浙江省普通高中学业水平考试标准--数学

合集下载

对“浙江省普通高中学业水平数学考试标准”的学习

对“浙江省普通高中学业水平数学考试标准”的学习

对“浙江省普通高中学业水平数学考试标准”的学习一.考试要求根据浙江省普通高中学生文化素质的要求,数学学业水平考试面向全体学生,有利于促进学生全面、和谐、有个性的发展,有利于中学实施素质教育,有利于体现数学学科新课程理念,充分发挥学业水平考试对普通高中数学学科教学的正确导向作用。

突出考查数学学科基础知识、基本技能和基本思想方法,考查初步应用数学学科知识与方法分析问题、解决问题的能力。

关注数学学科的主干知识和核心内容,关注数学学科与社会的联系,贴近学生的生活实际。

充分发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平,全面检测学生的数学素养。

1.知识要求知识是指《教学指导意见》所规定的必修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法。

对知识的要求依次分为四个层次,从低到高依次为:了解、理解、掌握、综合应用。

分别用字母a,b,c,d来表示。

其中含义如下:(1)了解:要求对所列知识的含义有初步的、感性的认识,能记住和识别数学符号、图形、定义、定理、公式、法则等有关内容,并能按照一定的程序和步骤模仿,进行直接应用。

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。

(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,有利用所学知识解决简单问题的能力。

这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等。

(3)掌握:在对知识理解的基础上,通过练习形成技能,在新的问题情境中,能运用所学知识按基本的模式与常规的方法解决问题。

这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明、研究、讨论、运用、解决问题等。

(4)综合运用:掌握知识的内在联系与基本属性,能熟练运用有关知识和基本数学思想方法,综合解决较复杂的数学问题和实际问题。

2023年7月浙江省普通高中学业水平考试数学试题含答案

2023年7月浙江省普通高中学业水平考试数学试题含答案

2023年7月浙江省普通高中学业水平考试数学(答案在最后)本试题卷分选择题和非选择题两部分,共4页,满分100分,考试时间80分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.3.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.选择题部分(共52分)一、单项选择题(本大题共12小题,每小题3分,共36分.每小题列出的四个备选项中,只有一个是符合题目要求的,不选、多选、错选均不得分)1.已知集合{}1,0,1,2A =-,{}|0B x x =>,则下列结论不正确的是()A.1A B ∈ B.A B∅⊆ C.{}2A B ⊆ D.{}|0x x A B>= 【答案】D 【解析】【分析】根据交集、并集的定义求出A B ⋂,A B ⋃,再根据元素与集合的关系、集合与集合的关系判断即可.【详解】因为{}1,0,1,2A =-,{}0B x x =,所以{}1,2⋂=A B ,{}{}|01A B x x ⋃=≥⋃-,所以1A B ∈ ,A B ∅⊆ ,{}2A B ⊆⋂,故A 、B 、C 正确,D 错误;故选:D 2.函数的定义域是()A.1-2⎛⎫∞ ⎪⎝⎭, B.1-2⎛⎤∞ ⎥⎝⎦,C.12⎛⎫+∞ ⎪⎝⎭,D.12⎡⎫+∞⎪⎢⎣⎭,【答案】C 【解析】【分析】根据偶次方根的被开方数为非负数、分式的分母不为零列不等式,由此求得函数的定义域.【详解】依题意210x ->,解得12x >,所以()f x 的定义域为12⎛⎫+∞ ⎪⎝⎭,.故选:C【点睛】本小题主要考查函数定义域的求法,属于基础题.3.复数()i 2i z =+在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】根据复数乘法运算化简,即可求解.【详解】()1i i 22i z =-+=+,故对应的点为()1,2-,位于第二象限,故选:B4.已知平面向量()1,1a =- ,()2,b λ= ,若a b ⊥,则实数λ=()A.2B.2- C.1D.1-【答案】A 【解析】【分析】依题意可得0a b ⋅=,根据数量积坐标表示计算可得.【详解】因为()1,1a =- ,()2,b λ= 且a b ⊥,所以()1210a b λ⋅=⨯+-⨯=,解得2λ=.故选:A 5.已知πsin cos 6θθ⎛⎫+= ⎪⎝⎭,则tan2θ=()A.3B.C.3D.【答案】B【解析】【分析】利用给定条件得到tan 3θ=,再利用二倍角公式求解即可.【详解】若πsin cos 6θθ⎛⎫+= ⎪⎝⎭,可得1sin cos cos 22θθθ+=,化简得31sin cos 022θθ-=,解得3tan 3θ=,由二倍角公式得232322tan 33tan221tan 3θθθ⨯===-,故B 正确.故选:B6.上、下底面圆的半径分别为r 、2r ,高为3r 的圆台的体积为()A.37πrB.321πrC.(35πr+D.(35πr+【答案】A 【解析】【分析】根据圆台的体积公式计算可得.【详解】因为圆台的上、下底面圆的半径分别为r 、2r ,高为3r ,所以()23221π227π33V r r r r r ⎡⎤=++⨯=⎣⎦.故选:A7.从集合{}1,2,3,4,5中任取两个数,则这两个数的和不小于5的概率是()A.35B.710C.45 D.910【答案】C 【解析】【分析】列出所有可能结果,再由古典概型的概率公式计算可得.【详解】从集合{}1,2,3,4,5中任取两个数所有可能结果有()1,2、()1,3、()1,4、()1,5、()2,3、()2,4、()2,5、()3,4、()3,5、()4,5共10个,其中满足两个数的和不小于5的有()1,4、()1,5、()2,3、()2,4、()2,5、()3,4、()3,5、()4,5共8个,所以这两个数的和不小于5的概率84105P ==.故选:C8.大西洋鲑鱼每年都要逆游而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速v (单位:m /s )可以表示为3log 100Ov k =,其中O 表示鲑鱼的耗氧量的单位数.若一条鲑鱼游速为2m /s 时耗氧量的单位数为8100,则游速为1m /s 的鲑鱼耗氧量是静止状态下鲑鱼耗氧量的()A.3倍 B.6倍C.9倍D.12倍【答案】C 【解析】【分析】利用给定条件得到31log 2100O v =,再算出不同情况的消耗氧气的数量,再作比值求倍数即可.【详解】由题意得381002log 100k =,解得12k =,故31log 2100O v =,当1v =时,有311log 2100O=,解得900O =,当0v =时,有310log 2100O=,解得100O =,故得9009100=倍,故C 正确.故选:C9.不等式()()e e 10xx --<(其中e 为自然对数的底数)的解集是()A.{01}xx <<∣ B.{|0e}x x << C.{0x x <∣或1}x > D.{0xx <∣或e}x >【答案】B 【解析】【分析】写出不等式的等价不等式组,解得即可.【详解】不等式()()e e 10xx --<等价于e 0e 10x x -<⎧⎨->⎩或e 0e 10x x ->⎧⎨-<⎩,解得0e x <<或x ∈∅,所以不等式的解集为{|0e}x x <<.故选:B10.已知a 为实数,则“0x ∀>,12ax x+≥”是“1a ≥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】利用分离参数法求出a 的取值范围判断充分性,利用基本不等式反推必要性成立即可.【详解】若10,2,x ax x ∀>+≥则22121(1)1,a x x x≥-+=--+当1x =时,不等式的右边取得最大值1,故1,a ≥充分性成立;若1,a ≥则0x >时,12,ax x+≥≥当且仅当1x a ==时取等,即12ax x +≥恒成立,因此,由 1 a ≥可以推出0,x ">1 2ax x+≥,故必要性成立.