2020年沪教版(上海)八年级数学上学期第十八章正比例函数和反比例函数拓展提高卷A卷

合集下载

八年级数学上第十八章 正比例函数和反比例函数

八年级数学上第十八章 正比例函数和反比例函数

八年级数学上第十八章正比例函数和反比例函数18.1 函数(1)一、知识点分析1.变量与常量在问题研究的过程中,可以取不同数值的量叫做变量;在问题研究的过程中,保持数值不变的量叫做常量(或常数)2.函数的定义(1)在某个变化过程中有两个变量,设为x和y,如果在变量x的允许取值范围内,变量y 随着x的变化而变化,他们之间存在确定的依赖关系,那么变量y叫做变量x的函数,x叫做自变量,y叫做因变量。

(2)一般地,设在一个变化过程中有两个变量x和y,如果对于变量x允许取值范围内的每一个值,变量y都有唯一值与它对应,我们称y是x的函数,其中:x是自变量,y是因变量.函数的表示:y; f(x); y=f(x); y=g(x)3.函数解析式表达两个变量之间依赖关系的数学式子称为函数解析式在表示函数时,如果要把y表示成x的函数,其实就是用含x的代数式表示y。

例如:y=3x+5 即y=f(x)的形式注意:y2=x ,︱y︱=x (x 0) 和x=a (a是常数)不是函数y=x2,y=︱x︱和y=a(a是常数)是函数4.常值函数:形如y=a(a是常数)的函数叫常值函数(或常量函数)5.函数的定义域与函数值(1)函数的自变量允许取值的范围,叫做这个函数的定义域自变量的取值范围:①使含自变量的代数式有意义.②,使函数在实际情况下有意义.函数自变量的范围一般从三个方面考虑:①表达式是整式,自变量可取全体实数;②函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负数.(2)函数值:如果变量y是变量x的函数,那么对于x在定义域内取定的一个值a,变量y 的对应值叫做当x=a时的函数值6.函数和方程的区别和联系(1)函数研究的是某变化过程中的两个变量之间的关系;方程研究的是解的情况(2)y=f(x)形式的函数解析式是方程;但是方程不一定是函数解析式;f(x)形式的函数是代数式形式表示的函数,但不是方程。

沪教版(上海)初中数学八年级第一学期1正比例函数与反比例函数课件

沪教版(上海)初中数学八年级第一学期1正比例函数与反比例函数课件

三、正比例函数和反比例图象和性质
1. 概念: 形如
y kx (k 0) 称y是x的正比例函数 y k (k 0) 称y是x的反比例函数
x
• 2.图象特征
y kx(k 0)
k 0 k 0
y Ox
y
O
x
y k (k 0) x
y
O
x
y
O
x
3.性质
y kx(k 0)
当k>0时,y随x的增大而增大 当k<0时,y随x的增大而减小
yk x
K>0,图象散布在第一、三象限, 在一、三象限,y随x的增大而减小
K<0,图象散布在第二、四象限, 在二、四象限,y随x的增大而增大
4.求解析式 (1)正比例函数,只要知道图象上除原点
外的任一点坐标;
(2)y k (k 0) 可用图象上一点的坐标, x
或图象上一点引坐标轴的垂线所构成 的矩形的面积结合图象所在象限确定。
体体积应( B )
• A.不大于 24 m3
35

B.不小于
24 35
m3

C.不大于
24 37
m3
A(0.8,120)

D.不小于
24 37
m3
3.某校八年级学生到距学校6千米的郊外春游,一 部分同学步行,另一部分同学骑自行车,沿相同 路线前往,如图,分别表示步行和骑车的同学前 往目的地所走路程y(千米)与所用时间x(分钟) 之间的函数图象,则下列判断错误的是( D )
∴y=14x+10(80-x)+20(100-x)+8(x-30) =-8x+2560 x的取值范围为:30≤ x≤80
(2) ∵y=-8x+2560中,y随x的增大而减小, 又∵30≤ x≤80 ∴x=80时,y最小=1920(元) 总费用最低时的调配方案为:甲仓库80箱全部运

沪教版(上海)-初中数学七年级、八年级、九年级数学全册章节知识点结构思维导图集

沪教版(上海)-初中数学七年级、八年级、九年级数学全册章节知识点结构思维导图集
第二十五章 锐角三角比的章节知识点结构思维导图
- 14 -
第二十六章 二次函数的章节知识点结构思维导图 第二十七章 圆与正多边形的章节知识点结构思维导图
- 15 -
第二十八章 统计初步的章节知识点结构思维导图
- 16 -
-7-
第十四章 三角形的章节知识点结构思维导图 第十五章 平面直角坐标系的章节知识点结构思维导图
-8-
上海市(沪教版)八年级数学全册章节思维导图 共八个章节
第十六章 二次根式的章节知识点结构思维导图
-9-
第十七章 一元二次方程的章节知识点结构思维导图
- 10 -
第十八章 正比例函数和反比例函数的章节知识点结构思维导图 第十九章 几何证明的章节知识点结构思维导图
-3-
第七章 线段与角的画法的章节知识点结构思维导图 第八章 长方体的再认识的章节知识点结构思维导图
-4-
上海市(沪教版)七年级数学全册章节思维导图 共七章
第九章 整式的章节知识点结构思维导图
-5-
第十章 分式的章节知识点结构思维导图 第十一章 图形的运动的章节知识点结构思维导图
-6-
第十二章 实数的章节知识点结构思维导图 第十三章 相交线 平行线的章节知识点结构思维导图
- 11 -
第二十章 一次函数的章节知识点结构思维导图 第二十一章 代数方程的章节知识点结构思维导图
- 12 -
第二十二章 四边形的章节知识点结构思维导图 第二十三章 概率初步的章节知识点结构思维导图
- 13 -
上海市(沪教版)ቤተ መጻሕፍቲ ባይዱ年级数学全册章节思维导图 共五章
第二十四章 相似三角形的章节知识点结构思维导图
上海市(沪教版)初中数学全册思维导图集 共二十八章

