2019年深圳中考复习《反比例函数K的几何意义》专题
反比例函数中k的几何意义及应用【完整版】

② 连接 那么在Rt△AB 中,
∵AB=2,∠A O=30
四、求函数值
例4两个反比例函数 在第一象限内的图象如图⑦所示, 在反比例函数 的图象上,它们的横坐标分别是 纵坐标分别是1,3,5,…,共2005个连续奇数, 分别作y轴的平行线, 的图象的交点依次
…, 那么 .
解: 在反比例函数 的图பைடு நூலகம்
C. S3< S1< S2D. S1> S2>S3
解:由性质(1)得
三、确定解析式
例3如图⑥,反比例函数 ﹤0
的图象经过点A〔 m〕,过A作AB⊥ 轴于点B,
〔1〕求K和m的值.
(2)假设过A点的直线y=a +b与 轴交于点C,且∠ACO=30 求直线的解析式.
解:(1)由性质(2)得
∴
(2)①连接 那么在Rt△AB 中,
依据题意得
△=64-4K>0,∴K<16.
设两公共点的坐标为
又 >0, >0,∴ + =8>0, =K>0.
∴实数K的取值范围为0<K<16.
(2)在y=- +8中,令 =0,得y=8,∴OC=8.
- )
=
∴
∴K=7.
六、确定自变量 的取值范围
例6如图⑨是一次函数 和反比例函数 的图象,观察图象写出 > 时, 的取值范围.
一、求交点坐标和面积
例1如图②,反比例函数 一次函数
的图象交于A、B两点。
〔1〕求A,B两点的坐标;
〔2〕求△AOB的面积。
二、比拟面积的大小
例2如图⑤,在 >0〕的图像上有三点A,B,C,经过三点分别向 轴引垂线,交 轴于 三点,连接OA,OB,OC,记△
深圳优质微课件 初三数学专题反比例函数之K值的几何意义

反比例函数之 K值的几何意义
授课人:陈靖怡 深圳市宝安区西乡中学
O反比N例E函数之k值的几何意义
ADD YOUR TITLE
• 方法技巧: • ①过双曲线上任一点作x轴、y轴的垂线,所得的
矩形面积
S PM PN
y x xy k
反O比N例E函数之k值的几何意义
ADD YOUR TITLE
• ②过双曲线上任一点作x轴、y轴的垂线,并连接原 点,所得的三角形面积
S 1 EF OF 2
1 x 例E函数之k值的几何意义
ADD YOUR TITLE
O反比N例E函数之k值的几何意义
ADD YOUR TITLE
x
经过直角三角形OAB斜边OB的中点D,与直角 边AB相交于点C.若△OBC的面积为3,则k= ______2______.
图6
O反比N例E函数之k值的几何意义
ADD YOUR TITLE
3
图6
O反比N例E函数之k值的几何意义
ADD YOUR TITLE
感谢观看指导!
O反比N例E函数之k值的几何意义
ADD YOUR TITLE
例 如图,点A、B、C 为双曲线 y k (k 0)
x
上三点,过点A、B、C 分别向x 轴作垂线,垂足分
别是D、E、F,连接OA、OB、OC,设△AOD面积是S1、
△BOE面积是S2、△COF面积是S3,则(
)
A. S1<S2<S3 B. S1>S2>S3
y
C. S1=S3>S2
A
D. S1=S2=S3
B
C
O DE F
x
O反比N例E函数之k值的几何意义
反比例函数中K的几何意义 上课ppt课件

B
o
A
x
F(4,-1.5)
3、若F(4,-1.5) 在 y - 6 x
则黄色矩形面积为( 6 )
图像上,
观察:以上各题的矩形面积和对应反比例函数的k值有何关系?7
证明:如图,点P是反比例函数 y k 图象上的一点 x
PA⊥x轴于点A, PB⊥y轴于点B.证明:S矩形PAOB = k
解:S矩形PAOB =OA·PA
1 m CM 1 1 mn CM 1 n
2
32
3
同理CN 2 m 3
C 2 m, 1 n 3 3
y
B D
点C在y m 上 1 n= m n 9
N
C
x
3 2m
2
x
3
O
A
M
19
例:如图,反比例函数
y (x>kx0)与矩形OABC的边AB、BC交于F、E两点,且
方形,反比例函数 y k 的图象过点B,
x
B
A
则k的值为( )
Co
x
解:S正方形OABC 12 k
k 1
又该反比例函数图象位于第二、四象限
k 0
k 1 注意:
当图像在第一、三象限时,K>0;
当图像在第二、四象限时,K<0、。 11
3.如图,S矩形OAPB= __4__,S△OAP= 2 .