综上所述,10,2x ax x∀>+≥是 1 a ≥的充要条件.故选:C.11.若函数()()πsin 06f x x ωω⎛⎫=+> ⎪⎝⎭在区间ππ,126⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围是()A.(]0,2 B.(]0,4 C.(]0,6 D.(]0,8【答案】A 【解析】【分析】利用给定的区间,求出π6x ω+的范围,然后写出正弦函数的单调递增区间,转化为子集问题处理即可.【详解】当ππ[,]126x ∈-时,πππππ[,+]661266x ωωω+∈-,若函数π()sin(0)6f x x ωω=+>在区间ππ[,]126-上单调递增,则πππ2π662πππ2π2612k k ωω⎧+≤+⎪⎪⎨⎪-+≤-⎪⎩,Z k ∈,解得212,824,Z k k k ωω≤+≤-∈,又0ω>,当0k =时,可得02ω<≤.故选:A.12.在正三棱台111ABC A B C -中,2AB =,11AB A B >,侧棱1AA 与底面ABC所成角的余弦值为3.若此三棱台存在内切球(球与棱台各面均相切),则此棱台的表面积是()A.2B.2C.4D.4【答案】A 【解析】【分析】取BC 和11B C 的中点分别为P ,Q ,上、下底面的中心分别为1O ,2O ,设11A B x =,内切球半径为r ,根据题意求出侧棱长以及2O P ,1O Q ,再根据切线的性质及等腰梯形11BB C C 和梯形1AA QP 的几何特点列方程组求出半径,再根据面积计算公式即可.【详解】如图,取BC 和11B C 的中点分别为P ,Q ,上、下底面的中心分别为1O ,2O ,设11A B x =,内切球半径为r ,因为123cos 3A AO ∠=,棱台的高为2r ,所以126sin 3A AO ∠=,111122sin 63r AA BB CC A AO =====∠,211333323O P AP AB ==⨯=,同理136O Q x =.因为内切球与平面11BCC B 相切,切点在PQ 上,所以()21326PQ O P O Q x =+=+①,在等腰梯形11BB C C中,)22222x PQ -⎛⎫=- ⎪⎝⎭②,由①②得()222226212x x r +-⎛⎫-=⎪⎝⎭.在梯形1AA QP 中,()22233236PQ r x ⎛⎫=+- ⎪ ⎪⎝⎭③,由②③得2x -=,代入得1x =,则棱台的高23h r ==,所以()2133262PQ O P O Q x =+=+=,所以1sin 2ABC S AB AC A =⋅=△111111111sin 24A B C S A B A C A =⋅= ,()1111124BCB C S BC B C PQ =+=正三棱台三个侧面都是面积相等的等腰梯形,故侧面积为4,所以此棱台的表面积是442S =++=.故选:A二、多项选择题(本大题共4小题,每小题4分,共16分.每小题列出的四个备选项中,有多个是符合题目要求的,全部选对得4分,部分选对且没有错选得2分,不选、错选得0分)13.下列不等式正确的是()A.4> B.4< C.24log 3log 5> D.24log 3log 5<【答案】BC 【解析】【分析】根据指数幂的运算及指数函数的性质判断A 、B ,根据对数的运算性质及对于函数的性质判断C 、D.【详解】414142222224⨯==⎭==⎛⎫< ⎪⎝A 错误,B 正确;2421log 5log 5log log 32==<,故C 正确,D 错误.故选:BC14.如图,在正方体1111ABCD A B C D -中,下列结论正确的是()A.11//BC A DB.1//BC 平面11A ADDC.111BC B D ⊥D.1BC ⊥平面11A B CD【答案】BD 【解析】【分析】连接1AD ,1A D ,11B D ,1AB ,1B C ,根据正方体的性质得到11//BC AD ,即可判断A 、B 、C ,证明11BC B C ⊥、1CD BC ⊥,即可判断D.【详解】连接1AD ,1A D ,11B D ,1AB ,1B C ,对于A :在正方体中11//AB D C 且11AB D C =,所以四边形11ABC D 为平行四边形,所以11//BC AD ,又11A D AD ⊥,所以11BC A D ⊥,所以A 错误;对于B ,因为11//BC AD ,1AD ⊂平面11A ADD ,1BC ⊄平面11A ADD ,所以1//BC 平面11A ADD ,所以B 正确;对于C :因为11AB D 为等边三角形,所以1160AD B ∠=︒,又11//BC AD ,所以11AD B ∠为异面直线1BC 与11B D 所成的角,即直线1BC 与11B D 所成的角为60︒,则1BC 与11B D 不垂直,所以C 错误;对于D :在正方体中,11BC B C ⊥,CD ⊥平面11BCC B ,1BC ⊂平面11BCC B ,所以1CD BC ⊥,又1CD B C C ⋂=,1,CD B C ⊂平面11A B CD ,所以1BC ⊥平面11A B CD ,所以D 正确.故选:BD .15.已知函数()2sin cos2f x x x =+,则()A.()f x 的最小值是3-B.()f x 5C.()f x 在区间π,06⎛⎫- ⎪⎝⎭内存在零点 D.()f x 在区间π,π2⎛⎫⎪⎝⎭内不存在零点【答案】ACD 【解析】【分析】利用三角恒等变换将函数化为二次函数,求解最值判断A ,B ,利用换元法求解零点,再判断范围求解C ,D 即可.【详解】易得2213()2sin cos 22sin 12sin 2(sin )22f x x x x x x =+=+-=--+,故函数()f x 在1sin 2x =时,取得的最大值为32,当sin 1x =-时,函数取得的最小值为3-,故A 正确,B 错误,令[]sin 1,1x t =∈-,故2()212f t t t =+-,令()0f t =,解得11322t =+或21322t =-,当113122t =+>时,排除,无法解出x ,当21322t =-时,可得13sin 22x =-,而sin y x =在π(,0)6-上单调递增,故当π(,0)6x ∈-,1sin ,02x ⎛⎫∈- ⎪⎝⎭,且1130222-<-<,则()f x 在区间π,06⎛⎫-⎪⎝⎭内存在零点,故C 正确,而当π,π2x ⎛⎫∈⎪⎝⎭时,sin 0y x =>,1022y =-<,显然sin y x =和122y =-无交点,则()f x 在区间π,π2⎛⎫⎪⎝⎭内不存在零点,故D 正确.故选:ACD.16.在ABC 中,3AB =,1AC =,π3BAC ∠=,点D ,M 分别满足3AB AD = ,2BC MC = ,AM 与CD 相交于点F ,则()A.1233CD AB AC=- B.12AF AM=C.132AM =D.13cos 13DFM ∠=【答案】BCD 【解析】【分析】根据平面向量线性运算法则判断A ,设AF AM λ=,用AD 、AC 表示AF ,根据共线定理的推论得到方程求出λ,即可判断B ,由1122AM AB AC =+及数量积的运算判断C ,求出cos ,CD AM ,即可判断D.【详解】对于A ,13CD AD AC AB AC =-=-,故A 错误;对于B ,设AF AM λ=,又1122AM AB AC =+ ,∴1132222AF AB AC AD AC λλλλ=+=+,又F ,D ,C 三点共线,∴3122λλ+=,12λ∴=,∴12AF AM = ,故B 正确;对于C ,1122AM AB AC =+,∴()()222211244AM AB ACAB AB AC AC =+=+⋅+111391231424⎛⎫=⨯++⨯⨯⨯= ⎪⎝⎭,2AM ∴= ,故C 正确;对于D , 111322CD AM AB AC AB AC ⎛⎫⎛⎫⋅=-⋅+ ⎪ ⎪⎝⎭⎝⎭222211111111331163263222AB AB AC AC =-⋅-=⨯-⨯⨯⨯-⨯= ,又222211212191311393932CD AB AC AB AB AC AC ⎛⎫=-=-⋅+=⨯+-⨯⨯⨯= ⎪⎝⎭,∴1CD =,又2AM =,12cos cos ,13132CD AM DFM CD AM CD AM⋅∴∠===⋅ ,故D 正确.故选:BCD.非选择题部分(共48分)三、填空题(本大题共4小题,每空3分,共15分)17.已知A ,B 是相互独立事件,()23P A =,()12P B =,则()P AB =_____________.