沪教版初中数学教材各章节

沪教版初中数学教材各章节

沪教版初中数学教材各章节六年级(第一学期)第一章数的整除第二章分数第三章比和比例第四章圆和扇形第二学期第五章有理数第六章一次方程(组)和一次不等式(组)第七章线段和角的画法第八章长方体的再认识七年级(第一学期)第九章整式第十章分式第十一章图形的运动第二学期第十二章实数第十三章相交线平行线第十四章三角形第十五章平面直角坐标系八年级(第一学期)第十六章二次根式第十七章一元一次方程第十八章正比例函数和反比例函数第十九章几何证明第二学期第二十章一次函数第二十一章代数方程第二十二章四边形第二十三章概率初步九年级(第一学期)第二十四章相似三角形第二十五章锐角的三角比第二十六章二次函数第二学期第二十七章圆和正多变形第二十八章统计初步沪教版初中数学教材各章节六年级(第一学期)第一章数的整除第一节整数和整除1.1 整数和整除的意义1.2 因数和倍数1.3 能被2,5整除的数第二节分解质因数1.4素数,合数与分解质因数1.5 公因数与最大公因数1.6 公倍数与最小公倍数第二章分数第一节分数的意义和性质2.1 分数与除数2.2 分数的基本性质2.3 分数的大小比较第二节分数的运算2.4 分数的加减法2.5 分数的乘法2.6 分数的除法2.7 分数与小数的互化2.8 分数,小数的四则混合运算2.9 分数运算的应用第三章比和比例第一节比和比例3.1 比的意义3.2比的基本性质3.3比例第二节百分比3.4 百分比的意义3.5 百分比的应用3.6 等可能事件第四章圆和扇形第一节圆的周长和弧长4.1 圆的周长4.2 弧长第二节圆和扇形的面积4.3 圆的面积4.4 扇形的面积六年级第二学期第五章有理数第一节有理数5.1 有理数的意义5.2 数轴5.3 绝对值第二节有理数的运算5.4 有理数的加法5.5有理数的减法5.6 有理数的乘法5.7 有理数的除法5.8 有理数的乘方5.9 有理数的混合运算5.10 科学计算法第六章一次方程(组)和一次不等式(组)第一节方程和方程的解6.1 列方程6.2 方程的解第二节一元一次方程6.3一元一次方程及其解法6.4 一元一次方程的应用第三节一元一次不等式(组)6.5 不等式及其性质6.6一元一次不等式的解法6.7一元一次不等式组第四节一次方程组6.8二元一次方程6.9二元一次方程组及其解法6.10三元一次方程组及其解法6.11一次方程组的应用第七章线段与角的画法第一节线段的相等与和,差,被,倍、7.1线段的大小的比较7.2 画线段的和,差,倍第二节角7.3 角的概念与表示7.4 角的大小的比较,画相等的角7.5 画角的和,差,倍7.6 余角,补角第八章长方体的再认识第一节长方体的元素第二节长方体直观图的画法第三节长方体棱与棱位置关系的认识第四节长方体中棱与平面位置关系的认识第五节长方体中平面与平面关系的认识七年级第一学期第九章整式第一节整式的概念9.1 字母表示数9.2 代数式9.3 代数式的值9.4 整式第二节整式的加减9.5 合并同类项9.6 整式的加减第三节整式的乘法9.7 同底数幂的乘法9.8 积的乘方9.9 幂的乘方9.10 整式的乘法第四节乘法公式9.11 平方差公式9.12 完全平方公式第五节因式分解9.13 提取公因式法9.14 公式法9.15 十字相乘法9.16 分组分解法第六节整式的除法9.17 单项式除以单项式9.18 同底数幂的除法9.19 多项式除以单项式第十章分式第一节分式10.1 分式的意义10.2 分式的基本性质第二节分式的运算10.3 分式的乘除10.4 分式的加减10.5 可化为一元一次方程的分式方程10.6 整数指数幂及其运算第十一章图形的运动第一节图形的平移11.1 平移第二节图形的旋转11.2 旋转11.3 旋转对称图形与中心对称图形11.4 中心对称第三节图形的翻折11.5 翻折与轴对称图形11.6 轴对称七年级第二学期第十二章实数第一节实数的概念12.1 实数的概念第二节数的开方12.2 平方根和开平方12.3 立方根和开立方12.4 n次方根第三节实数的运算12.5 用数轴上的点表示数12.6 