高中生物学中的数学模型
高中生物有关数学模型问题分析

高中生物有关数学模型问题分析高中生物有关数学模型问题分析1 高中生物教学中的数学建模数学是一门工具学科,在高中的物理与化学学科中广泛的应用。
由于高中生物学科以描述性的语言为主,学生不善于运用数学工具来解决生物学上的一些问题。
这些需要教师在平时的课堂教学中给予提炼总结,并进行数学建模。
所谓数学建模(Mathematical Modelling),就是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。
在生物学科教学中,构建数学模型,对理科思维培养也起到一定的作用。
2 数学建模思想在生物学中的应用2.1 数形结合思想的应用生物图形与数学曲线相结合的试题是比较常见的一种题型。
它能考查学生的分析、推理与综合能力。
这类试题从数形结合的角度,考查学生用数学图形来表述生物学知识,体现理科思维的逻辑性。
例1:下图1表示某种生物细胞分裂的不同时期与每条染色体DNA含量变化的关系;图2表示处于细胞分裂不同时期的细胞图像。
以下说法正确的是( )A、图2中甲细胞处于图1中的BC段,图2中丙细胞处于图1中的DE段B、图1中CD段变化发生在减数Ⅱ后期或有丝分裂后期C、就图2中的甲分析可知,该细胞含有2个染色体组,秋水仙素能阻止其进一步分裂D、图2中的三个细胞不可能在同一种组织中出现解析:这是一道比较典型的数形结合题型:从图2上的染色体形态不难辨别甲为有丝分裂后期、乙为减Ⅱ后期和丙为减Ⅱ中期;而图1中的AB段表示的是间期中的(S期)正在进行DNA复制的过程,BC段表示的是存在姐妹染色单体(含2个DNA分子)的染色体,DE 段表示的是着丝点断裂后的只含1个DNA的染色体。
此题的答案是B。
2.2 排列与组合的应用排列与组合作为高中数学的重要知识。
在减数分裂过程中,减Ⅰ分裂(中期)的同源染色体在细胞中央的不同排列方式,在细胞两极出现不同的染色体组合,最终形成不同基因组成的配子,这是遗传的分离定律与自由组合定律细胞学证据。
生物系统的数学模型

生物系统的数学模型引言生物系统是由生物体组成的复杂系统,其中包括生物体的结构、功能和相互作用。
为了更好地理解和解释生物系统的行为,科学家们使用数学模型来描述和研究这些系统。
生物系统的数学模型是一种用数学语言描述生物系统的方式,通过建立数学方程和模拟方法,可以预测和探索生物系统的行为和特性。
1. 动力系统模型动力系统模型是生物系统中常用的一种数学模型。
它描述了生物体在时间上随着不同因素的变化而变化的过程。
例如,人体的代谢过程可以用动力系统模型来描述。
该模型将人体的代谢活动分解为一系列的化学反应,并使用微分方程来描述反应速率和物质浓度的变化。
通过求解这些微分方程,可以预测不同条件下人体代谢的动态变化。
2. 群体动力学模型群体动力学模型是用来描述群体中个体之间相互作用的数学模型。
生物系统中的许多行为和特性是由群体中个体之间的相互作用所决定的,例如群体中的迁徙、繁殖和竞争等。
群体动力学模型使用微分方程或差分方程来描述个体之间的相互作用和群体的动态变化。
通过改变模型的参数和初始条件,可以预测群体行为的变化和演化。
3. 网络模型网络模型是一种描述生物系统中各个组成部分之间相互连接关系的数学模型。
生物系统中的许多结构和功能是通过各个组成部分之间的网络连接实现的,例如脑部神经元之间的连接和代谢途径之间的关联。
网络模型使用图论和复杂网络理论来描述和分析这些连接关系。
通过分析网络的拓扑结构和动态特性,可以揭示生物系统中的关键组成部分和功能模块,并预测系统的稳定性和鲁棒性。
4. 遗传算法模型遗传算法模型是一种基于遗传和进化原理的数学模型,用于解决生物系统中的优化和适应性问题。
生物系统中的许多特性和行为是通过进化过程中的适应性选择所形成的,例如生物体的形态和行为特征。
遗传算法模型使用遗传算法的原理来模拟和优化生物系统的演化过程。
通过不断迭代和优化,可以找到生物系统中的最优解或接近最优解的解决方案。