【答案】13【解析】【分析】根据相互独立事件的概率公式计算即可.【详解】因为A ,B 是相互独立事件,所以()()()211323P AB P A P B ==⨯=.故答案为:1318.函数2()log f x x =的反函数为_______.【答案】2xy =【解析】【分析】设2log y x =,由指对数式的互化得到2y x =,再将,x y 位置互换即可得出答案.【详解】解:设2log y x =,则2y x =,所以函数2()log f x x =的反函数为2x y =.故答案为:2x y =.19.已知()f x 是定义域为R 的偶函数,且()()24f x f x +-=,则()2023f =_____________.【答案】2【解析】【分析】利用给定条件,得到函数的周期性,将所求函数值化为已知函数值,代入求解即可.【详解】由题意得()f x 是定义域为R 的偶函数,且()()24f x f x +-=,故()()()224f x f x f x -=-=-,可得()()442()f x f x f x -=--=,故得函数的周期4T =,而令1x =,可得()214f =,解得()12f =,则()()()()()2023450533211f f f f f =⨯+==-==.故答案为:220.已知,,a b c 是同一平面上的3个向量,满足3a =,b = ,6a b ⋅=- ,则向量a 与b 的夹角为_____________,若向量c a - 与c b - 的夹角为π4,则c r 的最大值为_____________.【答案】①.3π4##135︒②.【解析】【分析】由cos ,a b a b a b⋅=⋅ 求出向量a 与b 的夹角,设OA a = ,OB b = ,OC c = ,即可得到,,,O A B C 四点共圆,利用正弦定理求出AOB 外接圆的直径,即可求出c的最大值.【详解】因为3a =,b = ,6a b ⋅=- ,所以cos ,2a b a b a b ⋅===-⋅ ,又[],0,πa b ∈ ,所以3π,4a b = ,因为3a =,b = ,3π,4a b = ,如图,设OA a = ,OB b = ,OC c = ,则c a OC OA AC -=-= ,c b OC OB BC -=-= ,又向量c a - 与c b - 的夹角为π4,则π4ACB ∠=,又3π4AOB ∠=,所以,,,O A B C 四点共圆,又AB b a =- ,所以AB == 设AOB 外接圆的半径为R ,由正弦定理23πsin 42AB R ===c故答案为:3π4四、解答题(本大题共3小题,共33分)21.人工智能发展迅猛,在各个行业都有应用.某地图软件接入了大语言模型后,可以为用户提供更个性化的服务,某用户提出:“请统计我早上开车从家到公司的红灯等待时间,并形成统计表.”地图软件就将他最近100次从家到公司的导航过程中的红灯等待时间详细统计出来,将数据分成了[)55,65,[)65,75,[)75,85,[)85,95,[]95,105(单位:秒)这5组,并整理得到频率分布直方图,如图所示.(1)求图中a 的值并且估计该用户红灯等待时间的第60百分位数(结果精确到0.1);(2)根据以上数据,估计该用户在接下来的10次早上从家到公司的出行中,红灯等待时间低于85秒的次数.【答案】(1)0.035a =,估计该用户红灯等待时间的第60百分位数约为82.1(2)7次【解析】【分析】(1)根据频率之和为1以及直方图数据即可求解,先确认频率分布直方图中频率为0.6的位置,再结合百分位数定义求解即可.(2)根据频率分布直方图求出红灯等待时间低于85秒的频率即可求解.【小问1详解】因为各组频率之和为1,组距为10,所以()100.010.0250.020.011a ⨯++++=,解得0.035a =.因为()100.010.0250.350.6⨯+=<,()100.010.0250.0350.70.6⨯++=>,所以中位数位于第三组[)75,85中,设中位数为x ,则()0.10.250.035750.6x ++-=,解得0.257582.10.035x =+≈,所以该用户红灯等待时间的中位数的估计值为82.1.【小问2详解】由题红灯等待时间低于85秒的频率为0.10.250.350.7++=,故估计该用户在接下来的10次中红灯等待时间低于85秒的次数为100.77⨯=次.22.如图,在三棱锥-P ABC 中,PA ⊥平面ABC ,AC BC ⊥,1PA AC ==,BC =(1)求三棱锥-P ABC 的体积;(2)求证:平面PAC ⊥平面PBC ;(3)设点D 在棱PB 上,AD CD =,求二面角D AC B --的正弦值.【答案】(1)6(2)证明见解析(3)3【解析】【分析】(1)先求出底面积,再利用体积公式求解体积即可.(2)先利用线面垂直判定定理得到BC ⊥平面PAC ,再利用面面垂直定理判定面面垂直即可.(3)合理作图,找到二面角的平面角,利用三角函数的定义求解即可.【小问1详解】因为,1,AC BC AC BC ⊥==,所以111222ABC S AC BC =⋅=⨯= ,因为PA ⊥平面ABC ,所以三棱锥-P ABC 的体积11326V =⨯⨯=.【小问2详解】因为PA ⊥平面ABC ,BC ⊂平面PBC ,所以PA BC ⊥,又,,AC BC PA AC A ⊥⋂=,PA AC ⊂平面PAC ,所以BC ⊥平面PAC ,因为BC ⊂平面PBC ,所以平面PAC ⊥平面PBC .【小问3详解】过点D 作DE AB ⊥于E ,取AC 的中点F ,连接,EF 因为PA ⊥平面,ABC PA ⊂平面,PAB 所以平面PAB ⊥平面ABC ,又平面PAB ⋂平面,ABC AB DE =⊂平面,PAB 所以DE ⊥平面,ABC DE ∥PA ,因为,AD CD =且F 是AC 的中点,所以,,,DF AC AC DE DF DE D AC ⊥⊥⋂=⊥平面DEF ,,EF AC ⊥所以DFE ∠是二面角——D AC B 的平面角,因为,,EF AC AC BC F ⊥⊥是AC 的中点,所以E 是AB 的中点,又DE //PA ,所以D 是PB 的中点,在Rt DEF △中,32DF ===,所以12sin 332DE DFE DF ∠==即二面角——D AC B的正弦值为3.23.已知函数()2π2sin 2f x x x a x ⎛⎫=-- ⎪⎝⎭,R a ∈.(1)若1a =,求()f x 在区间[]0,1上的最大值;(2)若关于x 的方程()10f x a ++=有且只有三个实数根1x ,2x ,3x ,且123x x x <<.证明:(ⅰ)1322x x x +=;(ⅱ)()()311217818f x f x x +-+≤.【答案】(1)0(2)(ⅰ)证明见解析.(ⅱ)证明见解析【解析】【分析】(1)利用分析法得到函数的单调性,再求解最值即可.(2)(ⅰ)合理构造新函数,求出一个零点,再结合对称性求解即可.(ⅱ)将目标式合理表示为函数,利用不等式的性质证明即可.【小问1详解】由已知得1a =,则2π()(1)sin()12f x x x =---,易知2(1)y x =-,πsin()2y x =-在区间[0,1]上单调递减,所以()f x 在区间[0,1]上单调递减,所以max ()(0)0.f x f ==【小问2详解】(ⅰ)若2π()(1)sin()1,2f x x a x =---且()10,f x a ++=即2π(1)(sin()1)02x a x ---=有且只有三个实数根,所以0,a <令2π()(1)(sin()1),2g x x a x =---且(1)0g =,则()g x 的图象关于直线1x =对称,所以1322 2.x x x +==(ⅱ)由题意可知,令3πsin 2t x =,则有1()10,f x a ++=()310f x a ++=()()()()2311333217841cos π8271f x f x x x a x x a +-+=--+-++()()233342cos π1571x x a x a =--+++2233ππ4(sin 1)722(12sin )(242)1822a x a a a a x a t t =--++--=+++,因为0,a <所以2(242)1818a t t +++≤,即311(21)7()818f x f x x +-+≤得证.【点睛】关键点点睛:本题考查导数,解题关键是合理表示出目标式,然后结合不等式的性质,得到所要求的不等关系即可.。