实数的运算第四节分数指数幂12.7 分数指数幂第十三章相交线平行线第一节相交线13.1 邻补角、对顶角13.2 垂线13.3 同位角、内错角、同旁内角第二节平行线13.4 平行线的判定13.5 平行线的性质第十四章三角形第一节三角形的有关概念与性质14.1 三角形的有关概念14.2 三角形的内角和第二节全等三角形14.3 全等三角形的概念与性质14.4 全等三角形的判定第三节等腰三角形14.5 等腰三角形的性质14.6 等腰三角形的判定14.7 等边三角形第十五章平面直角坐标系第一节平面直角坐标系15.1 平面直角坐标系第二节直角坐标平面内点运动直角坐标平面内点运动八年级第一学期第十六章二次根式第一节二次根式的概念和性质16.1 二次根式16.2 最简二次根式和同类二次根式第二节二次根式的运算16.3 二次根式的运算第十七章一元二次方程第一节一元二次方程的概念17.1 一元二次方程的概念第二节一元二次方程的解法17.2 一元二次方程的解法17.3 一元二次方程的判别式第三节一元二次方程的应用17.4 一元二次方程的应用第十八章正比例函数和反比例函数第一节正比例函数18.1 函数的概念18.2 正比例函数第二节反比例函数18.3 反比例函数第三节函数的表示法18.4 函数的表示法第十九章几何证明第一节几何证明19.1 命题和证明19.2 证明举例第二节线段的垂直平分线与角的平分线19.3 逆命题和逆定理19.4 线段的垂直平分线19.5 角的平分线19.6 轨迹第三节直角三角形19.7 直角三角形全等的判定19.8 直角三角形的性质19.9 勾股定理19.10 两点的距离公式八年级第二学期第二十章一次函数第一节一次函数的概念20.1 一次函数的概念第二节一次函数的图像与性质20.2 一次函数的图像20.3 一次函数的性质第三节一次函数的应用20.4 一次函数的应用阅读材料直线型经验公式第二十一章代数方程第一节整式方程21.1 一元整式方程21.2 二项方程第二节分式方程21.3 可化为一元二次方程的分式方程第三节无理方程21.4 无理方程第四节二元二次方程组21.5 二元二次方程和方程组21.6 二元二次方程组的解法第五节列方程(组)解应用题21.7 列方程(组)解应用题阅读材料一些特殊的一元高次方程的解法第二十二章四边形第一节多边形22.1 多边形第二节平行四边形22.2 平行四边形22.3 特殊的平行四边形第三节梯形22.4 梯形22.5 等腰梯形22.6 三角形、梯形的中位线第四节平面向量及其加减运算22.7 平面向量22.8 平面向量的加法22.9 平面向量的减法阅读材料用向量方法证明几何问题第二十三章概率初步第一节事件及其发生的可能性23.1 确定事件和随机事件23.2 事件发生的可能性第二节事件的概率23.3 事件的概率23.4 概率计算举例探究活动杨辉三角与路径问题九年级第一学期第二十四章相似三角形第一节相似形24.1 放缩与相似形第二节比例线段24.2 比例线段24.3 三角形一边的平行线第三节相似三角形24.4 相似三角形的判定24.5 相似三角形的性质第四节平面向量的线性运算24.6 实数与向量相乘24.7 平面向量的分解第二十五章锐角的三角比第一节锐角的三角比25.1 锐角的三角比的意义25.2 求锐角的三角比的值第二节解直角三角形25.3 解直角三角形25.4 解直角三角形的应用九年级第二学期第二十六章二次函数第一节二次函数的概念26.1 二次函数的概念第二节二次函数的图像26.2 特殊二次函数的图像26.3 二次函数的图像第二十七章圆和正多边形第一节圆的基本性质27.1 圆的确定27.2 圆心角,弧,弦,弦心距之间的关系第二节直线与圆,圆与圆的位置关系27.4 直线与圆的位置关系27.5 圆与圆的位置关系第三节正多边形与圆27.6 正多边形与圆第二十八章统计初步第一节统计的含义28.1 数据的整理与表示28.2 统计的意义第二节基本的统计量28.3 表示一组数据平均水平的量28.4 表示一组数据波动程度的量28.5 表示一组数据分布的量28.6 统计实习(注:文档可能无法思考全面,请浏览后下载,供参考。

