高中生物学中的数学模型
高中生物学中的数学模型

高中生物学中的数学模型山东省嘉祥县第一中学孙国防高中生物学中的数学模型是对高中生物知识的高度概括,也是培养学生分析推理能力的重要载体,本文通过归纳高中生物学中的数学模型以提高学生的分析推理能力。
1. 细胞的增殖【经典模型】间期表示有丝分裂中各时期DNA、染色体和染色单体变化减数分裂中各时期DNA、染色体和染色单体变化【考查考点】细胞增殖考点主要考察有丝分裂、减数分裂过程中DNA、染色体、染色单体的数量变化以及同源染色体的行为,并以此为载体解释遗传的分离定律和自由组合定律。
2. 生物膜系统【经典模型】【考查考点】3物质跨膜运输【经典模型】【考查考点】自由扩散、协助扩散和主动运输的影响因素和特点。
4. 影响酶活性的因素【经典模型】【考查考点】影响酶活性的因素,主要原因在于对酶空间结构的影响。
酶促反应是对酶催化的更高层次的分析。
5. 影响细胞呼吸及光合作用的因素【经典模型1】【考查考点】真正光合速率= 净光合速率+呼吸速率光合作用实际产O2量=实测O2释放量+呼吸作用耗O2光合作用实际CO2消耗量=实测CO2消耗量+呼吸作用CO2释放光合作用葡萄糖生产量=光合作用葡萄糖积累量+呼吸作用葡萄糖消耗量【经典模型2】【考查考点】氧气浓度对有氧呼吸和无氧呼吸的影响,以及在种子和蔬菜储存中的原因。
6 基因的分离和自由组合定律【典型例题】男性并指、女性正常的一对夫妇,生了一个先天性聋哑的儿子,这对夫妇以后所生子女,(并指是常染色体显性遗传病,两种病均与性别无关)正常的概率: _________同时患两种病的概率: _________患病的概率: _________只患聋哑的概率:_________只患并指的概率:_________只患一种病的概率:_________7. 中心法则【经典模型】DNA分子的多样性:4NDNA的结构:A=T,G=C,A+G=T+C,(A1%+A2%)/2=A%,A1%+T1%=A2%+T2%=A%+T%DNA的复制:某DNA分子复制N次所需要的游离的鸟嘌呤脱氧核苷酸:(2N-1)G15N标记的DNA分子在14N的原料中复制n次,含15N的DNA分子占总数的比例:2/2n DNA中的碱基数和其控制的蛋白质中的氨基酸数的比例关系:6:1【考查考点】DNA的结构,碱基组成,半保留复制和基因的表达。
例谈数学模型在高中生物教学中的应用

例谈数学模型在高中生物教学中的应用数学模型,是把客观生物学现象与概念翻译成一套反映研究对象的数学关系,通过数学符号以及方程式来进行表达和运算。
在现今高中的生物学教学中,引导学生们去构建数学模型,这种方式有利于培养学生通过现象去揭示本质的洞察力,从而更好地深化对于知识的理解。
《普通高中生物课程标准》里要求学生们能领悟数学模型建立的科学方法和其在科学研究中的应用。
下面举例说明构建数学模型在教学中的应用。
在必修2教学中关于DNA复制的问题就可以构建数学模型。
例如亲代细胞DNA分子用N15标记,放在含N14的培养液中复制1次,子代DNA分子的数量为2,复制2次,子代DNA分子的数量为4,由此推导出如果复制n次,子代DNA分子的数量为2n,还可以继续推导出含N15 DNA分子占子代总DNA分子的比值为2/2n,子代的脱氧核苷酸链条数为2n+1,含N15的脱氧核苷酸链条数为2,占总数2/2n+1,含N14的脱氧核苷酸链占总数的2n+1-2/2n+1。
如果题目中说亲代细胞DNA分子用N15标记,放在含N14的培养液中复制3次,含有N15的DNA分子占全部DNA分子的比例和占全部DNA单链的比例依次为?学生依据构建的数学模型,很容易轻松解决问题。
再如在讲授《种群数量的变化》时,合理建构好数学模型,对理解该知识有很大作用。
在讲到“J”型增长规律时,以课本细菌增殖为例,细菌每20 min分裂一次,根据已有条件,首先让学生完成书本表格,然后在黑板上划出坐标轴,X轴表示时间,Y轴表示细菌的数量,并标上数据,请学生到黑板用磁铁纽扣在坐标轴上标出前2小时的细菌数量,然后将磁铁之间用平滑的曲线连接起来,再去掉磁铁就可以得到种群的“J”型的增长曲线。