2024年7月浙江省高中学业水平测试数学试题试卷

2024年7月浙江省高中学业水平测试数学试题试卷

2024年7月浙江省学业水平考试数学试卷班级______姓名______学号______得分______.一、单项选择题1.若{0,2,3,4},{2,3}A B ,则A B ( ) A .B .{0}C .{2.3}D .{0,2,3,4}2.(1i)(1i) ( ) A .iB .iC .0D .23.函数()21x f x 的值域是( ) A .(0.)B .(0.]C .(1,)D .(1,]4.若(1,2)a ,(2,1)b ,||a b( )A .10BCD .5.6个球,2红4黄,求随机模到一个红球的概率为( )A .16 B .13 C .12D .236.“0a b ”是1a b 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要7.已知sin cos 1 ,则sin 2 ( ) A .1B .1C .12D .08.一个棱长为1的正方体顶点都在同一个球上,则该球体的表面积为( )A .3πB .2πCD .π9.甲某全年交税额为5617.19元,则他的交税等级为(题干不完整)( )A .1B .2C .3D .410.,m n 为两条异面直线,且m 平面 ,n 平面 ,若直线l 满足m 是l m ,l n ,l ,l ,则( ) A . ∥B .lC .若平面 和平面 相交,则交线a l ∥D .若平面 和平面 相交,则交线l11.有一支队伍长Lm ,以V 的速度前行,传令员传令需要从排尾跑到排头,再立即返回排尾,速度为1V ,若传令员回到排尾时,队伍正好前进了2Lm ,则1V V( )A .2B .3C .12D .3212.若()()()f x y f x f y xy ,(1)1f ,则(20)f ( ) A .55B .190C .210D .231二、多项选择题13.若π()sin 23f x x,则( ) A .()f x 的最小正周期为π B .()f x 关于直线π2x 对称 C .()f x 的一个对称点是π,06D .()f x 在ππ,62上单调递减 14.,A B 是两个随机事件,则( ) A .()()()P A B P A P B B .若A B ,则()()P A P BC .若,A B 互为独立事件,则()()()P AB P A P BD .若,A B 互为对立事件,则()()1P A P B15.棱长为1的正方体,E 是1CC 的中点,P 是平面11ADD A 上的动点,平面PBE 与平面ABCD 的交线为l ,则( )A .EP 的最小值为1B .EP BP 的最小值为2C .存在一点P ,使得EP CDD .二面角E l C 最小时,平面角的正切值为12三、填空题16.奇函数3()f x x x a ,则a ______.17.a b 是两个单位向量,夹角为π3,则()a a b ______.18.已知一个四条棱均相等的四面体成A BCD ,则棱AB 与平面BCD 的夹角的余弦值为______.19.已知,x y 均为正实数,11x y,则4y x的最大值为______. 四、解答题20.对某小区抽取100户居民的用电量进行调查,得到如下数据(1)求x 的值;(2)已知该小区的居民有800户,则用电量在150以下的有多少户; (3)求第50百分位数.21.已知ABC △为锐角三角形,角A 、B 、C 对应的边分别为a ,b ,c sin cos B b A b (1)求A 的值;(2)若2a ,求2b c 的取值范围.22.已知()ln(),0,()ln b f x ax a g x x (1)若e,1a b ,求()()f x g x 的最大值; (2)若2a ,求关于x 的不等式()0()g x f x 的解集; (3)()|()||()|F x f x g x ,对于给定实数b ,有x 满足()1F x ,求a .。

浙江普通高中学业水平考试标准

浙江普通高中学业水平考试标准

浙江普通高中学业水平考试标准(总8页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除浙江省普通高中学业水平考试标准信息技术一、考试性质与对象浙江省普通高中信息技术学业水平考试(以下简称学业水平考试)是在教育部指导下,由省级教育行政部门组织实施的全面衡量普通高中学生学业水平的考试。

其主要功能是引导普通高中全面贯彻党的教育方针,落实信息技术必修课程教学要求,检测高中学生的信息技术学业水平,监测、评价和反馈高中信息技术教学质量。

考试成绩是高中生毕业的基本依据,也是高校招生录取和用人单位招聘的重要参考依据。

信息技术学业水平考试的对象是在浙江省中小学学生电子学籍系统中注册获得普通高中学籍的所有在校学生,实行全省统一命题、统一施考、统一阅卷、统一评定成绩,每年6月开考1次,采用无纸化上机考试形式。

本标准根据教育部颁布的《普通高中技术课程标准(实验)》(信息技术部分)(以下简称“课程标准”)以及《浙江省普通高中技术学科教学指导意见(2012)》(信息技术部分)(以下简称“信息技术教学指导意见”)和现行的《普通高中课程标准实验教科书·信息技术基础》、《普通高中课程标准实验教科书·多媒体技术应用》(均为浙教版)中的教学要求,按照学业水平考试的性质和特点制定而成。

二、考试目标与要求(一)考试目标高中信息技术学业水平考试范围是依据“课程标准”和“信息技术教学指导意见”中的有关规定,包括《信息技术基础》、《多媒体技术应用》二个模块。

1. 高中信息技术学科教学要求(1)知识与技能①理解信息及信息技术的概念与特征,了解利用信息技术获取、加工、管理、表达与交流信息的基本工作原理,了解信息技术的发展趋势。

②能熟练地使用常用信息技术工具,初步形成自主学习信息技术的能力,能适应信息技术的发展变化。

(2)过程与方法①能从日常生活、学习中发现或归纳需要利用信息和信息技术解决的问题,能通过问题分析确定信息需求。

2022年7月浙江省普通高中学业水平考试数学试题(含详细答案)