函数的概念—教学设计及专家点评(获奖版)

函数的概念—教学设计及专家点评(获奖版)

上海教育出版社九年义务教育数学课本八年级第一学期第十八章18.1函数的概念(1)设计说明一.教学内容及其解析本节课是上海市初中数学课本(上海教育出版社)八年级第一学期第十八章《正比例函数和反比例函数》第一节正比例函数的第一课时,主要内容是函数及其相关概念.函数是数学中重要的基本概念之一,也是一种重要的思想方法. 它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型. 在上海的初中数学课程中,对函数概念的描述,是用变量之间的依存关系定义的,即函数的“变量说”. 到了高中阶段,函数再以集合观点来描述,函数被定义成两个数集之间的映射,要求“集合A 中任意一个元素在集合B中有唯一的一个元素与之对应”,从而完善“变量说”的表达,进入“对应说”阶段. 之所以初中以运动观点来描述函数概念,主要是它直观、感性,贴近生活,学生易于理解、接受,而且“变量说”也是函数思想的根本. 高中函数概念的表述,这一似乎非常容易理解的定义在教学实践中被证明是非常抽象而且难懂的. 高中阶段学习的函数概念是初中阶段所学函数概念的深化与提高,这也是《课程标准》中要求知识与技能呈螺旋式上升规律的体现. 正如弗赖登塔尔指出的:“函数概念的出现,要比正式的定义早得多,也自然得多. 我们‘能够’甚至‘必须’运用实际中出现的函数概念,而不必先去生造或定义函数. 在学生接触了许多函数,已经能作出函数以后,再让他们去归结出什么是函数,这才是数学活动的范例. 这种新的基本概念的创造,才能明显地表现出活动水平的提高.”本单元内容的安排,先举例讲述数量以及变化过程中的常量和变量,接着描述函数的概念;然后,研究正比例函数和反比例函数,以它们为载体,帮助学生初步感知变量数学,体会研究函数的基本路径和方法;在学生具体研究正比例函数和反比例函数的基础上,进一步整理函数的表示法,讨论生活实际中的函数问题,深化对函数的理解. 本单元知识结构图如下:本节课先引发学生思考反映不同事物变化过程的一些实际问题,给出变量、常量的概念;然后体会变量之间的联系,围绕函数概念的形成,采用“背景—分析—归纳”的方式引入概念,在师生充分交流的基础上,归纳得到函数的概念,揭示其核心是“变量之间的关系”;随后通过例题帮助学生知道刻画依赖关系的三种常用表达方式,系统地呈现了函数概念,有利于学生基础知识和基本技能的初步掌握,体现“实践—理论—再实践”的认知规律.二.教学目标及其解析基于对教学内容的思考,将本节课的教学目标设置如下:从实例出发,在具体情境中体会数量在生活中的作用,能区分变量与常量;通过分析问题情境中变量之间的联系,从中理解确定的依赖关系的含义,建立函数及其相关概念.经历“背景—分析—归纳—定义—辨析—应用”的函数概念形成过程,在不同问题情境中,初步领会函数思想,体会用数学的视角思考问题,用数学的语言阐述观点,用数学的方法解决问题,积累数学探究的基本经验;初步体验观察、分析、归纳等数学实验研究的方法和利用图像、表格整理数据、获取信息的方法,发展直观想象、数学抽象、逻辑推理、数据分析等能力.在数学学习和问题解决中,发展主体意识和团队合作的精神;认识数学来源于生活又反作用于实践,体会辩证唯物主义观点;了解我国现实国情、新时代特色社会主义建设成就,增强爱国主义热情和民族自信心.教学重点:分析变化过程中变量之间的联系,从中理解确定的依赖关系的含义,建立函数及其相关概念.教学难点:归纳提炼函数的概念、理解函数的意义.三.学生学情分析函数概念是初中阶段最难理解的概念之一,一方面它有高度的抽象性,另一方面,变量的概念涉及到用运动、变化的观点看待问题,具有辩证思维特征.1本节课采用借班上课的形式,教学对象是八年级学生. 学生过去研究过数、量、字母表示数,这些都是一元变量,期间也涉及了几个变量之间的关系(如:运算律、公式等),但没有系统地学习过两个变量之间的关系. 函数关系是特殊的对应(依赖)关系.在初识阶段,分析两个变量之间的关系时,学生往往侧重它们的内在逻辑联系,因此,在教学设计中,以教材提供的概念形成过程和素材及贴近学生的生活实例为依据,特别注意以实例为载体化解函数的抽象性,为学生搭建理解的平台,铺设概括的线索和阶梯,其中特别注重典型实例、表格和图像等的直观作用,并强调在思想方法上给予明确、具体的指导,1摘自《注重学生思维参与与感悟的函数概念教学》章建跃以帮助学生感悟函数概念的本质属性:两个变量间确定的依赖关系. 函数关系的研究,对分析和应用现实世界普遍存在的变量之间的关系有着非常重要的作用,所以,函数的概念教学要从系统地研究变量之间关系的必要性入手,突出函数关系的特征.另外,在表述中常采用“y是x的函数”,这从字面语意上看y是函数,但变量之间的关系才是函数的本质,这是学生很容易混淆的,所以设计了“温度变化”、“入园人数”等以图像、表格形式呈现的实例帮助学生感受函数概念的本质.四.