反比例函数中K的几何意义 (1)
反比例函数K的几何意义

反比例函数K的几何意义反比例函数是一种特殊的数学函数形式,具有形如y=k/x的表达式,其中k是一个常数。
在这个函数中,x和y之间存在一种特殊的关系:当x增大时,y会减小,反之亦然。
因此,反比例函数的几何意义可以通过分析函数图像和实际例子来理解。
首先,我们可以通过绘制反比例函数的图像来揭示其几何意义。
考虑一个简单的例子:y=1/x。
对于这个函数,我们可以观察到以下几个重要的特点:1.图像总是通过第一象限的正半轴和第三象限的负半轴。
这是因为除数不能为零,所以函数在x=0时无定义。
2.图像与两条坐标轴的交点确定了函数的极值点:当x趋近于正无穷或负无穷时,y趋近于零。
这也表示当x趋近于零时,y趋近于正或负无穷。
3.图像是关于y=x和y=-x的直线对称的。
这是因为当x和y的值交换时,函数的值保持不变。
通过上述特点,我们可以揭示反比例函数的几何意义。
函数的图像形状类似于一组双曲线的分支,其中的曲线与两条坐标轴无法相交,而它们的渐近线分别与坐标轴平行。
这暗示了反比例函数的一个重要特点:随着一个变量的增加,另一个变量会减少。
例如,在y=1/x的情况下,我们可以看到当x增加时,y会减小。
1.电阻和电流:欧姆定律表明电阻与电流成反比例关系。
当电流增大时,电阻减小。
这可以解释为,当电阻较低时,电流可以更容易地通过电路,导致电流增加。
2.时间和任务完成率:假设一个人在一段时间内完成了一定数量的任务。
如果任务数量保持不变,增加时间将导致任务完成率降低。
这是因为在更长的时间内,完成的任务数量将更少。
3.运动速度和到达时间:当我们维持一定的目的地距离不变时,提高行驶速度将缩短到达目的地所需的时间。
这是因为较高的行驶速度意味着我们每单位时间所覆盖的距离更多。
这些例子揭示了反比例函数在现实生活中的广泛应用,从电路设计到时间管理,以及交通规划等等。
通过理解反比例函数的几何意义,我们可以更好地理解和应用这个数学概念。
总而言之,反比例函数是一种数学函数形式,其几何意义可以通过分析函数图像和实际例子来理解。
专题01 用几何意义探究反比例函数中k值问题的多种解法(解析版)

专题01 用几何意义探究反比例函数中k 值问题的多种解法如图,反比例函数k y x =(k >0),A 、C 是第一象限上两点,S △OAB =S △OCD =2k ;S △OAC =S 梯形ABDC 在已知面积或比例线段解答反比例函数的问题中,善于利用k 与面积的关系,往往可以事半功倍.典例1.知面积比值,求k 值(2022•山东聊城中考真题)如图,直线与反比例函数在第一象限内的图象交于点,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线于点E ,且.()30y px p =+¹()0k y k x=>()2,A q 3y px =+:3:4AOB COD S S =△△(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.【答案】(1),;(2)点C 的坐标为(4,2)【解析】【方法一】坐标法(1)解:∵直线与y 轴交点为B ,∴,即.∵点A 的横坐标为2,∴.∵,∴△COD 的面积为4,设,∴,解得.∵点在双曲线上,∴,把点代入,得,∴,;8k =12p =3y px =+()0,3B 3OB =13232AOB S =´´=V :3:4AOB COD S S =△△,k C m m æöç÷èø142k m m×=8k =()2,A q 8y x=4q =()2,4A 3y px =+12p =8k =12p =(2)解:由(1)得8,C m m æöç÷èø,∴.∵OE 将四边形BOCE 分成两个面积相等的三角形,∴,∵32BOE S m =△,,∴,解得或(不符合题意,舍去),∴点的坐标为(4,2).【方法二】k 的几何意义法解:(1)由题意知,△ABO 的面积为3,又,得:△OCD 的面积为4,故k =2S △OCD =8,所以,A (2,4),把点代入,得(2)如图,过A ,E 作y 轴垂线,垂足为M ,N则四边形ODEN 为矩形,所以,S △OEN =S △OED ,又S △OBE =S △OCE ,所以S △BEN =S △OCD =4,1,32E m m æö+ç÷èøBOE COE S S =△△13422COE m S m æö=+-ç÷èø△3134222m m m æö=+-ç÷èø4m =4m =-C :3:4AOB COD S S =△△()2,4A 3y px =+12p =所以S △ABM =1,∵AM ∥NE ,∴△ABM ∽△EBN ,其面积比为1:4,∴AM :NE =1:2,即NE =4,∴C 点坐标为(4,2)典例2.