谢谢大家,再见
24
1
1.理解并掌握反比例函数中 ∣K∣的几何意义; 2.能灵活运用∣K∣的几何 意义求图形面积; 3.能根据图形面积求出K值
2
概念回顾
定义
形如__y_=__kx___(k≠0,k为常数)的函数叫 做反比例函数
广东省深圳市届中考数学复习反比例函数K的几何意义专题【含答案】

反比率函数 K 的几何意义专题试卷一、选择题1、如图 1,在平面直角坐标系中,点 A 是 x 轴正半轴上的一个定点,点P 是双曲线 y=(x>0)上的一个动点,PB⊥y 轴于点B,当点P的横坐标渐渐增大时,四边形 OAPB的面积将会()A、渐渐增大B、不变C、渐渐减小D、先增大后减小2、如图 2,已知 P是反比率函数y=(x>0)图象上一点,点B的坐标为(5,0),A 是 y 轴正半轴上一点,且 AP⊥BP,AP:BP=1:3,那么四边形AOBP的面积为()A、 16B、20C、24D、28 6、如图 6, A 是双曲线 y=﹣作垂线,垂足为C,则四边形A、 6B、5 C上一点,过点 A 向 x 轴作垂线,垂足为B,向 y 轴OBAC的面积为()、 10D、﹣ 53、如图3,△ OAC和△ BAD都是等腰直角三角形,∠ ACO=∠ADB=90°,反比率函数图 47、如图 7,过反比率函数y=y= 在第一象限的图象经过点B,则△ OAC与△ BAD的面积之差 S△OAC﹣ S△BAD为()A、 36B、12 C 、 6 D 、 3 AO,若 S△AOB=2,则 k 的值为(A、 2 B 、 3 C 、 48、如图 8,在平面直角坐标系( x> 0)的图象上,连结分的面积为()A、 4 ﹣ B 、 4图 1图2图 34、如图 4,反比率函数y=的图象经过矩形OABC的边 AB 的中点 D,则矩形 OABC的面积为()A、 2B、4C、5D、8图75、如图 5,在平面直角坐标系中,点 A 在第一象限, AB⊥y轴于点 B,函数二、填空题( k> 0, x> 0)的图象与线段AB交于点 C,且 AB=3BC.若△ AOB的面积为12,则k 的值为()A、4B、6C、8D、12图 5图 6( x> 0)的图像上一点 A 作 AB⊥x轴于点 B,连结)D、5xOy 中,⊙A切 y 轴于点 B,且点 A 在反比率函数y= OA交⊙A 于点 C,且点 C为 OA中点,则图中暗影部C 、2D 、 2图 81。
专题1 反比例函数K的几何意义——初中几何与代数必考模型+例题+变式

8.如图,A,B两点在双曲线y= 上,分别经过A,B两点向轴作垂线段,已知阴影小矩形的面积为1,则空白两小矩形面积的和S1+S2=______.
【答案】4
【解析】
【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y= 的系数k,由此即可求出S1+S2.
【详解】解:作AE⊥BC于E,如图,
∵四边形ABCD为平行四边形,
∴AD//x轴,∴四边形ADOE为矩形,
∴ ,而 =|−k|,
∴|−k|=6,而−k<0,即k>0,∴k=6.
故选C.
【点睛】本题考查了反比例函数 (k≠0)系数k的几何意义:从反比例函数 (k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
【解析】
【分析】根据反比例函数的性质对A、B、D进行判断;根据反比例函数系数k的几何意义对C进行判断.
【详解】解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;
B、在每一象限,y随x的增大而增大,所以B选项错误;
C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;
A.1B.3C.6D.-6
【答案】C
【解析】
【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD//x轴,则可判断四边形ADOE为矩形,所以平行四边形ABCD的面积=矩形ADOE的面积,根据反比例函数k的几何意义得到矩形ADOE的面积=|−k|,则|−k|=6,利用反比例函数图象得到−k<0,即k>0,于是有k=6.
【点睛】考查了反比例函数的图象的知识,解题的关键是了解系数k的几何意义.
中考数学必考题型冲刺——反比例函数中“K的几何意义”(共33张PPT)

S四边边形OAFE k
通过本堂课的学习, 2、在一次函数、反比例函数的图象组合图形的面 积
计算要注意选择恰当的分解方法.
你有什么收获吗? 3、在函数图形中的面积计算中,要充分利用好横、
纵坐标.
4、各种数学思想理解:归类思想、探究思想、转化思 想、数形结合思想…….