教学策略分析根据上述分析,我制定了如下教学策略:教学策略1:创设情境,初步感知,促体验函数与现实生活的联系非常密切. 本节课以实际问题贯穿始终,在函数概念的引入、抽象、概括等各环节中,创设了丰富的、生活化的问题情境,以具体的实例为载体化解函数概念的抽象性,引导学生初步感知变量间的联系,体验确定的依赖关系.教学策略2:经历变化,抽象提炼,促理解概念形成是从实例出发,通过观察、归纳、抽象、概括出事物的某类本质属性,并通过提出各种假设加以验证. 本节课对于函数概念的学习,需要经历从具体到抽象的过程,先提供了“轨道高度”、“抛篮球”两个实例,利用信息技术(幻灯片动态演示、几何画板软件模拟、短视频嵌入等)动态地呈现问题情境中的变化过程,引导学生进行分析,通过数学抽象,逐步形成函数的有关概念,随后通过“天气变化”、“入园人数”两个实例,突出函数的本质属性是两个变量间“确定的依赖关系”,剥离“用数学式子表示”这一非本质属性.教学策略3:整体思考,把握内涵,促衔接本节课是本单元的起始课,后续还将进一步学习正、反比例函数和函数的表示方法.在本节课中,问题的呈现形式有文字、图像、表格,有意识地使用了这些不同的表现形式,这样的编排一方面有助于突出函数概念的本质属性是两个变量间“确定的依赖关系”,进而形成对函数概念较深刻的认识;另一方面也为后面继续学习函数的三种表示方法进行了适当的准备.教学策略4:问题探究,初识价值,促发展通过具体问题为载体的探究活动:借助信息技术来模拟“电动车行驶”实验,探究电动车电池剩余电量与行驶路程的关系,尝试用三种常用的方式来刻画这种关系. 在模拟实验的活动中,尝试应用函数的观点来观察、分析、解决问题,在此过程中加深对函数知识的理解,积累基本活动经验,初步感受函数在刻画运动变化规律中的作用,领会用函数的思想研究事物的一般方法;启发学生“由数想形,由形助数”,激发学生的创新思维,增进直观想象、数学抽象等核心素养的形成和发展,逐步学会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界.教学技术支持:板书支持:为了有效实现教学目标,我设计了如下板书:信息技术支持:为了更好支持学习活动,我制作了教学课件,将信息技术与课程内容有机整合,发挥信息技术在解决学生数学学习困难上的作用:(1)函数概念具有高度的抽象性,因此本节课借助信息技术直观呈现具体实例的变化过程,为概括数学概念提供具体背景支持,如通过动态演示“轨道高度”的变化过程来认识常量与变量;又如短视频呈现“抛篮球”“温度变化”等实例,使变化过程变得“可视化”、“连续性”,以有序的变化过程帮助学生理解“确定的依赖关系”.(2)以往教学中难以呈现的课程内容可以通过技术在课堂上呈现,如“电动车行驶”实验,通过几何画板的模拟将实验搬入了课堂,在用数学解决实际问题时,利用信息技术呈现实验模拟、数据收集、数据处理、数据分析等过程,借此学生尝试进行探究活动.(3)数学中存在复杂的数据处理,如“电动车行驶”问题中,用图来刻画两个变量间的确定的依赖关系时,通过几何画板“绘制表格”功能代替机械性的描点过程,提高效率,使学生有更多的时间用于数学的实质性思考,同时培养学生的现代技术意识.板书与课件能直观、有效地帮助学生逐步形成概念,随着学生的思维同步展开,构建了有利于学生抽象概念的教学情境.五.教学过程设计1. 创设情境,引入新课【师生活动1】观看《纪念天宫二号》视频.【设计意图】通过天宫二号实例,感知数学来源于生活;了解我国现实国情、新时代特色社会主义建设成就,增强爱国主义热情和民族自信心.请阅读海报,你可以获得哪些信息?海报上是如何描述天宫二号的特征的?【师生活动2】学生先独立阅读海报,尝试获取信息;随后通过“描述天宫二号的特征”这一对话活动,发现需要用“数”和“单位”来描述,从而引出数量的概念:数与度量单位合在一起就是数量;再配以具体例子进一步体会“可以用数量来描述事物的特征”.【设计意图】体会用数量描述事物的特征,引起学生对数量的关注.2. 活动探究,形成概念问题1如果在平面内将地球抽象成一个圆,飞行器抽象成一个点,设想飞行器绕地球飞行,(1)其飞行的轨道是什么图形?(2)假设轨道高度为x千米,那么轨道周长y是多少千米?【师生活动1】将实际问题在平面内抽象成数学图形,引导学生利用已有知识(圆的周长公式)找出轨道周长与轨道高度的关系;通过多媒体演示改变轨道高度,直观感受飞行器所在的绕地飞行轨道大小随之改变,归纳常量与变量的概念.【设计意图】运用多媒体技术帮助学生直观感受变化过程中存在的两类量:常量与变量,进而归纳常量与变量的概念.学生在活动中初步感受“变化而变化”,引出本节课需要研究的主题.【师生活动2】辨析:下列数量中,哪些量是变量,哪些量是常量?(1)2018年期间,你的体重G(千克);(2)某次汽车匀速行驶时,行驶的速度v(米/秒);(3)昨天,某气象站测得的室外温度T(摄氏度);(4)篮球抛出后至落地的这段时间内,篮球离地面的高度h(米).【设计意图】通过辨析进一步明晰常量和变量的概念.