知比例线段,求k 值(2022•贵州铜仁中考真题)如图,点A 、B 在反比例函数k y x=的图象上,AC y ^轴,垂足为D ,BC AC ^.若四边形AOBC 的面积为6,12AD AC =,则k 的值为_______.【答案】3.【解析】【方法一】坐标法设点,k A a a æöç÷èø,∵AC y ^轴,∴AD a =,k OD a =,∵12AD AC =,∴AC 2a =,∴CD =3a ,∵BC AC ^.AC y ^轴,∴BC ∥y 轴,∴点B 3,3æöç÷èøk a a ,∴233k k k BC a a a=-=,∵AOD AOBC OBCD S S S =+V 四边形梯形,四边形AOBC 间面积为6,∴12136232k k a k a a æö+´=+ç÷èø,解得:3k =.【方法二】k 的几何意义法如图,连接OC ,延长CB 交x 轴于E ,则S △AOD =S △BOE =12k ,因为AD :AC =1:2,所以S △AOC =2S △AOD =k ,S △BOC =6-k ,又四边形DOEC 为矩形,OC 为对角线,所以,S △COD =S △COE ,所以12k +k =6-k +12k ,解得:k =3.典例3.知面积值,求k 值(2022•内蒙古呼伦贝尔中考真题)如图,在平面直角坐标系中,Rt OAB △的直角顶点B 在x 轴的正半轴上,点O 与原点重合,点A 在第一象限,反比例函数k y x=(0x >)的图象经过OA 的中点C ,交AB 于点D ,连接CD .若ACD △的面积是1,则k 的值是_________.【答案】43.【解析】【方法一】坐标法解:设C (m ,k m),因为C 为OA 中点,所以A (2m ,2k m),则D (2m ,2k m ),又△ACD 的面积为1,所以12122k k m m m æö×-=ç÷èø,解得:k =43【方法二】k 的几何意义法解:连接OD ,过C 作CE AB ∥,交x 轴于E ,∵∠ABO =90°,反比例函数k y x =(x >0)的图象经过OA 的中点C ,1ACD S =V ,∴12COE BOD S S k ==△△,1ACD OCD S S ==V V ,2OC =OA ,∵CE AB ∥,∴△OCE ∽△OAB ,∴221124OCE S OC S OA æöæö===ç÷ç÷èøèø△△O A B ,∴4OCE OAB ACD OCD OBD S S S S S ==++V V V V V ,∴1141122k k ´=++,∴k =43,故答案为:43.1.(2022•辽宁锦州中考真题)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =k x(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.【答案】2.【解析】【方法一】坐标法解:设A(a,b) ,如图,作A过x轴的垂线与x轴交于C,则:AC=b,OC=a,AC∥OB,∴∠ACD=∠BOD=90°,∠ADC=∠BDO,∴△ADC≌△BDO,∴S△ADC=S△BDO,∴S△OAC=S△AOD+ S△ADC=S△AOD+ S△BDO= S△OAB=1,∴12×OC×AC=12ab=1,∴ab=2,∵A(a,b) 在y=kx上,∴k=ab=2 .【方法二】k的几何意义法由上知,S△AOC=1,所以,k=2S△AOC=2故答案为:2.2.(2022•辽宁鞍山中考真题)如图,在平面直角坐标系中,O 是坐标原点.在Rt OAB V 中,90OAB Ð=°,边OA 在y 轴上,点D 是边OB 上一点,且:1:2OD DB =,反比例函数()0ky x x=>的图象经过点D 交AB 于点C ,连接OC .若4OBC S =△,则k 的值为_________.【答案】1.【解析】【方法一】坐标法解:∵反比例函数()0k y x x=>的图象经过点D ,∠OAB =90°,∴D (m ,k m ),∵OD :DB =1:2,∴B (3m ,3k m),∴AB =3m ,OA =3k m ,∴反比例函数()0k y x x =>的图象经过点D 交AB 于点C ,∠OAB =90°,∴12AOC S k =△,∵4OBC S △=,∴4AOB AOC S S -△△=,即1313422k m k m ´×-=,解得k =1【方法二】k 的几何意义法如图,过D 作DE ⊥x 轴,则DE ∥AB ,因为OD :BD =1:2,所以DE :AB =1:3,所以S △ODE :S △OAB =1:9,又S △ODE =S △OAC =12k ,所以12k +4=92k ,解得:k =13.(2022•江苏南通中考真题)平面直角坐标系中,已知点是函数图象上的三点.