5、根据面积求k值要注意图象的象限、K值的符号.;
解:当X=0时, y=2. 即 C (0 ,2)
当y=0时, x=2. 即 A (2 ,0)
DC
E OA
x
B
∴S⊿AOC =2 ∴S四边形DCO (k 0)上任意一点,有 : x
(1)过P作x轴的垂线,垂足为A,则 面积性质
SOAP
(A)s=1 (B) s=2
(C)1<S<2 (D)无法确定
如图函数
y k(1 x)和y k x
系中的大致图象是(
)
y
Ox
y
O
x
y
Ox
A
B
C
在同一坐标
y x
o
D
一 图象次交函于数第y=四2x象-5的限图的象一与点反P(比a例,函-3a数),则y这 kx个(k的反 0)
比例函数的解析式为
M(2,m)
-1 0 2
x
N(-1,-4)
(综合) 1
变1:如图,A、B是函数y= x 的图象上关于原
点对称 的任意两点,AC∥y轴,BC∥x轴,则
△ABC的面积S为( B
)
y
A.1 C.S>2
B.2 D.1<S<2
A
O
B Cx
变2:如图:双曲线
y
反比例函数中k的几何意义(提高有难度)PPT课件

x
函数
k>0
yk x
k<0
大致 图象
图象 位置
y
一、三象限
0x
y
二、四象限
0
xБайду номын сангаас
函数性质 (增减性)
函数性质 (对称性)
当x>0(或x<0)时, y随x增大而减小
1.双曲线关于 直线y=x和y=-x
成轴对称
2.双曲线关于 当x>0(或x<0)时, 点(0,0)成 y随x增大而增大 中心对称
双曲线
y
k x
(k
0)
在第一象限的图像过了矩形OAQB边AQ
上的中点P,与边BQ交于点C,已知四边形OCQP面积为2,
yy M
1.求双曲线的函数解析式
B CQ P
2.求过点Q的反比例函数解析式 3.点C是否为线段BQ的中点?
0 A Nyx 4.过点C,P作直线交坐标轴于点
M,N,线段MC与线段PN是否相等?
yy x0 , y0
P
1.∆PMQ的面积?
S
1 2
MP•
MQ
1 2
2 y0
•
2x0
2x0
y0
2k
0A
Q
B
M (x0 , y0 )
x0 , y0
2.连接AQ,∆PAQ的面积?
S k
S 2k
yy M
P
0 Q
S k
yy
MA
P
yx
Q
yy
S ABCD 2k yy
A
DA
B yx
0D
0
中考数学 考点5 反比例函数中K值的几何意义(原卷版)

反比例函数中k值的几何意义的问题会以选择题、填空题或解答题的形式出现,当以选择题或填空题的形式出现时,一般会是选择题或填空题中较难的题,在解答题中也会以偏难一点的形式出现。
1.k的几何意义如图,过双曲线上任一点P作x轴、y轴的垂线PM、PN,所得矩形PMON的面积S=|xy|= |k|.由此就建立起了几何图形的面积与k的关系。
2.与k相关的面积问题的基本图形理解并记住这几个基本图形中阴影部分的面积与|k|的关系会对我们解决与反比例函数的面积有关的问题带来非常大的帮助。
反比例函数中与k相关的面积的问题,其本质是过双曲线上的点向坐标轴作垂线,建立起双曲线上的点与图形面积之间的关系。
当图形中的线段有倍分的关系时,通常设未知数,结合中点坐标公式或相似三角形的性质来示解。
例1.在反比例函数4 yx=的图像中,阴影部分的面积不等于4的是 ( )A B C D例2.如图,Rt AOBV的一条直角边OB在x轴上,双曲线(0)ky kx=>经过斜边OA中点C,与另一直角边交于点D,若9OCDS=V,则k的值为__________.例 3.如图,在平面直角坐标系中,Rt ABO∆的顶点O与原点重合,顶点B在x轴上,90ABO∠=︒, OA与反比例函数()0ky kx=≠的图像交于点D,且2OD AD=,过点D作x轴的垂线交x轴于点C.若ABCDS四边形=10,则k的值为___________yxOyxOyxOyxO1.如图所示,直线l 与双曲线k y x =(k >0)交于A ,B 两点,点P 在线段AB 上,试比较△AOC 的面积1S ,△BOD 的面积2S ,△POE 的面积3S 的大小关系。
2.如图,矩形ABCD 的边分别与两坐标轴平行,对角线AC 经过坐标原点,点D 在反比例函数y=k x(x >0)的图象上.若点B 的坐标为(﹣2,﹣2),则k=_____.3.如图,反比例函数()0k y x x=>的图像交Rt OAB ∆的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上,若OAC ∆的面积为5,:1:2AD OD =,则k 的值为1.如图所示,在平面直角坐标系中,矩形ABCD 的BC 边落在y 轴上,其它部分均在第一象限,双曲线y=k x过点A,延长对角线CA交x轴于点E,以AD、AE为边作平行四边形AEFD,若平行四边形AEFD的面积为4,则k值为()A. 2B. 4C. 8D. 122.如图,Rt△OAB的边OA在x轴上,点B在第一象限,点D是斜边OB的中点,反比例函数kyx=经过点D,若S△AOD=6,则k=________.3.如图所示,反比例函数y=kx(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为_______.4.如图,已知第一象限内的点A在反比例函数2yx=上,第二象限的点B在反比例函数kyx=上,且OA⊥OB,sinA3,则k的值为________.5.