结论生物系统的数学模型是一种用数学语言描述和解释生物系统行为的方法。
生物生长发育的数学模型

生物生长发育的数学模型随着科技的发展以及生物学研究的深入,人们对于生物生长发育的认识也越来越深入。
不仅我们了解了各种生物的发育过程,还尝试建立了不同的数学模型来描述这些过程。
在本文中,我们将探讨一些常见的生物生长发育数学模型,并且简单介绍这些模型的应用和意义。
1、S型生长模型S型生长模型是最为常见的生物生长模型之一,常用于描述生物种群的生长发展和各种发育序列的演变。
S型生长模型一般由以下公式表示:Nt=K/(1+a*exp(-rt))其中,Nt代表种群数量、K代表种群的最大容量、r代表增长速率、a代表一些常量。
S型生长模型的数学意义比较明确,它将生物种群的生长发展过程分为三个阶段:指数生长期、转折期和饱和期。
在指数生长期,种群数量增长非常迅速,直到达到一定数量之后,增长速率开始逐渐减缓,最后到达饱和状态。
S型生长模型在现实生活中的应用非常广泛,例如在农业和生态学领域中,人们可以利用该模型来预测不同农作物或生态系统的生长发展和变化趋势。
2、Gompertz模型Gompertz模型也是一种用于描述生物生长发育的数学模型,它是在S型生长模型的基础上进一步发展而来。
与S型生长模型相比,Gompertz模型更具有灵活性和复杂性,它可以描述更多不同类型生物种群在生长发展过程中的变化趋势。
Gompertz模型一般由以下公式描述:Nt=K*exp(-exp(rt-ln(K)/N0*(t-to)))其中,Nt代表种群数量、K代表种群的最大容量、r代表增长速率、N0代表起始种群数量、t-to代表增长周期。
Gompertz模型的数学意义比较复杂,它描述了一种生物种群在增长发展过程中受到各种环境和生态因素的影响,从而产生了不断变化的生长速率。
在实际应用中,Gompertz模型常用于生物群落生态学和生命科学领域,在研究某个生态系统或生物种群的生长发展规律时具有重要作用。
3、Logistic模型Logistic模型是另一种常见的用于描述生物生长发育的数学模型。
生物学中的数学模型探讨

生物学中的数学模型探讨在生物学领域内,许多现象的预测和解释都需要一定的数学模型进行辅助和支撑。
这些数学模型可以帮助生物学家更好地理解和解释生命现象,并且帮助我们实现更加精确的实验和判断。
本文将探讨几种在生物学领域内常用的数学模型。
1. 朗盖文方程朗盖文方程是一个常微分方程,在生物学领域内常用于描述各种生物过程中的时空演化规律。
比如在生态学领域内,朗盖文方程可以用来描述种群的增长和衰退规律。
在许多生物过程的分析中,朗盖文方程可以作为一个基本框架,来帮助生物学家描述生命现象的动态变化。
2. SIR模型在研究流行病学时,SIR模型被广泛用于描述传染病的传播。
SIR模型也是一个常微分方程模型,由三个变量S、I和R组成。
其中,S为易感者数量,I为感染者数量,R为康复或死亡者数量。
这个模型可以帮助我们预测传染病的爆发和后续的传播情况,同时指导生物学家制定更加合理的防控措施。
3. 马尔可夫过程马尔可夫过程是一类以转移矩阵的形式来描述状态转移的随机过程。
在生态学和进化生物学领域内,马尔可夫过程被广泛用于描述物种多样性、基因型频率和潜在的适应性等。
这些应用都需要将复杂的生命现象抽象成为一个状态集合,通过概率转移矩阵来描述状态之间的变化。
马尔可夫过程不仅可以描述物种的进化演化,同时也能帮助生物学家理解生态系统的稳定性和动态变化。
4. 神经网络模型神经网络模型模仿人类神经系统的工作原理,通过多个节点互联来构建一个多层次的计算网络。
这个模型可以模拟生物神经元之间的信号传递过程。
在生物学领域内,神经网络模型被广泛用于描述神经元之间的联结和信息交流,同时也被用于识别不同的生物信号和图像。
这个模型在生物学和人工智能领域内都发挥着重要的作用。
总结生物学中的数学模型是一项重要的研究工具。