若,则k 的值为___________.【答案】【解析】【方法一】坐标法解:∵点是函数图象上的三点,∴,,∴m =n ,∴,,∴点B 、C 关于原点对称,∴设直线BC 的解析式为,代入得:,解得:,∴直线BC 的解析式为,xOy (,6),(3,2),(3,2)--A m m B m n C m n (0)k y k x=¹2ABC S =△34(,6),(3,2),(3,2)--A m m B m n C m n (0)k y k x =¹260k m =>6k mn =(3,2)B m m (3,2)C m m --()0y kx k =¹(3,2)B m m 23m mk =23k =23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,把x =m 代入得:,∴D (m ,),∴AD =,∴,∴,∴,而当m <0时,可得,故答案为:.【方法二】由题意知,S △OAB =12632m n m m ×-×,O 为BC 中点,因为所以,S △OAB =12632m n m m ×-×=1,即291mn m -=①,又632m m m n k ×=×=②,23y x =23y m =23m 216633m m m -=()11633223ABC S m m m =´×+=V 218m =2136684k m ==´=34k =342ABC S =△由①②可得:4.(2022•湖北十堰中考真题)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x=>和()220k y k x =>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .9【答案】B .【解析】【方法一】解:连接AC ,与BD 相交于点P ,设PA =PB =PC =PD =t (t ≠0).∴点D 的坐标为(3,23k ),∴点C 的坐标为(3-t ,23k +t ).∵点C 在反比例函数y =2k x 的图象上,34k=∴(3-t )(23k +t )=k 2,化简得:t =3-23k ,∴点B 的纵坐标为23k +2t =23k +2(3-23k )=6-23k ,∴点B 的坐标为(3,6-23k ),∴3×(6-23k )=1k ,整理,得:1k +2k =18.【方法二】先利用D 点坐标,表示出A 和C 点坐标,再根据四边形ABCD 为正方形,BD 与y 轴平行,知AC 平行于x 轴,那么,A 和C 点的纵坐标相等,进而求解23,3k D æöç÷èø,13,3k B æöç÷èø,122123,636k k k C k k æöç÷--ç÷-ç÷-èø,121123,636k k k A k k æöç÷-+ç÷-ç÷+èø所以2112123366k k k k k k =---+,整理得:()212212180k k k k ---=即()()1212108k k k k -+=-因为()120k k -¹所以()12018k k +-=,即1218k k +=5.(2022•黑龙江龙东中考真题)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数3y x =的图象上,顶点A 在反比例函数k y x=的图象上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .1-D .2-【答案】D .【解析】解:设B点坐标为3,mmæöç÷èø,则A3,3kmmæöç÷èø,因为平行四边形OBAD的面积是5,所以353kmmmæö-×=ç÷èø,解得k=-2【方法二】解:如图,连接OA,设AB交y轴于点C,∵四边形OBAD是平行四边形,平行四边形OBAD的面积是5,∴1522AOB OBADS S==V Y,AB∥OD,∴AB⊥y轴,∵点B在反比例函数3yx=的图象上,顶点A在反比例函数kyx=的图象上,∴3,22 COB COAkS S==-V V,∴35222 AOB COB COAkS S S=+=-=V V V,解得:2k=-.故选:D.6.(2022•湖北黄石中考真题)如图,反比例函数kyx=的图象经过矩形ABCD对角线的交点E和点A,点B、C在x轴上,OCE△的面积为6,则k=______________.【答案】8.