在课堂上也可以因地制宜地举一些合肥本土的例子,让学生查阅资料构建模型。
如调查合肥董铺水库边加拿大一枝黄花的数量等,这样增加学生的兴趣同时帮助他们学会构建数学模型分析和解决问题。
可见,建立数学模型可以把抽象问题具体化、解题过程规律化,能提高答题的准确性,是解决高中生物学科中的数学问题的有效方法。
生物生长发育的数学模型

生物生长发育的数学模型随着科技的发展以及生物学研究的深入,人们对于生物生长发育的认识也越来越深入。
不仅我们了解了各种生物的发育过程,还尝试建立了不同的数学模型来描述这些过程。
在本文中,我们将探讨一些常见的生物生长发育数学模型,并且简单介绍这些模型的应用和意义。
1、S型生长模型S型生长模型是最为常见的生物生长模型之一,常用于描述生物种群的生长发展和各种发育序列的演变。
S型生长模型一般由以下公式表示:Nt=K/(1+a*exp(-rt))其中,Nt代表种群数量、K代表种群的最大容量、r代表增长速率、a代表一些常量。
S型生长模型的数学意义比较明确,它将生物种群的生长发展过程分为三个阶段:指数生长期、转折期和饱和期。
在指数生长期,种群数量增长非常迅速,直到达到一定数量之后,增长速率开始逐渐减缓,最后到达饱和状态。
S型生长模型在现实生活中的应用非常广泛,例如在农业和生态学领域中,人们可以利用该模型来预测不同农作物或生态系统的生长发展和变化趋势。
2、Gompertz模型Gompertz模型也是一种用于描述生物生长发育的数学模型,它是在S型生长模型的基础上进一步发展而来。
与S型生长模型相比,Gompertz模型更具有灵活性和复杂性,它可以描述更多不同类型生物种群在生长发展过程中的变化趋势。
Gompertz模型一般由以下公式描述:Nt=K*exp(-exp(rt-ln(K)/N0*(t-to)))其中,Nt代表种群数量、K代表种群的最大容量、r代表增长速率、N0代表起始种群数量、t-to代表增长周期。
Gompertz模型的数学意义比较复杂,它描述了一种生物种群在增长发展过程中受到各种环境和生态因素的影响,从而产生了不断变化的生长速率。
在实际应用中,Gompertz模型常用于生物群落生态学和生命科学领域,在研究某个生态系统或生物种群的生长发展规律时具有重要作用。
3、Logistic模型Logistic模型是另一种常见的用于描述生物生长发育的数学模型。
生物学中的数学模型探讨

生物学中的数学模型探讨在生物学领域内,许多现象的预测和解释都需要一定的数学模型进行辅助和支撑。
这些数学模型可以帮助生物学家更好地理解和解释生命现象,并且帮助我们实现更加精确的实验和判断。
本文将探讨几种在生物学领域内常用的数学模型。
1. 朗盖文方程朗盖文方程是一个常微分方程,在生物学领域内常用于描述各种生物过程中的时空演化规律。
比如在生态学领域内,朗盖文方程可以用来描述种群的增长和衰退规律。
在许多生物过程的分析中,朗盖文方程可以作为一个基本框架,来帮助生物学家描述生命现象的动态变化。
2. SIR模型在研究流行病学时,SIR模型被广泛用于描述传染病的传播。
SIR模型也是一个常微分方程模型,由三个变量S、I和R组成。
其中,S为易感者数量,I为感染者数量,R为康复或死亡者数量。
这个模型可以帮助我们预测传染病的爆发和后续的传播情况,同时指导生物学家制定更加合理的防控措施。
3. 马尔可夫过程马尔可夫过程是一类以转移矩阵的形式来描述状态转移的随机过程。
在生态学和进化生物学领域内,马尔可夫过程被广泛用于描述物种多样性、基因型频率和潜在的适应性等。
这些应用都需要将复杂的生命现象抽象成为一个状态集合,通过概率转移矩阵来描述状态之间的变化。
马尔可夫过程不仅可以描述物种的进化演化,同时也能帮助生物学家理解生态系统的稳定性和动态变化。
4. 神经网络模型神经网络模型模仿人类神经系统的工作原理,通过多个节点互联来构建一个多层次的计算网络。
这个模型可以模拟生物神经元之间的信号传递过程。