反比例函数6yx=与3yx=在第一象限的图象如图所示,作一条平行于x轴的直线,分别交双曲线于A,B两点,连接OA,OB,求△AOB的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年深圳中考复习反比例函数K的几何意义专题一、选择题1、如图1,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A、逐渐增大B、不变C、逐渐减小D、先增大后减小2、如图2,已知P是反比例函数y=(x>0)图象上一点,点B的坐标为(5,0),A是y轴正半轴上一点,且AP⊥BP,AP:BP=1:3,那么四边形AOBP的面积为()A、16B、20C、24D、283、如图3,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A、36B、12C、6D、3图1 图2 图34、如图4,反比例函数y= 的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A、2B、4C、5D、8 5、如图5,在平面直角坐标系中,点A在第一象限,AB⊥y轴于点B,函数(k>0,x>0)的图象与线段AB交于点C,且AB=3BC.若△AOB的面积为12,则k的值为()A、4 B、6 C、8 D、12 6、如图6,A是双曲线y=﹣上一点,过点A向x轴作垂线,垂足为B,向y轴作垂线,垂足为C,则四边形OBAC的面积为()A、6B、5C、10D、﹣5图4 图5 图6 7、如图7,过反比例函数y= (x>0)的图像上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A、2B、3C、4D、58、如图8,在平面直角坐标系xOy中,⊙A切y轴于点B,且点A在反比例函数y= (x>0)的图象上,连接OA交⊙A于点C,且点C 为OA中点,则图中阴影部分的面积为()A、4 ﹣B、4C、2D、2图7 图8二、填空题9、如图9,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y= 的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=________.10、如图10,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数的图象交BC于D,连接AD,则四边形AOCD的面积是 ________.11、如图11,在平面直角坐标系中,反比例函数(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=________ .]图9 图10 图1112、如图12,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数(x>0)和(x>0)的图象交于P、Q、两点,若S△POQ=14,则k的值为________ .13、如图13,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,反比例函数(x>0)的图像经过点A,若S△BEC=10,则k等于________.14、如图14,双曲线y=经过Rt△OMN斜边ON上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为6,则k的值是________图12 图13 图1415、反比例反数y=(x>0)的图象如图15所示,点B在图象上,连接OB并延长到点A,使AB=OB,过点A作AC∥y轴交y=(x>0)的图象于点C,连接BC、OC,S△BOC=3,则k=________ .16、如图16,矩形ABCD的顶点A,B的坐标分别是A(﹣1,0),B (0,﹣2),反比例函数y=的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于________ .17、如图17,在平面直角坐标系中,△ABC的边AB∥x轴,点A在双曲线y=(x<0)上,点B在双曲线y=(x>0)上,边AC中点D在x轴上,△ABC的面积为8,则k= ________.图15 图16 图1718、如图18所示,反比例函数y= (k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为________19、如图19,点A,B在反比例函数y= (k>0)的图象上,AC⊥x 轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是________20、如图20,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数(x>0)的图象上,则△OAB的面积等于________ .图18 图19 图2021、如图21,直线l⊥x轴于点P,且与反比例函数y1(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1﹣k2=________.22、如图22,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y= (x<0)的图象经过点A,若S△ABO= ,则k的值为________.23、如图23,反比例函数y= (k≠0)的图象经过A,B两点,过点A作AC⊥x 轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为________.