这些模型不仅可以帮助我们预测生物现象的发展动态,同时也能够深入切实地理解复杂生态系统和生物神经网络的运作原理。
随着数学和计算机科学技术的不断发展,生物学中的数学模型也将会更加精确和高效。
高中生物典型数学模型举例

9500
180
8
9600
170
(A)在该调查时间内物种x种群增长曲线大致呈“J”型 (B)若在第9年间,大量捕杀x种群个体,则第10年鼠种群数量增加 (c)鼠和X种群为竞争关系 (D)鼠和x种群为互利共生关系
小结:模型构建基础知识“地图”
概念模型 数学模型
必修一第14页:概念
必修三第65页:概念 必修三第66页:种群增长的模型
4
105000
7
9500
8
9600
x种群数量(只)
100 120 200 250 180 170 180 170
数学模型的转化
时间(年) 鼠种群数量(只) x种群数量 (只)
1
18900
100
2
19500
120
3
14500
200
4
10500
250
5
9500
180
6
9600
170
7
100 120 200 250 180 170 180
8
9600
170
A、在该调查时间内物种x种群增长曲线大致呈“J”型 B、若在第9年间,大量捕杀x种群个体,则第10年鼠种群数量增加 C、鼠和X种群为竞争关系 D、鼠和x种群为互利共生关系
时间(年) 鼠种群数量 (只)
1
18900
2
19500
3
14500
染 色分 体为
非 同 源 组成 染 色 体
同
源
染 色 体
联会 形成
染 色 据此 体 分为 组 四 分 包含 体 四条
多倍体 二倍体
单倍体 染 色 单 体
(二)数学模型
生物学数学模型和物理模型

生物学数学模型和物理模型生物学数学模型和物理模型是在生物科学和物理科学方面提出的。
这些模型模拟和解释生物系统和物理系统的行为,为生物学和物理学提供了一种有用的方法,帮助解决各种问题。
接下来将分步骤阐述这些模型。
第一步:生物学数学模型生物学数学模型是指通过数学方程式对生物系统进行建模,以定量分析和预测生物系统的属性和行为。
这些模型可以涉及一系列主题,例如群体动力学、代谢过程、生态系统和流行病学,以及基因调控网络的分析等等。
例如,生态系统中,我们可以采用数学模型预测物种之间的相互关系,如掠食者和食草动物之间的关系。
我们可以使用 Lotka-Volterra 模型。
这个模型可以用来描述掠食者和食草者之间的相互作用。
该模型描述了两者的种群变化,包括掠食者和食草者之间的相互关系。
另外一个例子是使用 SIR 模型描述流行病学模型。
SIR 模型和其他数学模型可以帮助我们更好地理解流行病学的传播和控制策略。
第二步:物理模型物理模型是指通过物理方程式描述物理现象,以定量地分析和预测物理现象的属性和行为。
这些模型涉及了一些主要的分支,在不同的分支中有各种模型。
物理模型可以涉及纳米技术、天文学、量子力学等等。
例如,太阳系是物理模型的一个典型例子。
太阳系是一个充满了行星、卫星、小天体和行星带的系统,使用物理模型可以更好地理解太阳系的行为。
例如,物理学家使用引力和运动方程式预测奇异的行星轨道和日食。
此外,量子力学是另一个重要的物理模型。
量子力学的基础理论和方程式包括狄拉克方程式和薛定谔方程式。
量子力学的应用包括计算机科学中的量子计算、化学中的原子和分子结构等等。
总结生物学数学模型和物理模型是很有用的科学工具。
在生物学和物理学中,使用这些模型可以帮助我们更好地理解和预测生物和物理系统的属性和行为。
虽然这些模型在其各自的领域中非常有用,但是它们在许多其他学科领域中也有很重要的应用。
高中生物典型数学模型举例

池塘生态系统模式图
(07江苏生物)37.正常情况下,人体内血液、组织液和细胞内液 中K+的含量能够维持相对稳定。 (1)尝试构建人体内K+离子的动态平衡模型(①在图形框中用箭头表 示②不考虑血细胞、血管壁细胞等特殊细胞)。
1 2
4 3
5 7
6
8
讨论:三种模型形式可以相互转化吗?