【解析】设C (m ,0),由题意知E 为AC 中点,因为△OCE 面积为6,所以E 点纵坐标为12m,所以E 12,12km m æöç÷èø,A 24,6km m m æö-ç÷èø,又A 在反比例函数图像上所以246km m k mæö-×=ç÷èø解得k =8【方法二】解:如图作EF ⊥BC ,则12EF AB =,设E 点坐标为(a ,b ),则A 点的纵坐标为2b ,则可设A 点坐标为(c ,2b ),∵点A ,E 在反比例函数k y x=上,∴ab =k =2bc ,解得:a =2c ,故BF =FC =2c -c =c ,∴OC =3c ,故113622OEC S OC EF c b =´´=´´=V ,解得:bc =4,∴k =2bc =8,故答案为:8.7.(2022•贵州六盘水中考真题)如图,正比例函数与反比例函数的图象交于,两点.y x =4y x=A B(1)求,两点的坐标;(2)将直线向下平移个单位长度,与反比例函数在第一象限的图象交于点,与轴交于点,与轴交于点,若,求的值.【答案】(1);(2)【解析】(1)解:联立与,解得,;(2)【方法一】解:如图,过点作轴于点,A B y x =a C x D y E 13CD DE =a ()()2,2,2,2A B --3a =y x =4y x=121222,22x x y y ==-ììíí==-îî()()2,2,2,2A B \--C CF y ^F,,,直线向下平移个单位长度得到,根据图象可知,令,得,令,得,,,,,与反比例函数在第一象限的图象交于点,,将代入,得,解得或(舍去).【方法二】CF OD \∥Q 13CD DE =13OF CD OE DE \==Q y x =a y x a =-0a >0x =y a =-0y =x a =()0,E a \-(),0D a 10,3F a æö\ç÷èø13c y a \=Q y x a =-4y x=C 41213c x aa \==121,3C a a æöç÷èøy x a =-1123a a a=-3a =3a =-如图,连接OC ,过C 作CE ⊥x 轴,因为CD :DE =1:3,CE ∥OE则△CDE ∽△EDO ,相似比为1:3,面积比为1:9,易知△ODE 面积为212a ,△OCE 的面积为12k =2,所以△OCD 的面积为2-2118a ,又△OCD 与△ODE 的面积比为1:3,所以2-2118a =21132a ´,解得:a =3或a =-3(舍)8.(2022•安徽中考真题)如图,平行四边形OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x =的图象经过点C ,()0k y k x=¹的图象经过点B .若OC AC =,则k =________.【答案】3.【解析】【方法一】设C 1,m m æöç÷èø,因为OC =AC所以A ()2,0m ,又OABC 为平行四边形所以B 13,m m æöç÷èø因为B 点在k y x =上,所以k =133m m ×=【方法二】解:过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E ,∴CD ∥BE ,∵四边形ABCO 为平行四边形,∴CB OA ∥ ,即CB DE ∥,OC =AB ,∴四边形CDEB 为平行四边形,∵CD ⊥OA ,∴四边形CDEB 为矩形,∴CD =BE ,∴在Rt △COD 和Rt △BAE 中,OC AB CD EB =ìí=î,∴Rt △COD ≌Rt △BAE (HL ),∴S △OCD =S △ABE ,∵OC =AC ,CD ⊥OA ,∴OD =AD ,∵反比例函数1yx=的图象经过点C,∴S△OCD=S△CAD=12,∴S平行四边形OCBA=4S△OCD=2,∴S△OBA=11 2OCBAS=平行四边形,∴S△OBE=S△OBA+S△ABE=13122+=,∴3232k=´=.故答案为3.。
反比例函数k的几何意义

中理:韩晓雪
温故知新
y
y x
0
x
0
K>0
K< 0
代数的角度来看:K=x· y
面积性质(1)
以第一象限为例 k 设P(m, n )是双曲线y = (k 0)上任意一点, 有 : x (1)过P作x轴,y轴的垂线,垂足分别为A,B
y
y
B
P(m,n) A
B
P(m,n) A
o
x
o
x
AP =| m | | n |=| k | (如图所示 ). 则S矩形 OAPB = OA ×
面积性质(2)
k 设P ( m, n )是双曲线 y = ( k 0)上任意一点, 有 : x (1)过P作x轴的垂线, 垂足为 A, 则 1 1 1 SOAP = OA AP = | m | | n |= | k | 2 2 2
D S1=S2=S3
A S1﹤S2 ﹤ S3
C S1 ﹤ S3 ﹤ S3
y A(1,4) MN D E K o x
F
同一反比例函数,面积不变性
3 3.(2009年牡丹江市)如图,点 A、B 是双曲线 上 y = 的点, x
分别经过A 、B 两点向x轴、y 轴作垂线段,若 S阴影=1,则S1+ S2 = .