图21 图22 图2324、如图,点A是反比例函数y1= (x>0)图象上一点,过点A作x 轴的平行线,交反比例函数y2= (x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为________.25、如图,等腰△ABC中,AB=AC,BC∥x轴,点A,C在反比例函数y= (x>0)的图象上,点B在反比例函数y= (x>0)的图象上,则△ABC的面积为________.26、如图,已知A是双曲线y= (x>0)上一点,过点A作AB∥y 轴,交双曲线y=﹣(x>0)于点B,过点B作BC⊥AB交y轴于点C,连接AC,则△ABC的面积为________.27、如图,已知点A是双曲线y= 在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C 始终在双曲线y= (k<0)上运动,则k的值是________28、如图,点P(3a,a)是反比例函y= (k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为________.29、如图,点A在双曲线y= 上,点B在双曲线y= 上,且AB∥y 轴,C,D在y轴上,若四边形ABCD为平行四边形,则它的面积为________.30、如图,在直角坐标系中,矩形OABC的顶点A在x轴上,顶点C 在y轴上,B(4,3),连接OB,将△OAB沿直线OB翻折,得△ODB,OD与BC相交于点E,若双曲线经过点E,则k= ;答案解析部分一、单选题1、【答案】C【考点】反比例函数系数k的几何意义【解析】【解答】解:设点P的坐标为(x,),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积=(PB+AO)•BO=(x+AO)•=+=+•,∵AO是定值,∴四边形OAPB的面积是个减函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐减小.故选:C.【分析】由双曲线y=(x>0)设出点P的坐标,运用坐标表示出四边形OAPB 的面积函数关系式即可判定.2、【答案】B【考点】反比例函数系数k的几何意义,相似三角形的判定与性质【解析】【解答】解:作PM⊥x轴,PN⊥y轴.则△APN∽△BPM∴=∴P纵坐标比横坐标是3:1,设P的横坐标是x,则纵坐标是3x.3x=即:x2=4∴x=2∴P的坐标是:(2,6)∴PB方程y=﹣2x+2PA方程y=x+5∴A的坐标是(0,5)连接OP,三角形OPA面积=5,三角形OPB面积=15,∴四边形AOBP的面积为20.故选B.【分析】作PM⊥x轴,PN⊥y轴.则△APN∽△BPM,即可得到P纵坐标比横坐标是3:1,从而求得P的坐标,进而求得面积.3、【答案】D【考点】反比例函数系数k的几何意义,等腰直角三角形【解析】【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y= 的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S△OAC﹣S△BAD= a2﹣b2= (a2﹣b2)= ×6=3.故选D.【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.本题考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.4、【答案】B【考点】反比例函数系数k的几何意义【解析】【解答】解:∵y= ,∴OA•OD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:B.【分析】由反比例函数的系数k的几何意义可知:OA•AD=2,然后可求得OA•AB 的值,从而可求得矩形OABC的面积.本题主要考查的是反比例函数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键.5、【答案】C【考点】反比例函数系数k的几何意义【解析】【解答】解:连结OC,如图,∵AB⊥y轴于点B,AB=3BC,∴S△AOB=3S△BOC,∴S△BOC= ×12=4,∴|k|=4,而k>0,∴k=8.故选C.【分析】连结OC,如图,根据三角形面积公式,由AB=3BC得到S△AOB=3S△BOC,可计算出S△BOC=4,再根据反比例函数比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.6、【答案】B【考点】反比例函数系数k的几何意义【解析】【解答】解:∵点A在双曲线y=﹣上,且AC⊥y轴,AB⊥x轴,∴S矩形OBAC=|k|=5.故选B.【分析】由“点A在双曲线y=﹣上,且AC⊥y轴,AB⊥x轴”结合反比例函数系数k的几何意义,即可得出四边形OBAC的面积.7、【答案】C【考点】反比例函数的性质,反比例函数系数k的几何意义【解析】【解答】解:∵点A是反比例函数y= 图像上一点,且AB⊥x轴于点B,∴S△AOB= |k|=2,解得:k=±4.∵反比例函数在第一象限有图像,∴k=4.故选C.【分析】根据点A在反比例函数图像上结合反比例函数系数k的几何意义,即可得出关于k的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图像即可确定k值.8、【答案】D【考点】反比例函数系数k的几何意义,扇形面积的计算【解析】【解答】解:连接AB,BC,∵点A在反比例函数y= (x>0)的图象上,∴S△AOB= ×4 =2 ,∴OB•AB=2 ,∵点C为OA中点,∴BC= OA=AC,∴△ABC是等边三角形,∴∠OAB=60°,∴=tan60°= ,∴OB= AB,∴• AB•AB=2 ,∴AB=2,∴S扇形= = = ,∴S阴影=S△AOB﹣S扇形=2 ﹣,故选D.