实践出真知——
9500
180
8
9600
170
(A)在该调查时间内物种x种群增长曲线大致呈“J”型 (B)若在第9年间,大量捕杀x种群个体,则第10年鼠种群数量增加 (c)鼠和X种群为竞争关系 (D)鼠和x种群为互利共生关系
小结:模型构建基础知识“地图”概念模型 数学模型必修一 Nhomakorabea14页:概念
必修三第65页:概念 必修三第66页:种群增长的模型
染 色分 体为
非 同 源 组成 染 色 体
同
源
染 色 体
联会 形成
染 色 据此 体 分为 组 四 分 包含 体 四条
多倍体 二倍体
单倍体 染 色 单 体
(二)数学模型
教材链接
必修三65页:数学模型是用来描述一个系统或它的性质的 数学形式。(用字母、数字及其它数学符号建立起来的等 式或不等式。也包括表格,曲线,柱状图,扇形图等数学 表达式。)
在一个草原生态 系统中,草是生产者, 鼠是初级消费者。现将 某动物新物种x引入该 生态系统,调查表明 鼠与x的种群数量变化 如右表。若不考虑瘟疫 等其他因素,下列说法 中最可能的是( )
时间(年) 鼠种群数量 (只)
1
18900
2
19500
3
14500
4
生物学中的数学模型及其应用

生物学中的数学模型及其应用生物学中的数学模型是一种应用广泛的研究工具,它可以帮助生物学家更好地理解生命现象并预测生物系统的行为。
数学模型的基本思想是将生物系统抽象为数学符号和方程式的组合,并根据这些方程式来模拟系统的行为。
生物学中的数学模型主要可以分为三类:基于微分方程的模型、基于随机过程的模型和基于网络结构的模型。
其中基于微分方程的模型是最常用的一种,它可以用来描述许多生物学系统的行为,如代谢、细胞分裂和神经元活动等等。
基于微分方程的数学模型主要用于描述连续动态系统的行为,它可以通过一系列微分方程式来揭示系统的变化。
例如,一个医学研究人员可以使用微分方程模型来预测某种疾病的发展过程,并评估不同的治疗方案的有效性。
除了微分方程模型,还有一种基于随机过程的模型,它可以描述生物系统中的随机变化。
这类模型主要用于研究生物系统中原因未知的现象,如分子间的随机运动和生物体内的化学反应。
基于随机过程模型的研究能够帮助研究人员更好地了解生命体系中潜在的风险因素。
另一方面,生物网络结构模型则可以将生物系统的行为描述为一个复杂的网络结构,这种模型可以用于分析生命体系中的分子、细胞、组织和器官之间的相互作用。
无论是什么类型的数学模型,都可以在生物学研究中发挥重要作用。
这些模型可以通过验证和实验进行验证,并对整个生物系统的行为进行预测。
模型所提供的预测能够帮助研究人员更好地理解生命体系,从而设计出更有效的治疗方法和更灵活的预防措施。
尽管如此,数学模型仍然具有一些限制,这些限制包括假设、数据缺失和误差等问题。
因此,在制定和使用数学模型时,需要对模型的错误和不确定性进行评估和识别,并采取适当的措施来减小这些误差。
总之,生物学中的数学模型是一种非常有用的工具,它可以帮助研究人员更好地理解生命体系,并帮助他们预测系统的行为。
随着技术和理论的不断发展,我们相信这种模型在未来的生物学研究中将发挥越来越重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中生物学中的数学模型
山东省嘉祥县第一中学孙国防
高中生物学中的数学模型是对高中生物知识的高度概括,也是培养学生分析推理能力的重要载体,本文通过归纳高中生物学中的数学模型以提高学生的分析推理能力。
1. 细胞的增殖