2022年7月浙江省普通高中学业水平考试数学试题(含详细答案)

2022年7月浙江省普通高中学业水平考试数学试题卷(时间80分钟,总分100分)选择题部分一、单项选择题(本大题共12小题,每小题3分,共36分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.已知集合{}0,1,2A =,{}1,2,3,4B =,则A B =()A.∅B.{}1 C.{}2 D.{}1,2【答案】D【解析】∵{}0,1,2A =,{}1,2,3,4B =,∴{}1,2A B = .2.复数2i -(i 为虚数单位)的实部是()A.1B.1-C.2D.2-【答案】C【解析】显然复数2i -的实部是2.3.函数()f x =的定义域是()A.(),1-∞ B.[)1,+∞ C.(),1-∞- D.[)1,-+∞【答案】D【解析】∵10x +≥,∴1x ≥-,即函数()f x =的定义域为[)1,-+∞.4.已知tan 1α=,ππ,22⎛⎫∈- ⎪⎝⎭α,则α=()A.4π B.π4-C.π3D.π3-【答案】A【解析】∵tan 1α=,∴ππ4k α=+,又ππ,22⎛⎫∈- ⎪⎝⎭α,∴π4α=.5.袋子中有5个大小质地完全相同的球,其中2个红球,3个黄球,从中随机摸出1个球,则摸到黄球的概率是()A.15B.25C.35D.45【答案】C【解析】5个大小质地完全相同的球,黄球有3个,则随机摸出1个球,有5种方法,摸到黄球有3种方法,所以摸到黄球的概率为35.6.已知平面向量()2,4a =r ,(),6b x = .若//a b r r,则实数x =()A.3-B.3C.12-D.12【答案】B【解析】由a b ∥,可得2640x ⨯-=,解得3x =.7.已知球的半径是2,则该球的表面积是()A.2π B.4π C.8π D.16π【答案】D【解析】224π4π216πS R ==⨯=,8.设0a >,下列选项中正确的是()A.313a a ⎛⎫= ⎪⎝⎭B.2233a a-= C.2332a a a= D.2332a a a÷=【答案】A【解析】对于A ,311333a a a ⨯⎛⎫== ⎪⎝⎭,故A 正确;对于B ,2223023331a aa a--===,故B 错误;对于C ,23213332362a a aa ==,故C 错误;对于D ,221133332a a a a a a-÷===,故D 错误.9.中国茶文化博大精深,茶水口感与茶叶类型和水的温度有关.经验表明,某种绿茶用85℃的水泡制,再等到茶水的温度降至60℃时饮用,可以产生最佳口感.已知在25℃的室温下,函数()600.9227250ty t =⨯+≥近似刻画了茶水温度y (单位:℃)随时间t (单位:min )的变化规律.为达到最佳饮用口感,刚泡好的茶水大约需要放置(参考数据: 6.70.92270.5833≈,8.70.92270.4966≈)()A.5min B.7min C.9min D.11min 【答案】B【解析】由题可知,函数()600.9227250ty t =⨯+≥,当 6.7t =,59.998y ≈,已经接近60,又函数()600.9227250ty t =⨯+≥在()0,∞+上单调递减,则大约在7min 时口感最佳.故A ,C ,D 错误.10.设a ,b 是实数,则“a b >”是“a b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】对于a b >,比如3a ==-,显然13a b =<=,不能推出a b >;反之,如果a b >,则必有0,a a a b b >∴=>≥;所以“a b >”是“a b >”的必要不充分条件;11.在ABC 中,设2AD DB = ,2BE EC =,CF FA λ= ,其中R λ∈.若DEF 和ABC 的重心重合,则λ=()A.12B.1C.32D.2【答案】D【解析】设O 为DEF 和ABC 的重心,连接DO 延长交EF 与N ,连接AO 延长交BC 与M ,所以N 是EF 的中点,M 是BC 的中点,所以()2211133233AO AM AB AC AB AC==+=+,2111133333DO DA AO AB AB AC AB AC=+=-++=-+,()()22113323DO DN DE DF DB BE DA AF==+=+++()112211121333313331AB BC AB AC AB AC AB AC λλ=+-+=-+-+++11213331AB AC λ=-+++,可得21131λ=++,解得2λ=.12.如图,棱长均相等的三棱锥-P ABC 中,点D 是棱PC 上的动点(不含端点),设CD x =,锐二面角A BD C --的大小为θ.当x 增大时,()A.θ增大 B.θ先增大后减小 C.θ减小 D.θ先减小后增大【答案】C【解析】由题意,三棱锥-P ABC 是正四面体,以PBC 的重心为原点,BC 边的中线PG 为x 轴,OA 为z 轴,过O 点平行于BC 的直线为y 轴,建立空间直角坐标系如图:设三棱锥P -ABC的棱长为,则有:22221228OA AP PO =-=-=,()(()()1,,0,0,,1,,2,0,0B A C P --,3231,,022x D x ⎛⎫- ⎪ ⎪⎝⎭,(1,,1,,22x AB AD x ⎛-=--=-- ⎝ ,设(),,m t y z = 是平面ABD 的一个法向量,则有·0·0m AB m AD ⎧=⎪⎨=⎪⎩,即01022t x x t y ⎧--=⎪⎛⎫⎛⎫⎨--+-= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎩,令y =,解得(,,,t x z m x =-=-=-,显然()0,0,1n =是平面PBC 的一个法向量,cos m nm n θ∴===;显然当x =x 的取值范围是0x <<),πcos 0,2θθ==最大,当x >或x <时,cos θ都变大,即θ变小;二、多项选择题(本大题共4小题,每小题4分,共16分.每小题列出的四个备选项中有多个是符合题目要求的,全部选对得4分,部分选对且没有错选得2分,不选、错选得0分)13.图象经过第三象限的函数是()A.2y x= B.3y x= C.23y x= D.1y x -=【答案】BD【解析】由幂函数的图象可知,A 中,2y x =过第一、二象限;B 中,3y x =过第一、三象限;C 中,320y x ==≥且定义域为R ,过第一、二象限;D 中,1y x -=过第一、三象限.14.下列命题正确的是()A.过平面外一点,有且只有一条直线与这个平面垂直B.过平面外一点,有且只有一条直线与这个平面平行C .过直线外一点,有且只有一个平面与这个直线垂直D.过直线外一点,有且只有一个平面与这个直线平行【答案】AC【解析】对于A ,根据线面垂直的定义,可得经过平面外一点作已知平面的垂线,有且仅有一条,故A 正确;对于B ,过平面外一点可以作一个平面与已知平面平行,在这个平行平面内的经过已知点作直线,它就和已经平面平行,故过平面外一点有无数条直线与这个平面平行,故B 不正确;对于C ,由直线与平面垂直的性质知:过直线外一点只能作一个平面与这条直线垂直,故C 正确;对于D ,过直线外一点,有无数个平面与这条直线平行,故D 不正确.15.在锐角ABC 中,有()A.sin sin sin A B C +> B.222sin sin sin A B C +>C.cos cos sin A B C +> D.222cos cos sin A B C +>【答案】ABC【解析】对于A ,根据正弦定理,因为a b c +>可得sin sin sin A B C +>,故A 正确;对于B ,因为222cos 02a b c C ab+-=>可得222a b c +>,再由正弦定理可得222sin sin sin A B C +>,故B 正确;对于C ,因为π0,2A B <<中,所以0sin ,sin 1A B <<,所以()cos cos cos sin cos sin sin sin A B A B B A A B C +>+=+=,故C 正确;对于D ,当222π13cos cos sin 324A B C A B C ===⇒+=<=,故D 错误16.