面积性质(三)
11| 2m | | 2n |= 2 | k | (如 图 所 示 与过 A 点 , 则 SS P 作y轴的垂线交于 ==11| AP A P | = ). | AP A P | = | 2m | | 2n | = 2 | k | ( 如 图 所 示 ). 2 2 ΔPA P 1 P 2 1 ΔPA S PAP = | AP AP |= | 2m2| | 2n |= 2 | k | (如图所示). 2 2
反比例函数中k的几何意义的应用

反比例函数中k的几何意义的应用
k在反比例函数中具有重要的几何意义,以下列举一些它的应用。
1. 直线反比例函数:k反映直线斜率的倒数,即斜率m=-k。
当给定直
线k值时,由定点和k值可以求出斜率m,从而可以绘制出这条直线。
2. 圆反比例函数:k反映圆半径r的倒数,即r=1/k。
当给定圆k值时,由定点和k值可以求出圆半径,从而可以绘制出这个圆。
3. 抛物线反比例函数:k反映抛物线的开口方向,当k > 0时,抛物线
向右开口;当k < 0时,抛物线向左开口。
4. 双曲线反比例函数:k反映双曲线的开口方向,当k>0时,双曲线
开口向右;当k<0时,双曲线开口向左。
5. 其他函数反比例函数:k可以反映此类函数中曲线的凹凸,当k > 0时,曲线是凹曲线;当k < 0时,曲线是凸曲线。
总之,k在反比例函数中应用广泛,几乎所有的函数都可以用反比例函
数表示。
它的几何意义非常重要,不仅仅可以根据k值绘制出各种曲线,而且可以了解曲线的开口方向以及凹凸方向。
因此,k在反比例函
数绘制中发挥着重要的作用。
反比例函数中k的几何意义

【主干必备】 反比例函数中比例系数k的几何意义 设点P(m,n)是双曲线y= k (k≠0)上任意一点
x
(1)过点P作x轴或y轴的垂线,垂足为点A,则
S△OAP=
1 2
·OA·AP=
1 |m|·|n|=
2
1 |mn|=
2
1 2
|k|.
(2)过点P分别作x轴、y轴的垂线,垂足为A,B,
值为 世纪金榜导学号( D )
A.5
B.-5
C.10
D.-10
3.(2019·哈尔滨木兰期末)已知P是反比例函数y= k
x
(k≠0)图象上一点,PA⊥x轴于A,若S△AOP=4,则这个反
比例函数的解析式是 ( C )
A.y= 8
x
C.y= 8 =- 8
x
D.y= 4 或y=- 4
则S矩形OAPB=OA·AP=|m|·|n|=|mn|=|k|.
【微点警示】 因为反比例函数y= k (k是常数,k≠0)中的k有正、负之
x
分,所以在利用解析式求矩形或三角形的面积时,都应 加上绝对值符号;已知矩形或三角形的面积求反比例函 数的解析式或k的值时,要根据函数的图象所在的象限 确定k的正负.