【经典模型】
间期表示
有丝分裂中各时期DNA、染色体和染色单体变化
减数分裂中各时期DNA、染色体和染色单体变化
【考查考点】细胞增殖考点主要考察有丝分裂、减数分裂过程中DNA、染色体、染色单体的数量变化以及同源染色体的行为,并以此为载体解释遗传的分离定律和自由组合定律。
2. 生物膜系统
【经典模型】
【考查考点】
3物质跨膜运输
【经典模型】
【考查考点】
自由扩散、协助扩散和主动运输的影响因素和特点。
4. 影响酶活性的因素
【经典模型】
【考查考点】
影响酶活性的因素,主要原因在于对酶空间结构的影响。
酶促反应是对酶催化的更高层次的分析。
5. 影响细胞呼吸及光合作用的因素
【经典模型1】
【考查考点】
真正光合速率= 净光合速率+呼吸速率
光合作用实际产O2量=实测O2释放量+呼吸作用耗O2
光合作用实际CO2消耗量=实测CO2消耗量+呼吸作用CO2释放
光合作用葡萄糖生产量=光合作用葡萄糖积累量+呼吸作用葡萄糖消耗量
【经典模型2】
【考查考点】氧气浓度对有氧呼吸和无氧呼吸的影响,以及在种子和蔬菜储存中的原因。
6 基因的分离和自由组合定律
【典型例题】男性并指、女性正常的一对夫妇,生了一个先天性聋哑的儿子,这对夫妇以后所生子女,(并指是常染色体显性遗传病,两种病均与性别无关)
正常的概率: _________同时患两种病的概率: _________患病的概率: _________
只患聋哑的概率:_________只患并指的概率:_________只患一种病的概率:_________
7. 中心法则
【经典模型】
DNA分子的多样性:4N
DNA的结构:A=T,G=C,A+G=T+C,(A1%+A2%)/2=A%,
A1%+T1%=A2%+T2%=A%+T%
DNA的复制:某DNA分子复制N次所需要的游离的鸟嘌呤脱氧核苷酸:(2N-1)G
15N标记的DNA分子在14N的原料中复制n次,含15N的DNA分子占总数的比例:2/2n DNA中的碱基数和其控制的蛋白质中的氨基酸数的比例关系:6:1
【考查考点】DNA的结构,碱基组成,半保留复制和基因的表达。
8. 现代生物进化理论
【典型例题】某人群中某常染色体显性遗传病的发病率为19%,一对夫妇中妻子患病,丈夫正常,他们所生的子女患该病的概率是
A.10/19 B.9/ 19 C.1/19 D.1/2
答案:A
【经典模型】
设A的基因频率为P,a的基因频率为q,因P+q=l,故(P+q)2 =I,将此二项式展开得:p2+2pq+q2=1,基因型AA的频率=P2,基因型aa的频率=q2,基因型Aa的频率=2pq。
【考查考点】遗传的平衡定律
9. 种群的数量特征和数量变化规律
【典型例题】右图表示出生率、死亡率和种群密度的关系,据此分析得出的正确表述是
A.在K/2时控制有害动物最有效 B.图示规律可作为控制人口增长的依据
C.该图可用于实践中估算种群最大净补冲量 D.在K/2时捕捞鱼类最易得到最大日捕获量答案:C
【经典模型】
【考查考点】环境阻力包括食物、空间、天敌、气候和传染病。
模型在生产、生活中的应用。
10生长素作用的两重性
【经典模型】
【考查考点】生长素作用的两重性,曲线在具体事例中的应用,如植物的向光性,水平放置的盆栽根的向地性,茎的背地性,顶端优势和除草剂原理等。
11.生态系统的稳定性
【经典模型】
【考查考点】抵抗力稳定性和恢复力稳定性以及提高生态系统的稳定性的方法。
【提升演练】
1.由图中曲线a、b表示物质跨(穿)膜运输的两种方式,下列表述正确的是()