追问:篮球抛出后至落地的这段时间内,篮球离地面的高度h(米)与什么变量有关?【师生活动3】根据生活经验,说出影响篮球离地面的高度h的变量.【设计意图】体会变量之间处处有联系.问题2 一次抛出篮球后,设篮球离手时间t(秒)时,球离地面的高度为h(米),(1)在这个过程中,h与t有关系吗?(2)t的值确定时,h的值能确定吗?【师生活动4】①短视频演示篮球抛出到落地的过程,即时显示离手时间及篮球离地高度.学生通过观察变化过程,体会h 随着t的“变化而变化”、“确定而确定”.②回顾:飞行器飞行高度变化的过程,轨道周长y(千米)与飞行器的轨道高度x(千米)之间的关系. 【设计意图】通过师生共同讨论,分析问题中一个变量的变化对另一个变量变化的影响,感受变量之间“确定的依赖关系”,初步形成函数的概念,体会函数解析式可以刻画“确定的依赖关系”.问题3下图是某一天气象站测得的该地区气温变化情况:(1)时间t和温度T是变量吗? 温度T和时间t有确定的依赖关系吗?(2)时间t的取值范围?【师生活动5】①多媒体演示:短视频演示绘制图的过程,将图形从左到右描点呈现.②引导学生对该变化过程进行类似上面两个变化过程的变量关系分析,归纳函数的完整概念并板书. 【设计意图】学生感受变量的取值随研究背景的限定而有范围,完善函数概念;体会到图也可以刻画“确定的依赖关系”,突出函数的本质属性,剥离“用数学式子表示”这一非本质属性.问题4 某场馆2018年十一长假期间测得的入馆人数统计表如下:日期和当天入馆人数是变量吗?入馆人数是日期的函数吗?说说你的理解.【师生活动6】引导学生说出“日期”和“当天入馆人数”两个变量间的联系,体会表格也可以刻画变量间“确定的依赖关系”.【设计意图】利用函数的概念判断一个变量是否是另一个变量的函数,巩固函数概念;体会用表刻画变量间“确定的依赖关系”,进一步突出函数的本质属性;归纳三种常用的刻画确定依赖关系的方式,为本单元学习函数的三种表示方法做铺垫.【师生活动7】阅读课本,圈划概念,互相交流.【设计意图】在课本上圈划概念,养成良好的学习习惯;规范语言,梳理函数的相关概念.3. 模拟实验,增进理解问题5 老师准备十一期间开着一辆电动汽车去A地旅游,但担心去的路上电动车的电量是否足够,路途中间是否需要找充电站充电?因此,老师希望知道:这辆电动汽车的剩余电量与行驶的路程有什么关系?说说你的理解?模拟实验一辆电动汽车匀速行驶的过程,汽车蓄电池原有电量30(千瓦时),观察实验过程并思考:(1)设汽车行驶的路程为x(千米),电池剩余电量为y(千瓦时),y是x的函数吗?(2)如何刻画y与x的函数关系?【师生活动】①媒体演示:短视频演示电动车的行驶过程,直观呈现电池电量的变化情况.引导学生利用函数的概念来描述两个变量之间的关系.②小组讨论:你能用什么方式来刻画y与x的关系?如何呈现?③交流分享:几何画板模拟电动车的行驶过程,将行驶路程与电池电量的具体数值直接呈现.【设计意图】再次经历探究两个变量间的函数关系的过程,巩固函数的相关概念;进一步体会刻画确定的依赖关系的三种常用方式,并初步感受三种刻画方式的优点和局限性;学生通过经历实验、采集数据列表、描点法画图、分析表与图、寻找规律、尝试得出函数解析式的过程,积累数学探究的活动经验,体会函数思想,发展直观想象、数学抽象、逻辑推理、数据分析等能力.4. 自主小结,知识梳理【设计意图】梳理知识,明晰函数的概念,进一步体会学习函数的价值.5. 布置作业,目标检测1、精读书本P52-55页,加深对课堂内容的理解;2、完成练习册18.1(1).【设计意图】检测目标的达成情况.六.课堂教学目标检测目标检测是测量学生学习水平和衡量教师教学效果的有效手段,所以我在教学行进过程中和课后,设置了基于本节课教学目标和单元规划的检测题,如:教学过程中的问题5(具体见上文);再如课后作业第5题:德国著名心理学家艾宾浩斯(1850年~1909年)对人的记忆进行了研究,他采用无意义的音节作为记忆的材料进行实验,获得了如下相关数据:他又根据上表绘制了一条曲线,这就是著名的艾宾浩斯遗忘曲线.观察这条曲线,回答:(1)在这一变化过程中,有哪两个变量?它们之间是否存在确定的依赖关系?其中一个变量是另一个变量的函数吗?为什么?(2)你从图中发现怎样的规律?对你的学习有什么启示?【设计意图】本题用表和图来刻画函数关系,意在检测学生对于依赖关系和函数概念的掌握情况;随后设计了一个开放性的问题,意在检测学生“用数学”的意识及能力,以下评价标准可供参考:第一层级(合格):问题(1)解答正确;第二层级(良好):问题(1)解答正确;问题(2)能读出变化趋势,描述大致的变化规律,能较清楚地介绍自己的学习启示;第三层级(优秀):问题(1)解答正确;问题(2)能读出变化趋势,准确、完整地描述变化规律,能清晰地介绍自己的学习启示.上海教育出版社九年义务教育数学课本八年级第一学期第十八章函数的概念点评稿朱费迪老师是上海市宝钢新世纪学校的一位优秀青年教师,她执教的《函数的概念》是上海教育出版社初中数学八年级第一学期第十八章第一节内容。