在生物学领域内,神经网络模型被广泛用于描述神经元之间的联结和信息交流,同时也被用于识别不同的生物信号和图像。
这个模型在生物学和人工智能领域内都发挥着重要的作用。
总结生物学中的数学模型是一项重要的研究工具。
这些模型不仅可以帮助我们预测生物现象的发展动态,同时也能够深入切实地理解复杂生态系统和生物神经网络的运作原理。
随着数学和计算机科学技术的不断发展,生物学中的数学模型也将会更加精确和高效。
数学模型在生物学中的应用

数学模型在生物学中的应用生物学是研究生命现象的科学,而数学是一门能够描述和解释现象的学科,因此数学模型在生物学中扮演着重要的角色。
数学模型可以帮助我们理解生物系统的运行机制、预测生物现象的发展趋势、设计和优化生物工艺过程等。
本文将介绍数学模型在生物学中的应用,并分析其在不同领域的实际案例。
一、基础生物学中的数学模型应用1. 基因表达调控基因表达调控是生物体内基因信息转录成蛋白质的过程。
数学模型可以帮助我们建立基因网络的动力学模型,预测基因表达的动态变化。
例如,利用微分方程模型可以预测基因调控网络的稳定性、噪声对基因表达的影响等。
2. 生物传感器生物传感器是利用生物介体对外界刺激做出反应的装置,常见于医学诊断、环境监测等领域。
数学模型可以帮助我们理解生物传感器的工作原理,并优化传感器的设计。
例如,使用方程模型可以模拟生物传感器对特定物质的检测过程,预测灵敏度和响应时间。
3. 细胞生长和分裂细胞生长和分裂是生物体细胞增殖和繁衍的过程。
数学模型可以揭示细胞生长和分裂的机制,并分析细胞数量随时间的变化规律。
例如,使用差分方程模型可以预测细胞群体中个体数量的增长趋势,从而帮助我们理解细胞生物学过程。
二、生物工程中的数学模型应用1. 生物反应器设计生物反应器是用于进行微生物、细胞培养等生物过程的装置。
数学模型可以帮助我们预测和优化反应器中物质传质和反应过程,提高生产效率。
例如,使用数值模拟模型可以预测培养物中溶氧浓度和物质浓度的分布,并优化反应器结构和工艺参数。
2. 遗传算法优化遗传算法是一种通过模拟生物进化过程来求解优化问题的方法。
在生物工程中,遗传算法可以用于优化生物过程中的参数选择、反应条件、培养基配方等。
例如,通过建立包括目标函数和约束条件的数学模型,利用遗传算法搜索最优解,实现生物工程过程的高效设计。
三、生态学中的数学模型应用1. 种群动力学种群动力学研究不同物种在时间和空间上的数量变化趋势。
数学模型可以帮助我们理解不同因素对物种数量的影响,并预测种群的持续发展。
生物学中的数学模型及其应用研究

生物学中的数学模型及其应用研究生物学中的数学模型是指用数学语言和方法,对生物学领域或生境中的生物系统或生物现象进行描述、分析和预测的模型。
生物学中的数学模型应用于从基础研究到应用研究等方面,在生物学的各个分支领域中均有着广泛的应用。
一、生物学中的数学模型种类与应用研究1.模拟模型模拟模型是生物学中的一种数学模型,通过对生物系统的相关数据进行建模和仿真,预测和模拟生物系统的动态行为和进化过程。
生物学中,一个生物群体的增长和演化都可以被建模和仿真。
生物系统的生长率和死亡率是影响生物群体增长的主要因素。
为了预测生物群体的状态,动态方程可以用来预测时间步骤中的生物增长和死亡情况,给出一个群体的数量 vs 时间的曲线,以便了解生物群体增长和演化的情况。
2.计算模型计算模型是一种应用于生物学中的数学技术,用于研究物种之间的互动、动物行为、疾病影响等方面。
利用概率、统计学和计算机科学等技术,实现对生物进化和演化的模拟和计算。
例如:利用计算模型,研究治疗和药物治疗的效果,或者研究物种之间的交叉适应。
3.动力学模型动力学模型是生物学领域中另一个流行的模型,以研究复杂系统中的各种过程如生物进化和群体行为为目的。
动力学模型通过建立一系列方程来描述数量、时间、速度、能量等物理量的变化,模拟物种群体数量的变化过程以及物种间的相互作用,并预测物种数量的趋势和变化规律。