A.脂溶性小分子物质不能通过方式a运输
B.与方式a有关的载体蛋白覆盖于细胞膜表面
C.方式b的最大转运速率与载体蛋白数量有关
D.抑制细胞呼吸对方式a和b的转运速率均有影响
2.右图表示酶活性与温度的关系。
下列叙述正确的是()
A.当反应温度由t2调到最适温度时,酶活性下降
B.当反应温度由t2调到最适温度时,酶活性上升
C.酶活性在t2时比t1高,故t2时更适合酶的保存
D.酶活性在t1时比t2低,表明t1时酶的空间结构破坏更严重
3.(多选)为了探究生长素和乙烯对植物生长的影响及这两种激素的相互作用,科学家用某种植物进行了一系列实验,结果如下图所示,由此可初步推测( )
A.浓度高于10-6mol/L的生长素会抑制该植物茎段的生长
B.该植物茎中生长素含量达到M值时,植物开始合成乙烯
C.该植物茎中乙烯含量的增加会促进生长素的合成
D.该植物茎中生长素和乙烯的含量达到峰值是不同步的
4.离体神经纤维某一部位受到适当刺激时,受刺激部位细胞膜两侧会出现暂时性的电位变化,产生神经冲动。图示该部位受刺激前后,膜两侧电位差的变化。请回答:
(1)图中a线段表示________电位;b点膜两侧的电位差为________,此时Na+______(内、外)流。
(2)神经冲动在离体神经纤维上以局部电流的方式双向传导,但在动物体内,神经冲动的传导方向是单向的,总是由胞体传向_______________。
(3)神经冲动在突触的传递受很多药物的影响。某药物能阻断突触传递,如果它对神经递质的合成、释放和降解(或再摄取)等都没有影响,那么导致神经冲动不能传递的原因可能是该药物影响了神经递质与________________________的结合。
5.某地区从1964年开始使用杀虫剂杀灭蚊子幼虫,至1967年中期停用。
下图是五年间蚊子幼虫基因型频率变化曲线。
R表示杀虫剂抗性基因。
S表示野生敏感型基因。
据图回答:
⑴R基因的出现是________的结果。
⑵在RR基因型频率达到峰值时,RS、SS基因型频率分别为4%和1%,此时R基因的频率为________。
⑶1969年中期RR基因型几近消失,表明在__________的环境条件下,RR基因型幼虫比SS基因型幼虫的生存适应能力________。
⑷该地区从此不再使用杀虫剂,预测未来种群中,最终频率最高的基因型是_________,原因是____________________。
6. 根据下列实验结果回答问题。
实验一:选取同品种,同日龄的健康大鼠若干只,实施切除手术,一段时间后随机等分成四组,分别注射激素及生理盐水30天,结果如图1:
⑴该实验的目的是探究____________________________________。
⑵手术应切除______________。
每次注射各激素的量应按照_________________来计算。
【提升演练答案】
2 B 3. BD
4. 答案:(一)⑴CO2⑵原设定的pH 自⑶不能因为长时间处于pH =10.0的条件下,甲藻的净光合速率为负值,甲藻不能正常生长繁殖⑷富营养化(或N、P含量)(二)如图
5.答案:⑴基因突变⑵97% ⑶不再使用杀虫剂低⑷SS在不使用杀虫剂环境下,持续的选择作用使R基因频率越来越低
6.答案:⑴胰岛素和生长激素对大鼠生长的影响
⑵垂体和胰腺单位体重注射量乘以体重
⑶促进大鼠生长(及加强生长激素的促生长作用)大于
⑷降低胰岛素浓度升高和胰高血糖素浓度降低,促进了组织细胞加速对葡萄糖的摄取、利用和储存,抑制了糖原分解和非糖物质化为葡萄糖
⑸胰岛素胰高血糖素。