已知a ∈R ,设()11,A x y ,()22,B x y 是函数()2y x a =-与1sin y x =-图象的两个公共点,记()12f a x x =-.则()A.函数()f a 是周期函数,最小正周期是πB.函数()f a 在区间π0,2⎛⎫⎪⎝⎭上单调递减C.函数()f a 的图象是轴对称图形D.函数()f a 的图象是中心对称图形【答案】BC【解析】分别作出()2y x a =-与1sin y x =-(周期为2π)的图象(如图).对于B ,由图可知,当3ππ,22a ⎛⎫∈-- ⎪⎝⎭时,()f a 单调递增;当ππ,22a ⎛⎫∈- ⎪⎝⎭时,()f a 单调递减,故B 正确;对于C 、D ,对于任意a ∈R ,此时作()2y x a =-关于2x π=-的对称函数()2πy x a =---⎡⎤⎣⎦,且1sin y x =-也关于2x π=-对称,故()()πf a f a --=,即()f a 关于2x π=-对称,即()f a 关于2x π=-对称,故C 正确,D 错误.错误.对于A ,由于当3ππ,22a ⎛⎫∈-- ⎪⎝⎭时,()f a 单调递增;当ππ,22a ⎛⎫∈- ⎪⎝⎭时,()f a 单调递减,()f a 关于π2x =-对称,由于1sin y x =-是最小正周期为2π的函数,其图象呈周期性变换,而()2y x a =-在平移过程中大小与形状不变,所以()12f a x x =-呈周期性变换,根据函数的对称性作出()f a 的大致图像(如图),可知其为周期函数,且最小正周期为2πT =,故A错误;非选择题部分三、填空题(本大题共4小题,每空分3分,共15分)17.已知函数()25,1,log ,1,x x f x x x +<⎧=⎨≥⎩则()1f -=______,()1f f -=⎡⎤⎣⎦______.【答案】①.4②.2【解析】()1154f -=-+=;()()214log 42f f f ⎡⎤-===⎣⎦.故答案为:4;2.18.某广场设置了一些石凳供大家休息,每个石凳都是由正方体截去八个一样的四面体得到的(如图,从棱的中点截).如果被截正方体的棱长是4(单位:dm ),那么一个石凳的体积是______(单位:3dm ).【答案】1603【解析】正方体的体积为3464=,正方体截去的八个四面体是全等的正三棱锥,截去的一个正三棱锥的体积为114222323⨯⨯⨯⨯=,则石凳的体积为416064833-⨯=.19.已知实数0x >,0y >,则2x yx y x++的最小值是______.【答案】1-【解析】211x y x y xx y x x y x ++=+-≥-++,当且仅当2x y xx y x+==+.20.已知平面向量a ,b 是非零向量.若a 在b上的投影向量的模为1,21a b -= ,则()4a b b -⋅ 的取值范围是______.【答案】[]3,4【解析】解:由题意,令(),0b b = ,()1,a y =±,则()()2221221a b b y -=⇒±-+= ,所以[]240,1y ∈,由21a b -= ,得22441a a b b -⋅+= ,所以()2441a b b a -⋅=- .()[]222411433,4y y ⎡⎤=±+-=+∈⎣⎦.四、解答题(本大题共3小题,共33分)21.在某市的一次数学测试中,为了解学生的测试情况,从中随机抽取100名学生的测试成绩,被抽取成绩全部介于40分到100分之间(满分100分),将统计结果按如下方式分成六组:第一组[)40,50,第二组[)50,60,L ,第六组[]90,100,画出频率分布直方图如图所示.(1)求第三组[)60,70的频率;(2)估计该市学生这次测试成绩的平均值(同一组中的数据用该组区间的中点值为代表)和第25百分位数.解:(1)由频率分布直方图知,第三组的频率为0.020100.2⨯=.(2)平均值450.00410550.01210650.02010750.03010850.02410x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯950.0101073.8+⨯⨯=,因为()0.0040.012100.16+⨯=,()0.0040.0120.020100.36++⨯=,所以第25百分位数为0.250.16601064.50.2-+⨯=.22.已知函数()222cos f x x x =+.(1)求π4f ⎛⎫⎪⎝⎭的值;(2)求函数()f x 的最小正周期;(3)当[],2x t t ∈([][],20,2πt t ⊆)时,()1f x ≤恒成立,求实数t 的最大值.解:(1)22πππππ22cos 2cos 144424f ⎛⎫⎛⎫=⨯+=+=⎪ ⎪⎝⎭⎝⎭.(2)()2π22cos 2cos 212sin 216f x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==.(3)当[],2x t t ∈,()1f x ≤恒成立,即π2sin 2116x ⎛⎫++≤ ⎪⎝⎭,所以π1sin 206x ⎛⎫-≤+≤ ⎪⎝⎭,因为[],2x t t ∈,[][],20,2πt t ⊆,所以πππ242π66t t ≤+<+≤,解得5π11π1224t ≤≤,即实数t 的最大值为11π24.综上,π14f ⎛⎫= ⎪⎝⎭,最小正周期为π,实数t 的最大值为11π24.23.已知函数()()20xa f x a x x x=+->,其中1a >.(1)若()24f ≤,求实数a 的取值范围;(2)证明:函数()f x 存在唯一零点;(3)设()00f x =,证明:()22021222a a f x a a -+<+<-+.解:(1)因为()()20xaf x a x x x=+->,由()2224f a a =+-≤,可得220a a --≤,所以()()210a a -+≤,即12a -≤≤,又1a >,所以12a <≤;(2)证明:因为函数()()20xaf x a x x x=->,其中1a >,所以()f x 在()0,∞+上单调递增,且()11210f a a a =+-=-<,()221722024f a a a ⎛⎫=+-=-+> ⎪⎝⎭,所以由零点存在定理,得()f x 在()1,2内有唯一零点,即函数()f x 存在唯一零点;(3)证明:若()00f x =,则()()001,212,3x x ∈⇒+∈,所以()()20221f a a f x =+-<+,又()000020xa f x a x x =+-=,0002x a a x x =-,所以()()()021000000022211111x a a af x ax ax x x x x ++=++-=-++-++()200002211a x a x x x ⎛⎫=-+++ ⎪+⎝⎭,令()()22000002222212211g a a a f x a x a x x x ⎛⎫⎛⎫=-+-+=-+-++- ⎪ ⎪+⎝⎭⎝⎭,又0220x ->,所以()g a 的图象开口向上,对称轴()()200020000000221104141222x x x x x x a x x x x ⎛⎫--+ ⎪++⎝⎭=-=-=--+⎛⎫⋅- ⎪⎝⎭,所以()g a 在()1,+∞上单调递增,所以()()20000002222121211111g a g x x x x x x ⎛⎫⎛⎫>=-⋅+-+⋅+-=-+ ⎪ ⎪++⎝⎭⎝⎭()()()()()()22000000000000002122120111x x x x x x x x x x x x x x +-+++-+-===>+++,即()201222f x a a +<-+,所以()22021222a a f x a a -+<+<-+.。