二、生物学中的数学模型在应对生物问题中的作用生物学中的数学模型在研究生物问题中发挥着重要的作用,它为生物学家提供了一种比较直观、全面可信的分析工具,促进了对生物系统和生态系统行为的理解。
通过使用数学模型研究生态系统的相互关系和动力学,可以了解自然界中不同物种之间的交互作用和它们对生物多样性的影响。
此外,生物学中的数学模型还有以下应用:1.预测疾病流行趋势许多生物病原体的流行趋势与时间相关。
因此,通过使用预测模型,可以预测人口密度、食品供应、气候等影响疫情的因素,从而促进公共卫生策略的制定并有效地应对流行病爆发。
高中生物建模

高中生物建模生物建模是一种使用数学和统计方法来描述和解释生物学现象的工具和技术。
它结合了生物学和数学的知识,旨在帮助研究人员探索和预测生物系统的行为。
生物建模的意义生物建模在生物学研究中起着重要的作用。
通过建立数学模型,研究人员可以更好地理解生物系统如何运作以及其背后的机制。
生物建模可以帮助研究人员预测生物系统的响应,优化实验设计,评估药物疗效,并为医学和生物技术领域的创新提供基础。
生物建模的方法生物建模的方法多种多样,常用的包括:1. 差分方程:差分方程是一种描述离散时间系统变化的数学方法。
在生物建模中,差分方程可用于描述细胞生长、细胞分裂和传染病传播等过程。
2. 微分方程:微分方程是一种描述连续时间系统变化的数学方法。
在生物建模中,微分方程可用于模拟生物系统的动力学行为,如酶反应、基因调控和蛋白质交互作用等。
3. 网络模型:网络模型是一种描述生物系统结构和相互作用的图论方法。
通过建立网络模型,研究人员可以研究和分析生物分子之间的相互作用,从而揭示生物系统的复杂性。
生物建模的应用生物建模在许多领域都有应用,包括:1. 医学研究:生物建模可以帮助医学研究人员理解疾病的发生和发展机制,并为新药研发提供指导。
2. 农业和食品安全:生物建模可以用于优化作物的生长和产量,预测农作物病害和害虫的传播,提高农业生产效益。
3. 环境保护:生物建模可以帮助研究人员模拟和评估环境中生物体和生态系统的行为,从而指导环境保护和可持续发展。
结束语生物建模是一项有挑战性但又充满潜力的研究领域。
随着生物学和数学的不断发展,生物建模将继续为我们深入了解生物系统的本质和解决生物学问题提供重要的工具和方法。
高中生物教学中生物数学模型应用研究论文

高中生物教学中生物数学模型的应用研究一、生物数学模型在高中生物教学中的分类(一)随机性生物数学模型。
随机性生物数学模型是根据生物现象的随机性和偶然性特定进行建立的。
随机性生物数学模型主要是指通过概率论、过程论、数理统计等方法描述和研究出的一些随机现象。
但是,根据生物的规律,对于同一事件或者随机事件的多次出现也可以使生物有规律可循。
因此,目前对生物学的主要研究方法是过程论、概率论、数学统计。
这样的研究放大也使得高中生物教学有了理论依据和研究方法,使得生物教学中的生物数学模型建立有科学的指导方法。
又例如在《稳态与环境》的教学中时,可依根据hiv浓度以及t 细胞的数量关系对生物数学模型进行分解、建立、使用,显示出增长的颈雉种群数量,以及大草履虫种群的增长曲线、东亚飞蝗种群的数量波动。
(二)确定性生物数学模型。
确定性的生物数学模型是指运用各种方程式、代数方程、关系式、微分方程、积分工程等对生物关系进行的表示。
确定性生物数学模型也是目前运用最为普遍的一种数学模型。
简单而言,生物数学模型即运用数学方法进行研究的对必然性现象的描述。
这类数学模型主要是应用于解决复杂的生物学问题,借助确定性的生物数学模型对生物关系进行转换。
在高中生物教学中的应用主要是利用数学模型的客观逻辑推理对生物关系进行求解运算,从而获得客观生物的规律和生命现象。
例如,在《分子与细胞中》的教学中,可以利用确定的数学求解方式对细胞的无氧呼吸方程式进行解剖,得出其中的有氧呼吸和光合作用的方程式和生物规律。
二、生物数学模型在高中生物教学中的应用过程分析(一)准备与假设阶段。
准备阶段中明确生物教学的关键,并不失重心,从核心问题出发,明晰突出问题,了解相对应的背景知识,收集有质有量的资料以便在生物课堂上开展充分的教学组。