x
x轴于点B交反比例函数y= 2 的图象于点C,连接OA,OC,
x
则△OAC的面积为 ( B )
A.2
B.3
C.6
D.8
2.(2019·达州达川区期末)如图所示,点A是反比例函
数y= k 的图象上的一点,过点A作AB⊥x轴,垂足为B,点
x
C为y轴上的一点,连接AC,BC.若△ABC的面积为5,则k的
【核心突破】
K的几何意义

专题反比例函数中k的几何意义及应用研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N(如图1所示),则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
从而有。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
现举例说明。
应用一:比较面积大小例1、如图2,在函数(x>0)的图象上有三点A、B、C。
过这三点分别向x轴、y轴作垂线。
过每一点所作的两条垂线与x轴、y轴围成的矩形的面积分别为,则()。
A、 B、C、 D、解:根据反比例函数中k的几何意义可知。
所以。
故选D。
应用二:求面积例2、若函数与函数的图象相交于A、C两点,AB垂直x轴于B,则△ABC的面积为()。
A、1B、2C、kD、分析:如图3,若先求出A、C两点的坐标,再求△ABC的面积,则解题过程复杂烦琐。
若能利用反比例函数中k的几何意义来解,则快刀斩乱麻。
解:由反比例函数图象关于原点成中心对称知O为AC中点。
根据反比例函数中k的几何意义,有:。
又△ABO与△BOC是等底等高的三角形,∴。
故选A。
应用三:确定解析式例3、如图4,反比例函数与一次函数的图象相交于A点,过A点作AB⊥x轴于点B。
已知,直线与x轴相交于点C。
求反比例函数与一次函数的解析式。
解:由反比例函数中k的几何意义知,故。
又反比例函数图象的一支在第二象限,所以。
从而可知,两个函数的解析式分别为和。
人教版初三数学9年级下册 第26章(反比例函数)反比例函数k的几何意义 课件(17张ppt)

(3)若点(a,y)在该函数图象上,且a>-2,求y的取值范围.
7.【例 4】如图,在平面直角坐标系中,反比例函数 y=k(k>0)的
x
图象经过点 A(2,m),过点 A 作 AB⊥x 轴于点 B,且△AOB 的面积
为 5. (1)求k和m的值; (2)当x≥8时,求函数值y的取值范围.
解:(1)∵A(2,m),
第二十六章 反比例函数 与反比例函数有关的面积问题
k 的几何意义及应用
函数
图象形状 图象位置 增减性 延伸性 对称性
y
函数图象的 在每一支
双曲线既
k>0
两支分支分 曲线上,y 双曲线向 是轴对称
O x 别位于第一、都随x的增 四边无限 图形(对称
三象限
大而减小 延伸,与 轴:y=±x),
y 函数图象的 在每一支 坐标轴没 又是中心
自主归纳
y
P(m,n) B
oA
x
K与图形面积
S矩形OAPB OA• AP
m•n
k
反比例函数图像上任意一点向x轴和y轴作垂线,
得到矩形的面积为 S矩形OAPB k
如图:连接OP,则
SOAP
1 • OA • AP 2
y
1 m•n
2
P(m,n) B
oA
x
1 k 2
反比例函数图像上任意一点向x轴或y轴作垂线,
5.若D、E、F是此反比例函数在第三象限图像上的三个点,
过D、E、F分别作x轴的垂线,垂足分别为M,N、K,连接
OD、OE、OF,设△ ODM、△OEN、 △OFK 的面积分别
为S1、S2、S3,则下列结论成立的是( D )
y A(1,4)A S1﹤S2 Nhomakorabea﹤ S3
反比例函数知识点总结,比例系数k的几何意义和七大常考模型

反比例函数知识点总结,比例系数k的几何意义和七大常考模型一.反比例函数的概念1.概念:一般地,函数y=k/x(k是常数,k≠0)叫做反比例函数。
反比例函数的解析式也可以写成的形式。
自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数。
注意:(1)比例系数k≠0是反比例函数的定义的重要部分;(2)在反比例函数的解析式中,k,x,y均不等于0;(3)反比例函数中的两个变量一定成反比例关系,反之,则不一定成立例 1 给出的六个关系式:①x(y+1); ②y=2/(x+2); ③y=1/x²;④y=1/2x; ⑤y=x/2 ; ⑥y=-3/x.其中y是x的反比例函数的是 ( )A.①②③④⑥B.③⑤⑥C.①②④D.④⑥例2 若函数是y关于x的反比例函数,则m= .例3 关于正比例函数y=-x/3和反比例函数y=-1/3x的说法正确的是 ( )A.自变量x的指数相同B.比例系数相同C.自变量x的取值范围相同D.函数y的取值范围相同2.易错点解析漏掉k≠0这一条件解答与反比例函数有关的问题时,要注意系数k≠0是反比例函数定义中必不可少的一部分,不能漏掉这一条件.例4已知函数为反比例函数,则k= .二.反比例函数的图像和性质1.反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2.反比例函数的性质注意:y随x变化的情况必须指出“在每个象限内”或“在每一分支上”这一条件。
例5 关于反比例函数y=3/x的图象,下列说法正确的是 ( )A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小例6.当x<0时,下列表示函数y=-1/x的图象的是 ( ) 例7.下列反比例函数中,图象位于第二、四象限的是( )A.y=2/x B.y=0.2/x C.y=√2/x D.y=-2/5x 例8.对于反比例函数y=(k-√10)/x,在每个象限内,y随x的增大而增大,则满足条件的非负整数k有 ( )A.1个B.2个C.3个D.4个三.反比例函数解析式的确定由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
|k|.
