材料力学圆轴扭转内力、应力
合集下载
材料力学 第三章 扭转

d T dx GI p
d t r Gr dx
Tr tr Ip
Tr tr Ip
上式为等直圆杆在扭转时横截面上任一点处切 应力的计算公式。
Tr tr Ip
2
b z
t'
dx
c c'
3.4 圆轴扭转时的应力 3.4.1 横截面上的应力 1) 变形几何关系 在小变形条件下, 等直圆杆在扭转时横截面上也 只有切应力。为求得此应力, 需从几何关系、物 理关系和静力关系三个方面着手。 为研究横截面上任一点处切应变随点的位臵而 变化的规律, 先观察一个实验。
3.4 圆轴扭转时的应力 实验:预先在等截面圆杆的表面画上任意两个相 邻的圆周线和纵向线。在杆的两端施加外 力偶矩Me。
3.3 薄壁圆筒的扭转
薄壁圆筒扭转时, 横截面上 任一点处的切应力t都是相 等的, 而其方向与圆周相切。 横截面上的内力与应力间 的静力关系为:
n
r0 x
t dA
Me
n
t dA r
A
0
t r0 dA t r0 2 r d T
A
对于薄壁圆筒, r可由平均半径r0代替。
M x 0, T M e 0
T Me
取右侧为研究对象其扭矩与取左侧为研究对象 数值相同但转向相反。
3.2.2 扭矩及扭矩图 扭矩的符号规定如下: 采用右手螺旋法则, 如果 以右手四指表示扭矩的转向, 则姆指的指向离 开截面时的扭矩为正。
反之, 姆指指向截面时则扭矩为负。
3.2.2 扭矩及扭矩图
M2
M3
M1 n
A
M4
B
C
D
M2
M3
M1
材料力学 扭转 第三章

P1 n
9.55
500 300
A
B
C
15.9(kN m)
M2
M3
9.55 P2 n
9.55 150 300
4.78 (kN m)
M4
9.55
P4 n
9.55 200 300
6.37 (kN m)
n D
求扭矩(扭矩按正方向设)
mC 0 , T1 m2 0 m2 1 m3 2 m1 3 m4 T1 m2 4.78kN m
由理论力学知,力偶在单位时间内所做的功等于该 力偶的矩与相应角速度的乘积,即
p M
Mp
若功率的单位用千瓦,转速用n转/分:
M
P 1000
2 n
9549.2965
P n
60 9549 P (N m) n
传动轴的外力偶矩 传递轴的传递功率、转速与外力偶矩的关系:
Me
9.549
材料的G值可通过实验确定。
剪切弹性模量、弹性模量和泊松比是表明材料弹性性质的三
个常数。对各向同性材料,这三个弹性常数之间存在下列关
系:
G
E 2(1
)
等直圆杆扭转时的应力 · 强度条件
①变形几何方面
等直圆杆横截面应力
②物理关系方面
③静力学方面
一、等直圆杆扭转实验观察:
1. 横截面变形后仍为平面
⑤确定最大剪应力:
由
T
Ip
知:当
R
d 2
,
max
Td 2
T
材料力学-扭转

扭转角( 扭转角(ϕ):任意两截面绕轴线相对转动的角度。又称为角 位移。通常用ϕ表示。ϕB − A表示B截面相对A截面转过的角度。 剪应变( 剪应变(γ): 剪应变又叫角应变或切应变,它是两个相互垂直方 向上的微小线段在变形后夹角的改变量(以弧度表示, 角度减小时为正) O ϕ B m
A m
γ
第二节 杆受扭时的内力计算
四、圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面: 实心圆截面:
2
I p = ∫ ρ d A = ∫ ρ (2 πρ d ρ )
2
ρ
d O
dρ
A
d 2 0
= 2 π(
ρ
4
d /2
4
)
0
πd = 32
4
d A = 2 πρ d ρ
πd 3 Wp = = d / 2 16 Ip
空心圆截面: 空心圆截面:
T T = ρ max = IP IP T = WP
ρ max
Ip—截面的极惯性矩, 截面的极惯性矩,单位: 单位:m 4 , mm 4 Ip 3 3 WP —抗扭截面模量, WP = 抗扭截面模量,单位:m , mm .
ρ max
整个圆轴上——等直杆: 等直杆: τ max
Tmax = WP
三、公式的使用条件: 公式的使用条件: 1、等直的圆轴, 等直的圆轴, 2、弹性范围内工作。 弹性范围内工作。
Tmax Wp
πD 3 实心, 16 T max W = 2)设计截面尺寸: 设计截面尺寸:WP ≥ 3 P [τ ] πD (1 − α 4 ) 空心. 16 ≤ ⇒ m 3)确定外荷载: 确定外荷载: Tmax WP ⋅ [τ ]
≤
材料力学-第4章圆轴扭转时的强度与刚度计算