第十八章 正比例函数和反比例函数数学八年级上册-单元测试卷-沪教版(含答案)

第十八章 正比例函数和反比例函数数学八年级上册-单元测试卷-沪教版(含答案)

第十八章正比例函数和反比例函数数学八年级上册-单元测试卷-沪教版(含答案)一、单选题(共15题,共计45分)1、如图,A,B两点在双曲线上,分别经过A,B两点向坐标轴作垂线段,已知S阴=1.7,则S1+S2等于( )影A.4B.4.2C.4.6D.52、如图,若<0,则正比例函数与反比例函数在同一坐标系的大致图象可能是()A. B. C. D.3、当矩形面积一定时,下列图象中能表示它的长y和宽x之间函数关系的是()A. B. C. D.4、某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该市乘出租车超过3千米后,每千米的费用是()A.0.71元B.2.3元C.1.75元D.1.4元5、如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图像描述大致是()A. B. C. D.6、如图,在平面直角坐标系中,的顶点在函数的图象上,,边在轴上,点为斜边的中点,连续并延长交轴于点,连结,若的面积为,则的值为()A. B. C. D.7、一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→BB.B→A→CC.B→O→CD.C→B→O8、函数(1)y=2x+1,(2)y=﹣,(3)y=x2+2x+2,y值随x值的增大而增大的有()个.A.0个B.1个C.2个D.3个9、下列各曲线中,不表示y是 x的函数的是()A. B. C. D.10、函数y=x+m与在同一坐标系内的图象可以是()A. B. C. D.11、函数的自变量的取值范围是( )A. B. C. D.12、已知点(x1, -2),(x2, 2),(x3, 3)都在反比例函数的图象上,则下列关系中正确的是()A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x3<x113、一次函数与正比例函数、常数,且,在同一坐标系中的大致图象是()A. B. C. D.14、下面的函数是反比例函数的是( )A. B. C. D.15、已知m≠0,函数y=-mx2+n与y= 在同一直角坐标系中的大致图象可能是()A. B. C. D.二、填空题(共10题,共计30分)16、函数y=中,自变量x的取值范围是________.17、如图,点A是坐标原点,点D是反比例函数y=(x>0)图象上一点,点B在x轴的正半轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=(x>0)图象于点E,连接DE,则△DCE的面积为________.18、在函数y= x中,若自变量x的取值范围是50≤x≤75,则函数值y的取值范围为________19、已知点(,),(,),(,)均在反比例函数的图象上,则,,的大小关系是________.(用“<”连接)20、关于x,y的关系式:(1)y-x=0;(2)x=2y;(3)y2=2x;(4)y-x2=x,其中y是x的函数的是________21、已知函数,如果,那么________.22、圆的面积S与半径R之间的关系式是S=πR2,其中自变量是________ .23、如图反映的是小刚从家里跑步去体育馆,在哪里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小刚离家的距离.根据图象回答下列问题:(1)体育场离陈欢家________ 千米,小刚在体育场锻炼了________ 分钟.(2)体育场离文具店________ 千米,小刚在文具店停留了________ 分钟.24、当x=________时,分式无意义;函数中自变量x的取值范围是________.25、若一次函数y=kx﹣(2k+1)是正比例函数,则k的值为________三、解答题(共5题,共计25分)26、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.27、计划修建铁路1200km,试写出铺轨天数y(天)与每天铺轨量x(km)之间的函数关系式,并判断该函数是否是反比例函数.28、当k为何值时,y=(k﹣1)x是反比例函数?29、图中,哪些图中的y与x构成反比例关系请指出.30、已知函数y=(m+1)x|2m|﹣1,①当m何值时,y是x的正比例函数?②当m何值时,y是x的反比例函数?(上述两个问均要求写出解析式)参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、D5、B6、C7、C8、B9、C11、D12、B13、A14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

18-第十八章-正比例函数和反比例函数-八年级(上)-知识点汇总-沪教版

18-第十八章-正比例函数和反比例函数-八年级(上)-知识点汇总-沪教版

第十八章正比例函数和反比例函数18.1 函数的概念1、 在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2、 在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3、 表达两个变量之间依赖关系的数学是自称为函数解析式4、 函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值18.2 正比例函数1、 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2、 正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3、 对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4、 一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =5、 正比例函数有如下性质:(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大(2)当k <0时,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小18.3 反比例函数1、 如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2、 解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数(反比例函数的定义域是不等于零的一切实数)3、 反比例函数(0)k y k k x =≠是常数,有如下性质:(1)当k>0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x的值逐渐增大时,y的值则随着逐渐减小(2)当k<0时,函数图像的两支分别在第二、四象限,在每一个象限内。

