练习
A 组
1.M ,N 两点间的距离是( )
(A )线段MN (B )直线MN ; (C
)线段MN 的长 (D )射线MN 的长
2.下列说法正确的是( )
(A )直线大于射线; (B )连结两点的线段叫做两点的距离
(C )若AB=BC ,则B 是线段AC 的中点; (D )两点间线段最短
3.如图,已知AD=BD ,C 为AD 中点,以下等式不正确的是( )
(A )DC=13CB (B )CD=34
AB (C )AD=23BC (D )CD=13(AB+AC ) 4.如图7-3-12,M ,N A 表示的有理数是( ) (A )-0.4 (B )-0.8 (C )2 (D )5.如图所示,从A 地到B 地的所有路线中,•_________,•根据的是__________.
6.有一根拉直的绳子AB
7.如图,L 表示一条弯曲的小河,点A ,点B 表示两个村庄,在何处架桥,才能使A 村到B 村的路程最短?说明理由.
B组
8.如果线段AB=5cm,BC=4cm,那么A,C两点之间的距离是()
(A)9cm (B)1cm (C)9cm或1cm (D)无法确定
9.如图,点C是线段MN上的点,点D,E分别是线段
MC和NC的中点,若MC=5•厘米,NC=7厘米,则
DE______厘米.若MN=12厘米,NE=2厘米,则
DC=_____厘米.若MD=4•厘米,NE=2厘米,则
MN=________厘米,若MN=11厘米,则MD+NE=_______厘米.
10.A,B,C是直线L上的三点,M,N分别是AB,BC的中点,如果AB=6厘米,BC=4厘米,• 则MN=_______厘米.
11.把线段AB延长到C,使BC=1
2
AB,再把线段AB反向延长到E,使AE=
3
4
AB,D为线段
EC的中点,若AB=2,则BD的长是________.
12.如图,根据要求画图(保留画图痕迹),
(1)取AB的中点E;(2)连结CE:(3)反向延长EC到D点,使CE=ED;
(4)利用圆规比较线段AB与CE、CE与CB、AC与CD、AD与BC的大小.
课外练习
A组
1.如图,从A地到B地,最短的路线是()
(A)A→G→E→B;(B)A→C→E→B;
(C)A→D→G→E→B;(D)A→F→E→B
2.如图,在直线PQ上找出一点C,使PC=2CQ,则C点应在()(A)点P,Q之间(B)点P的左边
(C)点Q的右边(D)点P,Q之间或点Q的右边
3.A,B是数轴上的两点,它们分别表示有理数-1
2
,x,AB的长为2
3
4
,则x的值是()
(A)9
4
(B)±
9
4
(C)±
13
4
(D)
9
4
,
13
4
4.如图,在线段AB上任取C,D两点,若M,N,P分别是线段AC,CD,DB上的点,• 且
AM=MC,CD=2CN,PB=1
2
BD,CD=3厘米,AB=9厘米,那么MP=________厘米.
N C
5.广场上有A 、B 、C 、D 四个活动点如图7-3-20所示,•若要建立一个临时食品销售点O ,使销售点O 到四个活动点的距离之和最小,问销售点应建在何处?请说明理由,并在图中画出销售点O 的位置.
D
A
B 组
6.已知a>b ,线段AB=a ,在线段AB 上截取AC=b ,M 是线段BC 的中点,则线段CM 用a ,•b 来表示是( )
(A )a-12b (B )12a-b (C )a-2b (D )12
(a-b ) 7.有A 、B 、C 三座城市,已知A 、B 两市的距离为50千米,B 、C 两市的距离是30•千米,那么A 、C 两市间的距离是( )
(A )80千米 (B )20千米 (C )40千米 (D )介于20千米至80千米之间
8.数轴上有A ,B ,C ,D 四点,它们表示的有理数分别是-412,314,-58,-314
,则( ) (A )C 是BD 的中点 (B )D 是AB 的中点
(C )C 是AD 的中点 (D )C 是AB 的中点
9.如图,长方形的长为4厘米,宽为3厘米.
(1)用刻度尺作出每条边上的中点,并顺次连结它们,猜一猜能得到什么图形?
(2)在(1)所得到的图形中,用刻度尺再次作出每条边上的中点,并顺次连结它们,猜一猜又能得到什么图形?并量出第二次得到图形的周长与原长方形的周长相比较,会发现什么关系?
(3)我们把(1)、(2)两次画图得到的新图形看做是一次“操作”,试猜想,•经过5次这样的“操作”后,所得到的是什么图形?•它的周长与原长方形周长的几分之几?
7.3 线段的长短比较(二)答案:
课内练习:
1.C 2.D 3.D 4.A 5.③,两点之间线段最高
6.把绳子AB 对折(•两端点A ,B 重叠在一起)折痕C 即为所求的中点
7.连结AB 与小河L 的交点C 处架桥.理由:两点之间线段最短
8.D 9.6,4,12,5.5 10.5或1 11.1.25
12.图略 (1)CE>AB CE>BC AC<CD AD=BC
课外练习:
1.D 2.D 3.D 4.6 5.线段AC 与BD 的交点处、•两点之间线段最短
6.D 7.D 8.D
9.(1)菱形 (2)长方形、小长方形的周长=12
原长方形的周长 (3)长方形,5次操作后的小长方形周长是原长方形周长的512。