浙江学业水平测试(学考)介绍

浙江学业水平测试(学考)介绍

A
B
C
D
15%
30%
30%
的成绩范围,仅供参考,具体分数还是与试卷难度有关。
近4年学考等级A成绩范围
年份 2022
语文 90+
数学 86+
物理 88+
化学 95+
生物 91+
历史 93+
地理 86+
政治 92+
技术 91+
满分 英语
(满分150)
浙江学业水平测试 数学赋分情况
学考的重要性 1
• 作为高中毕业的条件之一。 • 相应科目学考合格方能报考同科目的选考。 • 在统招中,也可能有招生高校根据专业特点对相应科目的学考等级提出
要求(会在高校招生章程中说明)。 • 各科目的学考等级可以作为三位一体和高职提前招生等的重要依据。学
考成绩越好,学生越有优势。
100
2021 90+ 85+
93+ 94+ 90+ 93+
90+ 100 117+
2020
66+ 63+ 63+ 64+
70 116+
2019
65+ 58+ 60+ 63+
70
考试科目 历史、地理、化学、生物学 物理、思想政治 语文、数学、技术 外语(此次外语成绩既用于评定学业水平等级又可用于高考)
学考等级评定 3
学考设A、B、C、D、E五个等级,分别对应人数比例约是15%、 30%、30%、20%,其中E为不合格等级,E等级比例不超过5%。
等级 人数比例
浙江数学学考等级划分

最新-浙江省2023年普通高中学业水平测试(数学) 精品

最新-浙江省2023年普通高中学业水平测试(数学) 精品

最新-浙江省2023年普通高中学业水平测
试(数学) 精品
介绍
本文档提供了最新的浙江省2023年普通高中学业水平测试数学科目的精品资料。

这些资料旨在帮助学生们更好地备考该考试,提高数学科目的研究水平和成绩。

内容
本文档包含以下内容:
1. 重点知识点梳理:列出了数学科目中的重点知识点,帮助学生们理清复的重点;
2. 典型题目分析:详细解析了一些典型题目,包括解题思路和具体步骤,帮助学生们掌握解题方法;
3. 模拟试题集:提供了一套模拟试题,包含了各个知识点的练题,可以帮助学生们检验自己的研究成果;
4. 解答与讲解:对模拟试题中的答案进行了详细解答和讲解,
帮助学生们理解并掌握正确的解题方法;
5. 研究建议:给出了一些建议和研究方法,帮助学生们有效地
进行数学科目的研究和复。

使用
学生们可以根据自己的研究需求,灵活运用本文档中的内容:
- 可以根据重点知识点梳理,有针对性地进行知识点的复;
- 可以仔细分析典型题目的解题方法,掌握解题技巧;
- 可以使用模拟试题集进行练,提高自己的应试能力;
- 可以参考解答和讲解,查漏补缺,提升自己的解题能力;
- 可以结合研究建议,制定个性化的研究计划,提高研究效果。

注意事项
请注意以下事项:
- 本文档提供的资料仅供参考,学生们仍需根据实际情况进行研究和复;
- 学生们应保持积极的研究态度,并结合教材和老师的指导进行研究;
- 学生们在使用模拟试题时,应自觉遵守考试纪律,不得抄袭和作弊;
- 学生们应根据自己的实际情况,适度地使用本文档提供的资料。

祝愿学生们在浙江省2023年普通高中学业水平测试中取得优异的成绩!。

浙江普通高中学业水平考试标准

浙江普通高中学业水平考试标准

2015年(1月、6月)浙江省普通高中学业水平考试标准数学浙江省教育考试院编制考试性质与对象浙江省普通高中学业水平考试是在教育部指导下,由省级教育行政部门组织实施的全面衡量普通高中学生学业水平的考试。

其主要功能是引导普通高中全面贯彻党的教育方针,落实必修课程教学要求,检测高中学生的学业水平,监测、评价和反馈高中教学质量。

考试成绩是高中生毕业的基本依据,也是高校招生录取和用人单位招聘的重要参考依据。

根据《浙江省普通高中学业水平考试实施方案》规定,普通高中数学学业水平考试是以《普通高中数学课程标准(实验)》(下文简称为《课程标准》)和《浙江省普通高中新课程实验数学学科教学指导意见》(下文简称为《教学指导意见》)为依据,是全面衡量普通高中学生学业水平的考试。

高中数学学业水平考试实行全省统一命题、统一施考、统一阅卷、统一评定成绩,每年开考2次。

考试的对象是在本省中小学学生电子学籍系统中注册获得普通高中学籍的且修完必修课程的所有在校学生。

考试目标与要求(一)考试目标普通高中数学学业水平考试是全面考察和评估我省普通高中学生的数学学业水平是否达到《课程标准》所规定的课程基本要求和所必须具备的数学素养的检测考试。

考试成绩是浙江省普通高中学生毕业的基本依据之一,也是高校招生录取和用人单位招聘的重要参考依据。

(二)考试要求根据浙江省普通高中学生文化素质的要求,数学学业水平考试面向全体学生,有利于促进学生全面、和谐、有个性的发展,有利于中学实施素质教育,有利于体现数学学科新课程理念,充分发挥学业水平考试对普通高中数学学科教学的正确导向作用。

突出考查数学学科基础知识、基本技能和基本思想方法,考查初步应用数学学科知识与方法分析问题、解决问题的能力。

关注数学学科的主干知识和核心内容,关注数学学科与社会的联系,贴近学生的生活实际。

充分发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平,全面检测学生的数学素养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年浙江省普通高中学业水平考试标准数学浙江省教育考试院编制考试性质与对象浙江省普通高中学业水平考试是在教育部指导下,由省级教育行政部门组织实施的全面衡量普通高中学生学业水平的考试。

其主要功能是引导普通高中全面贯彻党的教育方针,落实必修课程教学要求,检测高中学生的学业水平,监测、评价和反馈高中教学质量。

考试成绩是高中生毕业的基本依据,也是高校招生录取和用人单位招聘的重要参考依据。

根据《浙江省普通高中学业水平考试实施方案》规定,普通高中数学学业水平考试是以《普通高中数学课程标准(实验)》(下文简称为《课程标准》)和《浙江省普通高中新课程实验数学学科教学指导意见》(下文简称为《教学指导意见》)为依据,是全面衡量普通高中学生学业水平的考试。

高中数学学业水平考试实行全省统一命题、统一施考、统一阅卷、统一评定成绩,每年开考2次。

考试的对象是在本省中小学学生电子学籍系统中注册获得普通高中学籍的且修完必修课程的所有在校学生。

考试目标与要求(一)考试目标普通高中数学学业水平考试是全面考察和评估我省普通高中学生的数学学业水平是否达到《课程标准》所规定的课程基本要求和所必须具备的数学素养的检测考试。

考试成绩是浙江省普通高中学生毕业的基本依据之一,也是高校招生录取和用人单位招聘的重要参考依据。

(二)考试要求根据浙江省普通高中学生文化素质的要求,数学学业水平考试面向全体学生,有利于促进学生全面、和谐、有个性的发展,有利于中学实施素质教育,有利于体现数学学科新课程理念,充分发挥学业水平考试对普通高中数学学科教学的正确导向作用。