沪教版八年级上册数学第十八章 正比例函数和反比例函数 含答案

沪教版八年级上册数学第十八章 正比例函数和反比例函数 含答案

沪教版八年级上册数学第十八章正比例函数和反比例函数含答案一、单选题(共15题,共计45分)1、在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)2、若点A(-2,y1),B(1,y2),C(2,1)在反比例函数y= 的图象上,则( )A.y2<y1<1 B.y1<y2<1 C.1<y2<y1D.y1<1<y23、已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线( x >0)经过D点,交AB于E点,且OB∙AC=160,则点E的坐标为().A.(3,8)B.(12,)C.(4,8)D.(12,4)4、若点(x1, y1)、(x2, y2)、(x3, y3)都是反比例函数y= 的图象上的点,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y3<y15、王小红居住的小区内有一条笔直的小路,小路的正中间有一路灯:王小红由A处匀速直行到B处(如图所示),她与路灯的距离S与行走的时间t之间的变换关系用图象刻画出来:大致图象是()A. B. C. D.6、如图,在反比例函数的图原上有A,B,C,D四点,他们的横坐标依次是1,2,3,4,分别过这些点作x轴和y轴的垂线,图中构成的阴影部分的面积从左到右依次是S1, S2, S3.则下列结论正确的是()A. B. C. D.7、如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是()A. B. C. D.8、如图是某公司今年1到4月份的总产值相对上个月的增长率统计图,下列说法:①2月份总产值与去年12月份总产值相同;②3月份与2月份的总产值相同;③4月份的总产值比2月份增长7%;④在1到4月份中,4月份的总产值最高;其中正确的个数是()A.4B.3C.2D.19、如图,矩形ABCD的周长是28cm,且AB比BC长2cm.若点P从点A出发,以1cm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B-→C方向匀速运动,当一个点到达点C时,另一个点也随之停止运动.若设运动时间为t(s),的面积为S(cm2),则s(cm2)与t(s)之间的函数图象大致是()A. B. C. D.10、下列选项中,函数y= 对应的图象为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年沪教版(上海)八年级上学期第十八章正比例函数和反比例函数拓展提高卷A

姓名:________ 班级:________ 成绩:________
一、单选题
1 . 关于正比例函数y=-3x,下列结论正确的是()
A.图象不经过原点B.y的值随着x增大而增大C.图象经过二、四象限D.当x=1时,y=3
2 . 如图,点P在反比例函数y=(k≠0)的图象上,PD⊥x轴于点D,△PDO的面积为2,则k的值为()
A.-1B.-2C.-4D.-6
3 . 为了预防“流感”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量与时间成正比例,药物燃烧完后,与成反比例(如图所示).现测得药物燃毕,此时室内空气中每立方米的含药量为.研究表明,当空气中每立方米的含药量不低于才有效,那么此次消毒的有效时间是()
A.分钟B.分钟C.分钟D.分钟
4 . 如图,点M是函数与的图象在第一象限内的交点,,则k的值为()
A.2B.C.D.
5 . 下列式子中表示是的反比例函数的是()
A.B.
C.D.
6 . 一次函数y=-kx+4与反比例函数的图象有两个不同的交点,点(-,y1)、(-1,y2)、(,y3)是函数图象上的三个点,则y1、y2、y3的大小关系是()
A.y2<y3<y1B.y1<y2<y3
C.y3<y1<y2D.y3<y2<y1
二、填空题
7 . 已知反比例函数y=-5x-1,当x<0时,它的图象的这一支在第__象限,y随x的增大而_____.
8 . 如图是反比例函数y=的图象的一个分支,对于给出的下列说法:
①常数k的取值范围k>2;②另一分支在第三象限;③在函数图象上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;④在函数图象的某一分支上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2.其中正确的是__________.(在横线上填上正确的序号)
9 . 已知直线AB与坐标轴分别交于点、,点P在y轴上,那么能使为等腰三角形的点P的个数有______个
10 . 反比例函数过点A(m,2),则m的值是_____.
11 . 某物体从上午时至下午时的温度是时间(时)的函数:(其中表示中午时,表示下午时),则上午时此物体的温度为________.
12 . 函数y=中自变量x的取值范围是_____.
13 . 我们知道,地面有一定的温度,高空也有一定的温度,且高空中的温度是随着距地面高度的变化而变化的,如果表示某高空中的温度,表示距地面的高度,则_____是自变量.
14 . 已知函数,当=______时,正比例函数随的增大而减小?
15 . 某汽车的油缸能盛油100 L,汽车每行驶50 km耗油6 L,加满油后,油缸中的剩油量y(单位:L)与汽车行驶路程x(单位:km)之间的关系式是________.
16 . 已知正比例函数的图象经过点(﹣1,3),那么这个函数的解析式为_____.
17 . 若反比例函数的图象经过点,则的图像在_______象限.
18 . 如图,半径为r的⊙O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为
、、,则、、的大小关系
为.
三、解答题
19 . 求出下列函数中自变量x的取值范围.
①y=
②y=.
20 . 已知一次函数图象经过(6,)、(2,)两点.
(1)求函数解析式;
(2)该函数图象与x、y轴分别交于A、B两点,点P是该函数图象第一象限内的一点,当△OAP的面积为12时,求点P的坐标.
21 . 已知函数.
(1)当为何值时,它是正比例函数,且随的减小而减小;
(2)当为何值时,它是反比例函数,且函数图像在第一、三象限.
22 . 已知反比例函数的图象位于第一象限,在这个函数图象上取任意点,,如果,那么与有怎样的大小关系?
23 . 青春期男、女生身高变化情况不尽相同,如图是小军和小蕊青春期身高的变化情况.
(1)如图反映了哪两个变量之间的关系?自变量是什么?因变量是什么?
(2)A,B两点表示什么?
(3)小蕊10岁时身高多少?
如图所示,一次函数与反比例函数的图象相交于A,B两点,且与坐标轴的交点为,,点B的横坐标为.
(1)试确定反比例函数的解析式;
(2)求△AOB的面积;
(3)直接写出不等式的解.
24 . 已知一次函数的图象经过点(4,0).
(1)求k的值;
(2)画出该函数的图象;
(3)点P是该函数图象上一个动点,连接OP,则OP的最小值是.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
11、
12、
三、解答题
1、
2、
3、
4、
5、6、
7、。

相关文档
最新文档