一方面要弄清楚数学模型在生物教学的目的,另一方面努力地规划教学任务,从而确保教学尽可能地锻炼学生逻辑思维能力和快速解决相应问题的能力,从而整体提高课堂的整体教学水平和教学效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中生物学中的数学模型
山东省嘉祥县第一中学孙国防
高中生物学中的数学模型是对高中生物知识的高度概括,也是培养学生分析推理能力的重要载体,本文通过归纳高中生物学中的数学模型以提高学生的分析推理能力。
1. 细胞的增殖
【经典模型】
1.1间期表示
1.2 有丝分裂中各时期DNA、染色体和染色单体变化
1.3 减数分裂中各时期DNA、染色体和染色单体变化
【考查考点】细胞增殖考点主要考察有丝分裂、减数分裂过程中DNA、染色体、染色单体的数量变化以及同源染色体的行为,并以此为载体解释遗传的分离定律和自由组合定律。
2. 生物膜系统
【经典模型】
【考查考点】
3物质跨膜运输
【经典模型】
【考查考点】
自由扩散、协助扩散和主动运输的影响因素和特点。
4. 影响酶活性的因素
【经典模型】
【考查考点】
影响酶活性的因素,主要原因在于对酶空间结构的影响。
酶促反应是对酶催化的更高层次的分析。
5. 影响细胞呼吸及光合作用的因素
【经典模型1】
【考查考点】
真正光合速率= 净光合速率+呼吸速率
光合作用实际产O2量=实测O2释放量+呼吸作用耗O2
光合作用实际CO2消耗量=实测CO2消耗量+呼吸作用CO2释放
光合作用葡萄糖生产量=光合作用葡萄糖积累量+呼吸作用葡萄糖消耗量
【经典模型2】
【考查考点】氧气浓度对有氧呼吸和无氧呼吸的影响,以及在种子和蔬菜储存中的原因。
6 基因的分离和自由组合定律
【典型例题】男性并指、女性正常的一对夫妇,生了一个先天性聋哑的儿子,这对夫妇以后所生子女,(并指是常染色体显性遗传病,两种病均与性别无关)
正常的概率:_________同时患两种病的概率:_________患病的概率:_________
只患聋哑的概率:_________只患并指的概率:_________只患一种病的概率:_________
序号类型计算公式
1 患甲病的概率m 则非甲病概率为1-m
2 患乙病的概率n 则非乙病概率为1-n
3 只患甲病的概率m-mn
4 只患乙病的概率n-mn
5 同患两种病的概率mn
6 只患一种病的概率m+n-2mn或m(1-n)+n(1-m)
7 患病概率m+n-mn或1-不患病概率
8 不患病概率(1-m)(1-n)
7. 中心法则
【经典模型】
DNA分子的多样性:4N
DNA的结构:A=T,G=C,A+G=T+C,(A1%+A2%)/2=A%,
A1%+T1%=A2%+T2%=A%+T%
DNA的复制:某DNA分子复制N次所需要的游离的鸟嘌呤脱氧核苷酸:(2N-1)G
15N标记的DNA分子在14N的原料中复制n次,含15N的DNA分子占总数的比例:2/2n
DNA中的碱基数和其控制的蛋白质中的氨基酸数的比例关系:6:1
【考查考点】DNA的结构,碱基组成,半保留复制和基因的表达。
8. 现代生物进化理论
【典型例题】某人群中某常染色体显性遗传病的发病率为19%,一对夫妇中妻子患病,丈夫正常,他们所生的子女患该病的概率是
A.10/19 B.9/ 19 C.1/19 D.1/2
答案:A
【经典模型】
设A的基因频率为P,a的基因频率为q,因P+q=l,故(P+q)2 =I,将此二项式展开得:
p2+2pq+q2=1,基因型AA的频率=P2,基因型aa的频率=q2,基因型Aa的频率=2pq。
【考查考点】遗传的平衡定律
9. 种群的数量特征和数量变化规律
【典型例题】右图表示出生率、死亡率和种群密度的关系,据此分析得出的正确表述是
A.在K/2时控制有害动物最有效B.图示规律可作为控制人口增长的依据C.该图可用于实践中估算种群最大净补冲量D.在K/2时捕捞鱼类最易得到最大日捕获量答案:C
【经典模型】
【考查考点】环境阻力包括食物、空间、天敌、气候和传染病。