突出考查数学学科基础知识、基本技能和基本思想方法,考查初步应用数学学科知识与方法分析问题、解决问题的能力。

关注数学学科的主干知识和核心内容,关注数学学科与社会的联系,贴近学生的生活实际。

充分发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平,全面检测学生的数学素养。

1.知识要求知识是指《教学指导意见》所规定的必修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法。

对知识的要求依次分为四个层次,从低到高依次为:了解、理解、掌握、综合应用。

分别用字母a,b,c,d来表示。

其中含义如下:(1)了解:要求对所列知识的含义有初步的、感性的认识,能记住和识别数学符号、图形、定义、定理、公式、法则等有关内容,并能按照一定的程序和步骤模仿,进行直接应用。

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。

(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,有利用所学知识解决简单问题的能力。

这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等。

(3)掌握:在对知识理解的基础上,通过练习形成技能,在新的问题情境中,能运用所学知识按基本的模式与常规的方法解决问题。

这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明、研究、讨论、运用、解决问题等。

(4)综合运用:掌握知识的内在联系与基本属性,能熟练运用有关知识和基本数学思想方法,综合解决较复杂的数学问题和实际问题。

这一层次所涉及的主要行为动词有:熟练掌握、综合解决问题。

2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。

(2)抽象概括能力:抽象概括能力就是从具体、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或做出新的判断。

(3)推理论证能力:中学数学的推理论证能力是指根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的推理能力。

(4)运算求解能力:能根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。

(5)数据处理能力:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断。

(6)应用意识:能综合应用所学数学知识、思想方法来解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明。

主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决。

(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题。

3.个性品质要求个性品质是指学生个体的情感、态度和价值观。

提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美好意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。

要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

(三)学业水平根据《课程标准》和《教学指导意见》的要求,数学学业水平考试将考生学业成绩分为优秀、良好、及格、不及格四个等第,依次用A、B、C、E表示。

及格和及格以上的各等第标准如下:C—及格达到数学水平考试及格的考生,应掌握《教学指导意见》规定的普通高中数学必修内容中最基本、最常规的知识和最基本的技能,具有初步的思维能力、运算能力和空间想象能力,初步掌握最基本的数学思想方法,会运用学过的知识按基本的模式和常规的方法解答含较少概念的数学问题,如会解答相当于教科书练习题和习题中的基础题水平的试题。

具体要求如下:(1)能理解基本数学概念,并能判断一些简单命题的真假;对一些较常见的简单数学问题,能通过分析、归纳等方法进行判断,并能依据基本的逻辑规则作简单的推理、论证和用数学语言准确表述。

(2)会运用公式、法则解题。

如进行简单的符号运算、函数运算、向量运算和数据处理,会对基本的全球多项式、指数式、对数式、三角关系式等进行恒等变形;会计算较常见的空间图形中的长度、角度、面积和体积等。

(3)会分析常规位置的一些基本图形中基本元素之间的数量与位置关系;对一些用文字表述的基本图形或一些常见的基本的客观事物,能正确想象其空间形状与位置关系,并能画出图形。

(4)能掌握配方法、待定系数法、综合法等,会初步运用等价转换、数形结合等思想方法解题。

B—良好达到数学水平考试良好的考生,应掌握《教学指导意见》规定的普通高中数学必修内容中的基本基础知识和基本技能,并初步掌握其内在联系;具有一定的思维能力、运算能力和空间想象能力;较灵活地运用所学知识和技能,按基本的模式和常规的方法解答含多个概念的数学问题;掌握基本的数学思想方法。

具体要求如下:(1)对一些新情景下的数学问题,能通过分析、综合、归纳、演绎、类比等方法进行判断和猜测,并能用一定的逻辑规则进行推理、论证和用数学语言准确地表述。

(2)能较熟练地运用公式、法则解题。

如进行简单的符号运算、函数运算、向量运算和数据、图表的分析和处理;对多项式、指数式、对数式、三角关系式等能正确地进行若干步恒等变形;较熟练地计算空间图形中的长度、角度、面积和体积,并会选择合理的方法完成相应的运算。

(3)能正确分析基本图形中基本元素之间的数量与位置关系,对用文字表述的基本图形或基本的客观事物,能正确想象其空间形状与位置关系,并能画出图形。

(4)能较好地掌握配方法、待定系数法、分析法和综合法,会用反证法,能运用等价转换、数形结合等思想方法解题。

A—优秀达到数学水平考试优秀的考生,应掌握《教学指导意见》规定的普通高中数学必修内容,能系统地掌握其内在联系,并能融会贯通;具有较强的思维能力、运算能力、空间想象能力和实践能力;掌握基本的数学思想方法,能综合运用所学的数学知识和方法;灵活地解决较复杂的数学问题和实际问题;会从数学的角度发现和提出问题;进行初步的探索和研究。

具体要求如下:(1)对较复杂的数学问题和相关学科、生产、生活中的问题,能正确理解题意,灵活地运用分析、综合、归纳、演绎、类比等方法进行判断和猜测,确定合理的解题模式,并能正确运用逻辑规则进行推理、论证和用数学语言准确、清晰地表述。

对未给出结论或结论不确定的问题,能经过抽象和概括分析,猜想、讨论得出结论,并加以证明。

(2)能灵活熟练地运用公式、法则解题。

如进行简单的符号运算、函数运算、向量运算和数据、图表的分析和处理;对多项式、指数式、对数式、三角关系式等能正确、迅速地进行若干步恒等变形;能灵活计算空间图形中的长度、角度、面积和体积等,并能熟练运用多种方法,合理简单地完成相应的运算,有检验并修正运算结果的能力。

(3)能熟练分析基本图形中基本元素之间的数量与位置关系,通过分析比较,能选择适当的方式准确地进行文字或符号语言与图形之间的转换,并能排除非本质属性的干扰,正确识别经过平移、对称、伸缩等位置变换后的基本图形。

(4)能熟练掌握配方法、待定系数法、分析法、综合法、反证法等方法,能自觉运用等价转换、分类讨论、数形结合等思想方法分析和解决问题。

考试内容根据《教学指导意见》所规定教学内容和教学要求,确定数学学业水平考试的内容为必修课程的五个模块,具体的考试单元、知识条目和考试的层级要求如表。

必修1第一章集合与函数概念第二章基本初等函数第三章函数的应用必修2第一章空间几何体第二章点、直线、平面之间的位置关系第三章直线与方程第四章圆的方程必修4第一章三角函数第二章平面向量第三章三角恒等变换必修5第一章解三角形第二章数列第三章不等式选修2-1第一章常用逻辑用语第二章圆锥曲线与方程第二章空间向量与立体几何考试形式与试题结构一、考试形式数学学业水平考试采用闭卷、笔答形式。

考试时间为110分钟。

试卷满分为100分。

二、考试结构数学学业水平考试卷的结构如下:1.考试内容分布《教学指导意见》所规定必修课程内容。

2.考试要求分布了解:约占10%;理解:约占40%;掌握:约占40%;综合运用:约占10%3.试题类型分布选择题:约占60%;填空题:约占10%;解答题:约占30%4.试题难度分布容易题:约占70%稍难题:约占20%较难题:约占10%参考试卷 (此卷仅作参考)选择题部分一、选择题(共25小题,1-15每小题2分,16-25每小题3分,共60分。

相关文档
最新文档