【分析】连接AB,根据反比例函数系数k的几何意义得出S△AOB=2 ,根据点C为OA中点,得出AB= OA,即可求得∠OAB=60°,根据面积求得AB的长,然后求得扇形的面积,即可求得阴影的面积.二、填空题9、【答案】6【考点】反比例函数系数k的几何意义【解析】【解答】解:∵点P(6,3),∴点A的横坐标为6,点B的纵坐标为3,代入反比例函数y= 得,点A的纵坐标为,点B的横坐标为,即AM= ,NB= ,∵S四边形OAPB=12,即S矩形OMPN﹣S△OAM﹣S△NBO=12,6×3﹣×6×﹣×3×=12,解得:k=6.故答案为:6.【分析】根据点P(6,3),可得点A的横坐标为6,点B的纵坐标为3,代入函数解析式分别求出点A的纵坐标和点B的横坐标,然后根据四边形OAPB的面积为12,列出方程求出k的值.本题考查了反比例函数系数k的几何意义,解答本题的关键是根据点A、B的纵横坐标,代入解析式表示出其坐标,然后根据面积公式求解.10、【答案】9【考点】反比例函数系数k的几何意义,平行四边形的性质【解析】【解答】解:∵四边形ABCD是平行四边形,A、C的坐标分别是(2,4)、(3,0),∴点B的坐标为:(5,4),把点A(2,4)代入反比例函数y=得:k=8,∴反比例函数的解析式为:y=;设直线BC的解析式为:y=kx+b,把点B(5,4),C(3,0)代入得:,解得:k=2,b=﹣6,∴直线BC的解析式为:y=2x﹣6,解方程组得:,或(不合题意,舍去),∴点D的坐标为:(4,2),即D为BC的中点,∴△ABD的面积=平行四边形ABCD的面积,∴四边形AOCD的面积=平行四边形ABCO的面积﹣△ABD的面积=3×4﹣×3×4=9;故答案为:9.【分析】先求出反比例函数和直线BC的解析式,再求出由两个解析式组成方程组的解,得出点D的坐标,得出D为BC的中点,△ABD的面积=平行四边形ABCD的面积,即可求出四边形AOCD的面积.11、【答案】3【考点】反比例函数系数k的几何意义【解析】【解答】解:连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=四边形ODBE的面积=3,∵BE=2EC,∴△OCE的面积=△OBE的面积=,∴k=3;故答案为:3.【分析】连接OB,由矩形的性质和已知条件得出△OBD的面积=△OBE的面积=四边形ODBE的面积=3,在求出△OCE的面积,即可得出k的值.12、【答案】-20【考点】反比例函数系数k的几何意义,反比例函数与一次函数的交点问题【解析】【解答】解:∵S△POQ=S△OMQ+S△OMP,∴|k|+×|8|=14,∴|k|=20,而k<0,∴k=﹣20.故答案为﹣20.【分析】由于S△POQ=S△OMQ+S△OMP,根据反比例函数比例系数k的几何意义得到|k|+×|8|=14,然后结合函数y=的图象所在的象限解方程得到满足条件的k 的值.13、【答案】20【考点】反比例函数系数k的几何意义,相似三角形的判定与性质【解析】【解答】∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.又∵S△BEC=10,即BC×OE=20=BO×AB=|k|.又由于反比例函数图象在第一象限,k>0.所以k等于20.故答案为:20.【分析】先根据题意证明△BOE∽△CBA,根据相似比及面积公式得出BO×AB的值即为|k|的值,再由函数所在的象限确定k的值.此题主要考查了反比例函数 y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.14、【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:作AC⊥x轴于C,如图,设A点坐标为(2a,),∵OA=2AN,∴OC=2CM,∴OM=3a,∴B点坐标为(3a,),∵S△AOB+S△BOM=S△AOC+S梯形ABMC,而△OAB的面积为6,S△BOM=S△AOC,∴S梯形ABMC=6,∴(+)•a=6,∴k=.故答案为.【分析】作AC⊥x轴于C,如图,设A点坐标为(2a,),由于OA=2AN,则OC=2CM,所以OM=3a,根据反比例函数图象上点的坐标特征得到B点坐标为(3a,),则S△AOB+S△BOM=S△AOC+S梯形ABMC,根据反比例函数y=(k≠0)系数k的几何意义得到S△BOM=S△AOC,所以S梯形ABMC=6,利用梯形的面积公式得到(+)•a=6,解得k=.15、、【答案】4【考点】反比例函数系数k的几何意义【解析】【解答】解:如图:延长AC交x轴于D点,设B点坐标为(a,),由AB=OB,得A(2a,),D(2a,0).由AB=OB,得S△ABC=S△BOC=3,S△COD=OD•CD=k.由三角形面积的和差,得S△AOD﹣S△COD=S△AOC,即×2a×﹣k=6.解得k=4.故答案为:4.