模型在生产、生活中的应用。
10生长素作用的两重性
【经典模型】
【考查考点】生长素作用的两重性,曲线在具体事例中的应用,如植物的向光性,水平放置的盆栽根的向地性,茎的背地性,顶端优势和除草剂原理等。
11.生态系统的稳定性
【经典模型】
【考查考点】抵抗力稳定性和恢复力稳定性以及提高生态系统的稳定性的方法。
【提升演练】
1.由图中曲线a、b表示物质跨(穿)膜运输的两种方式,下列表述正确的是()
A.脂溶性小分子物质不能通过方式a运输
B.与方式a有关的载体蛋白覆盖于细胞膜表面
C.方式b的最大转运速率与载体蛋白数量有关
D.抑制细胞呼吸对方式a和b的转运速率均有影响
2.右图表示酶活性与温度的关系。
下列叙述正确的是()
A.当反应温度由t2调到最适温度时,酶活性下降
B.当反应温度由t2调到最适温度时,酶活性上升
C.酶活性在t2时比t1高,故t2时更适合酶的保存
D.酶活性在t1时比t2低,表明t1时酶的空间结构破坏更严重
3.(多选)为了探究生长素和乙烯对植物生长的影响及这两种激素的相互作用,科学家用某种植物进行了一系列实验,结果如下图所示,由此可初步推测( )
A.浓度高于10-6mol/L的生长素会抑制该植物茎段的生长
B.该植物茎中生长素含量达到M值时,植物开始合成乙烯
C.该植物茎中乙烯含量的增加会促进生长素的合成
D.该植物茎中生长素和乙烯的含量达到峰值是不同步的
4.离体神经纤维某一部位受到适当刺激时,受刺激部位细胞膜两侧会出现暂时性的电位变化,产生神经冲动。图示该部位受刺激前后,膜两侧电位差的变化。请回答:
(1)图中a线段表示________电位;b点膜两侧的电位差为________,此时Na+______(内、外)流。
(2)神经冲动在离体神经纤维上以局部电流的方式双向传导,但在动物体内,神经冲动的传导方向是单向的,总是由胞体传向_______________。
(3)神经冲动在突触的传递受很多药物的影响。某药物能阻断突触传递,如果它对神经递质的合成、释放和降解(或再摄取)等都没有影响,那么导致神经冲动不能传递的原因可能是该药物影响了神经递质与________________________的结合。
5.某地区从1964年开始使用杀虫剂杀灭蚊子幼虫,至1967年中期停用。
下图是五年间蚊子幼虫基因型频率变化曲线。
R表示杀虫剂抗性基因。
S表示野生敏感型基因。
据图回答:
⑴R基因的出现是________的结果。
⑵在RR基因型频率达到峰值时,RS、SS基因型频率分别为4%和1%,此时R基因的频率为________。
⑶1969年中期RR基因型几近消失,表明在__________的环境条件下,RR 基因型幼虫比SS基因型幼虫的生存适应能力________。
⑷该地区从此不再使用杀虫剂,预测未来种群中,最终频率最高的基因型是_________,原因是____________________。
6. 根据下列实验结果回答问题。
实验一:选取同品种,同日龄的健康大鼠若干只,实施切除手术,一段时间后随机等分成四组,分别注射激素及生理盐水30天,结果如图1:
⑴该实验的目的是探究____________________________________。
⑵手术应切除______________。
每次注射各激素的量应按照_________________来计算。
【提升演练答案】
1.C 2 B 3. BD
4. 答案:(一)⑴CO2⑵原设定的pH 自⑶不能因为长时间处于pH =10.0的条件下,甲藻的净光合速率为负值,甲藻不能正常生长繁殖⑷富营养化(或N、P含量)(二)如图
5.答案:⑴基因突变⑵97% ⑶不再使用杀虫剂低⑷SS在不使用杀虫剂环境下,持续的选择作用使R基因频率越来越低
6.答案:⑴胰岛素和生长激素对大鼠生长的影响
⑵垂体和胰腺单位体重注射量乘以体重
⑶促进大鼠生长(及加强生长激素的促生长作用)大于
⑷降低胰岛素浓度升高和胰高血糖素浓度降低,促进了组织细胞加速对葡萄糖的摄取、利用和储存,抑制了糖原分解和非糖物质化为葡萄糖
⑸胰岛素胰高血糖素。