∴ k=±4.
又双曲线的一支在第二象限,
∴ k=-4.
从而知两个函数的解析式分别为y=
-4 x
和y=-x+4.
18
2009.4
例1
如图2,在函数y=
1 x
的图
y A
像 上 有 三 点 A 、B 、C , 过 这 三 点 分 别
B C
向 x 轴 、y 轴 作 垂 线 ,过 每 一 点 所 作 的
x
两 条 垂 线 与 x 轴 、y 轴 围 成 的 矩 形 面
O
图2
积分别为SA、SB、SC,则( ).
A. SA>SB>SC
B. SA<SB<SC
∵
y=
k x
,∴
xy=k.
y
∴ S=|k|.
PN
过双曲线上任意一点作x轴、
x
y轴的垂线,所得的矩形面积为
MO
常数|k|.
S△PNO=S△PMO=
1 2
|k|.
图1
16
2009.4
课程
资源
思 路·方 法
在解有关反比例函数的面积问题时,若能灵活运用k的几何意
义,会给解题带来方便,现举例说明.
一、比较面积大小
C. S A<SC<SB
D. SA=S B=SC
简解:根据反比例函数k的几何意义可知SA=1,SB=1,SC=1.
∴ SA=S B=SC . 选D.
二、求面积
例2
如 图 3 ,如 果 函 数 y = - x 与 y = -
4 x
的 图 像 交 于 A 、B 两 点 ,过 点
A作AC垂直于y轴,垂足为点C,则△BOC的面积为
责任编辑:王二喜
反比例函数中K的 几何意义
文/汤 慧
研究函数问题,常常要透视函数的本质特征. 在反比例函数y=
k x
(k
≠0)中
,比 例
系
数k
有
一个
很
重
要的
几
何意
义
:过
反
比例
函
数
y=
k x
(k
ቤተ መጻሕፍቲ ባይዱ
≠0)的
图
像
上
任
一
点
P
作x
轴
、y
轴
的
垂
线
PM、PN(
如
图1
所
示),则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|.
.
分析:若先求出A、C两点的坐标,再求△OBC的面积,则解题过程
繁琐. 若能利用反比例函数k的几何意义来解,就简捷明快.
简解:由双曲线关于原点成
中心对称知,O为AB中点.
y
根据反比例函数k的几何意
义得
S△AOC=
1 2
×│-4│=2.
A
C
O
x
又 △ACO 与 △BOC 是 等 底 等
B
高的三角形,
∴ S△OBC=S△AOC=2.
图3
2009.4 17
三、确定函数的解析式
例3 如图4,点P在反比 例函数的图像上,过P点作 P A ⊥ x 轴 于 A 点 ,作 P B ⊥ y 轴 于
y
B
P
B 点 ,矩 形 O A P B 的 面 积 为 9 ,则 该反比例函数的解析式为
x OA
.
分析:根据反比例函数k的
几何意义得,S矩形 = OAPB |k|=9.
图4
又反比例函数图像在第一、
三象限,
∴ k=9. 因此反比例函数的解析式
y A
为y=
9 x
.
P
例4
如图5,双曲线y=
k x
x BO C
与直线y=-x-k相交于A点,过A
点作AB⊥x轴于点B,已知S△ABO=
图5
2,直线与x轴相交于点C. 求反
比例函数与一次函数的解析式.
解:由反比例函数y=
k x
中k的几何意义知,S△ABO=2=