【分析】根据线段中点的性质,可得A点坐标,根据三角形的中线分三角形所得两个三角形的面积相等,可得S△ABC=S△BOC=3,根据反比例函数的定义,可得△COD的面积,根据三角形面积的和差,可得关于k的方程,根据解方程,可得答案.16、【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:如图,作CF⊥y轴于F,作EG⊥BC于G,∵∠EGB=∠EAB=∠ABG=90°,∴四边形ABGE是矩形,在△AEB和△GBE中,,∴△AEB≌△GBE(SSS),∵A、B的坐标分别是A(﹣1,0)、B(0,﹣2),∴AB直线解析式为:y=kx+b,故将两点代入得出:,解得:,故直线AB解析式为:y=﹣2x﹣2,∵AD⊥AB,AO⊥BE,∴OA2=OE•OB,即12=OE×2,∴OE=,∴E(0,)∵S四边形BCDE=5S△AEB∴S四边形BCDE=5S△GBE∴S四边形CDEG=4S△GBE∴CG=2BG=2AE=2=,∴BG=,∵∠AEO=∠CBF,∠EOA=∠CFB=90°,∴△BCF∽△EAO,∴==,∵AE=BG=,BC=BG+CG=+=∴∴===3,∴BF=3EO=,CF=3AO=3,∴OF=OB﹣BF=2﹣=,设C的坐标为(x,y)则x=3,y=﹣.故k=xy=3×(﹣)=﹣.故答案为:﹣.【分析】首先得出△AEB≌△GBE,再利用四边形BCDE的面积等于△ABE面积的5倍,进而得出AE与BC之间的关系,由△BCF∽△EAO,得出C点坐标,进而求出k的值.17、【答案】-3【考点】反比例函数系数k的几何意义【解析】【解答】解:设A点坐标为(x1,),B点的坐标为(x2,),∵AB∥x轴,边AC中点D在x轴上,∴△ABC边AB上的高为2×(﹣)=﹣,∵△ABC的面积为8,∴AB×(﹣)=8,即(x2﹣x1)×(﹣)=8解得=﹣,∵=,∴=,∴=﹣,∴k=﹣3.故答案为:﹣3.【分析】运用双曲线设出点A及点B的坐标,确定三角形的底与高,利用△ABC 的面积为8列出式子求解.再运用A,B点的纵坐标相等求出k.18、【答案】2【考点】反比例函数系数k的几何意义【解析】【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE= ,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC= ,∵矩形OABC的面积为8,∴OA•OC=2m• =8,∴k=2,故答案为:2.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC= ,根据矩形的面积列方程即可得到结论.本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.19、【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:∵E是AB的中点,∴S△ABD=2S△ADE,S△BAC=2S△BCE,又∵△BCE的面积是△ADE的面积的2倍,∴2S△ABD=S△BAC.设点A的坐标为(m,),点B的坐标为(n,),则有,解得:,或(舍去).故答案为:.【分析】根据三角形面积间的关系找出2S△ABD=S△BAC,设点A的坐标为(m,),点B的坐标为(n,),结合CD=k、面积公式以及AB=2AC 即可得出关于m、n、k的三元二次方程组,解方程组即可得出结论.本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及解多元高次方程组,解题的关键是得出关于m、n、k的三元二次方程组.本题属于中档题,难度不大,解决该题型题目时,巧妙的利用面积间的关系找出两点坐标间的关系是关键.20、【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:作BD⊥x轴于D,CE⊥x轴于E,∴BD∥CE,∴==,∵OC是△OAB的中线,∴===,设CE=x,则BD=2x,∴C的横坐标为,B的横坐标为,∴OD=,OE=,∴DE=﹣=,∴AE=DE=,∴OA=+=,∴S△OAB=OA•BD=××2x=.故答案为.【分析】作BD⊥x轴于D,CE⊥x轴于E,则BD∥CE,得出===,设CE=x,则BD=2x,根据反比例函数的解析式表示出OD=,OE=,OA=,然后根据三角形面积求得即可.21、【答案】4【考点】反比例函数系数k的几何意义,反比例函数与一次函数的交点问题【解析】【解答】解:∵反比例函数y1= (x>0)及y2= (x>0)的图象均在第一象限内,∴k1>0,k2>0.∵AP⊥x轴,∴S△OAP= k1,S△OBP= k2.∴S△OAB=S△OAP﹣S△OBP= (k1﹣k2)=2,解得:k1﹣k2=4.故答案为:4.【分析】本题考查了反比例函数与一次函数的交点问题已经反比例函数系数k的几何意义,解题的关键是得出S△OAB= 1 2 (k1﹣k2).本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义用系数k来表示出三角形的面积是关键.由反比例函数的图象过第一象限可得出k1>0,k2>0,再由反比例函数系数k的几何意义即可得出S△OAP= k1,S△OBP= k2,根据△OAB的面积为2结合三角形之间的关系即可得出结论.22、【答案】-3【考点】反比例函数系数k的几何意义【解析】【解答】解:过点A作AD⊥x轴于点D,如图所示.∵∠AOB=30°,AD⊥OD,∴=tan∠AOB= ,∴设点A的坐标为(﹣3a,a).∵S△ABO= OB•AD= ,∴OB= .在Rt△ADB中,∠ADB=90°,AD= a,AB=OB= ,∴BD2=AB2﹣AD2= ﹣3a2,BD= .∵OD=OB+BD=3a,即3a= + ,解得:a=1或a=﹣1(舍去).∴点A的坐标为(﹣3,),∴k=﹣3×=﹣3 .故答案为:﹣3 .【分析】过点A作AD⊥x轴于点D,由∠AOB=30°可得出= ,由此可是点A的坐标为(﹣3a,a),根据S△ABO= 结合三角形的面积公式可用a 表示出线段OB的长,再由勾股定理可用含a的代数式表示出线段BD的长,由此即可得出关于a的无理方程,解方程即可得出结论.本题考查了反比例函数图象上点的图象特征、三角形的面积公式以及解无理方程,解题的关键是根据线段间的关系找出3a= + .本题属于中档题,难度不大,解决该题型题目时,根据特殊角的三角函数值设出点的坐标,再由线段间的关系找出关于a的方程是关键.23、【答案】-【考点】反比例函数系数k的几何意义,平行线分线段成比例【解析】【解答】解:设点B坐标为(a,b),则DO=﹣a,BD=b∵AC⊥x轴,BD⊥x轴∴BD∥AC∵OC=CD∴CE= BD= b,CD= DO= a∵四边形BDCE的面积为2∴(BD+CE)×CD=2,即(b+ b)×(﹣a)=2∴ab=﹣将B(a,b)代入反比例函数y= (k≠0),得k=ab=﹣故答案为:﹣【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE 的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.本题主要考查了反比例函数系数k的几何意义,解决问题的关键是运用数形结合的思想方法进行求解.本题也可以根据△OCE与△ODB相似比为1:2求得△BOD的面积,进而得到k的值.24、【答案】5【考点】反比例函数系数k的几何意义【解析】【解答】解:延长BA,与y轴交于点C,∵AB∥x轴,∴BC⊥y轴,∵A是反比例函数y1= (x>0)图象上一点,B为反比例函数y2= (x>0)的图象上的点,∴S△AOC= ,S△BOC= ,∵S△AOB=2,即﹣=2,解得:k=5,故答案为:5【分析】此题考查了反比例函数k的几何意义,熟练掌握反比例函数k的几何意义是解本题的关键.延长BA,与y轴交于点C,由AB与x轴平行,得到BC垂直于y轴,利用反比例函数k的几何意义表示出三角形AOC与三角形BOC 面积,由三角形BOC面积减去三角形AOC面积表示出三角形AOB面积,将已知三角形AOB面积代入求出k的值即可.25、【答案】【考点】反比例函数系数k的几何意义,等腰三角形的性质【解析】【解答】解:设点B的坐标为(,m),则点C的坐标为(,m),∵AB=AC,BC∥x轴,∴点A的坐标为(,m),∴S△ABC= BC•(y A﹣y B)= ×(﹣)×(m﹣m)= .故答案为:.【分析】设点B的坐标为(,m),则点C的坐标为(,m),根据等腰三角形的性质找出点A的坐标,再利用三角形的面积公式即可得出结论.26、【答案】【考点】反比例函数系数k的几何意义【解析】【解答】解:过A作AE⊥y轴于E,设AB交x轴于D,∵AB∥y轴,∴AB⊥x轴,∵BC⊥AB,∴四边形ABCE是矩形,∵A是双曲线y= (x>0)上一点,∴S四边形ADOE=2,∵B在双曲线y=﹣(x>0)上,∴S四边形BDOC =1,∴△ABC的面积= S矩形ABCE= ;故答案为:.【分析】过A作AE⊥y轴于E,设AB交x轴于D,得到四边形ABCE是矩形,根据反比例函数系数k的几何意义即可得到结论.27、【答案】﹣2【考点】等腰直角三角形,反比例函数图象上点的坐标特征【解析】【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y= 的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,在△COD和△OAE中,∵,∴△COD≌△OAE(AAS),∴OD=AE= ,CD=OE=a,∴C点坐标为(,﹣a),∵﹣a• =﹣2,∴点C在反比例函数y=﹣图象上.故答案为﹣2.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE= ,CD=OE=a,于是C点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.28、【答案】y=【考点】反比例函数图象的对称性【解析】【解答】解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=2 .∵点P(3a,a)是反比例函y= (k>0)与⊙O的一个交点.∴3a2=k.=r∴a2= ×(2 )2=4.∴k=3×4=12,则反比例函数的解析式是:y= .故答案是:y= .【分析】根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的,即可求得圆的半径,再根据P在反比例函数的图象上,以及在圆上,即可求得k的值.29、【答案】3【考点】反比例函数系数k的几何意义【解析】【解答】解:∵点A在双曲线y= 上,点B在双曲线y= 上,且AB∥y 轴,∴设A(m,),B(m,),∴AB= ﹣= ,∴S▱ABCD= •m=3,故答案为:3.【分析】由AB∥y轴可知,A、B两点横坐标相等,设A(m,),B(m,),求出AB的长,再根据平行四边形的面积公式进行计算即可.30、【答案】【考点】反比例函数的性质【解析】【解答】解:B点的坐标为(4,3),则OA=CB=4,OC=AB=3,易知OBD≌OBA,则∠D=∠OAB=90°,BD=OC=3.四边形OABC是矩形,则∠OCB=90°,即∠OCB=∠D.因为∠OEC=∠BED,所以OEC≌BED,CE=DE. 令CE=DE=x,则有:CE+BE=x+ =4,解得x= .E点的坐标为(,3).双曲线过点E,则k= ×3= .故答案为.【分析】双曲线过点E,关键是求出E点的坐标,已知B点的坐标是(4,3),显然E点和B点的纵坐标是相同的,即E点的纵坐标是3。