B
I
C
A
II
D
III
I
II
III
M
x
0
确定各段圆轴内的扭 矩。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
3 . 建立 Mx - x 坐 标系,画出扭矩图 建 立 Mx - x 坐 标 系,其中x轴平行于 圆轴的轴线,Mx轴垂 直于圆轴的轴线。将 所求得的各段的扭矩 值,标在 Mx - x 坐标 系中,得到相应的点 ,过这些点作x轴的 平行线,即得到所需 要的扭矩图。
P M e 9549 [N m] n
其中P为功率,单位为千瓦(kW);n为轴的转速,单位为转/ 分(r/min)。 如果功率P的单位用马力(1马力=735.5 N•m/s),则
P[马力] M e 7024 [N m] n[r / min]
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴 外加扭力矩、扭矩与扭矩图 剪应力互等定理 剪切胡克定律
圆轴扭转时横截面上的剪应力分析 与强度设计 圆杆扭转时的变形及刚度条件 结论与讨论
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
第4章 圆轴扭转时的强度与刚度计算
绘出扭矩图:
第4章 圆轴扭转时的强度与刚度计算
B C
I
外加扭力矩、扭矩与扭矩图 A III D II
I 扭矩Mn-图
II
III
159.2
(+)
(-)
63.7 159.2
M n,max 159.2( N m)
(在CA段和AD段)
I
C
A
II
D
III
I
II
III
M
x
0
确定各段圆轴内的扭 矩。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
3 . 建立 Mx - x 坐 标系,画出扭矩图 建 立 Mx - x 坐 标 系,其中x轴平行于 圆轴的轴线,Mx轴垂 直于圆轴的轴线。将 所求得的各段的扭矩 值,标在 Mx - x 坐标 系中,得到相应的点 ,过这些点作x轴的 平行线,即得到所需 要的扭矩图。
P M e 9549 [N m] n
其中P为功率,单位为千瓦(kW);n为轴的转速,单位为转/ 分(r/min)。 如果功率P的单位用马力(1马力=735.5 N•m/s),则
P[马力] M e 7024 [N m] n[r / min]
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴 外加扭力矩、扭矩与扭矩图 剪应力互等定理 剪切胡克定律
圆轴扭转时横截面上的剪应力分析 与强度设计 圆杆扭转时的变形及刚度条件 结论与讨论
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
第4章 圆轴扭转时的强度与刚度计算
绘出扭矩图:
第4章 圆轴扭转时的强度与刚度计算
B C
I
外加扭力矩、扭矩与扭矩图 A III D II
I 扭矩Mn-图
II
III
159.2
(+)
(-)
63.7 159.2
M n,max 159.2( N m)
(在CA段和AD段)
材料力学圆轴扭转力学

A
D 2 d 2
π πD 4 D4 − d 4 = = 1−α 4 32 32 d 其中 α = D
Ip
(
)
(
)
π D4 − d 4 πD 3 Wp = = = 1−α 4 16 D 16 D/2
(
)
(
)
26
材 料 力 学 Ⅰ
第三章 扭转
单元体· Ⅱ. 单元体 切应力互等定理 以横截面、径向截面以及与表面平行的面(切向截面)从 受扭的薄壁圆筒或等直圆杆内任一点处截取一微小的正六面 体——单元体 单元体。 单元体 由单元体的平衡条件∑Fx=0 和 ∑Mz=0 知单元体的上、下两个平面 (即杆的径向截面上)必有大小相等、 指向相反的一对力τ'dxdz并组成其矩 为(τ'dxdz)dy 力偶。 由
Me
m r0
τr0 ∫ d A = T,于是有
A
τ dA
m
x
T T τ= = = 2 r0 ∫ d A r0 (2 πr0δ ) 2 πr0 δ
A
T
2 引进 A0 = πr0 ,上式亦可写作
T τ= 2A0δ
8
材 料 力 学 Ⅰ
第三章 扭转
剪切胡克定律(Hooke’s law in shear) Ⅲ. 剪切胡克定律 Me Me
∑ Fξ = 0, 截塔
τ α d A − (τ d A cos α ) cos α + (τ ′ d A sin α ) sin α = 0
利用τ =τ ',经整理得
σ α = −τ sin 2α , τ α = τ cos 2α
30
材 料 力 学 Ⅰ
第三章 扭转
σ α = −τ sin 2α , τ α = τ cos 2α
D 2 d 2
π πD 4 D4 − d 4 = = 1−α 4 32 32 d 其中 α = D
Ip
(
)
(
)
π D4 − d 4 πD 3 Wp = = = 1−α 4 16 D 16 D/2
(
)
(
)
26
材 料 力 学 Ⅰ
第三章 扭转
单元体· Ⅱ. 单元体 切应力互等定理 以横截面、径向截面以及与表面平行的面(切向截面)从 受扭的薄壁圆筒或等直圆杆内任一点处截取一微小的正六面 体——单元体 单元体。 单元体 由单元体的平衡条件∑Fx=0 和 ∑Mz=0 知单元体的上、下两个平面 (即杆的径向截面上)必有大小相等、 指向相反的一对力τ'dxdz并组成其矩 为(τ'dxdz)dy 力偶。 由
Me
m r0
τr0 ∫ d A = T,于是有
A
τ dA
m
x
T T τ= = = 2 r0 ∫ d A r0 (2 πr0δ ) 2 πr0 δ
A
T
2 引进 A0 = πr0 ,上式亦可写作
T τ= 2A0δ
8
材 料 力 学 Ⅰ
第三章 扭转
剪切胡克定律(Hooke’s law in shear) Ⅲ. 剪切胡克定律 Me Me
∑ Fξ = 0, 截塔
τ α d A − (τ d A cos α ) cos α + (τ ′ d A sin α ) sin α = 0
利用τ =τ ',经整理得
σ α = −τ sin 2α , τ α = τ cos 2α
30
材 料 力 学 Ⅰ
第三章 扭转
σ α = −τ sin 2α , τ α = τ cos 2α
材料力学 圆轴扭转内力、应力

dx GIP
T
IP
27
§ 3.4 圆轴扭转时横截面上的应力
Mechanic of Materials
T
Ip
—横截面上距圆心为处任一点切应力计算公式。
4. 公式讨论:
① 仅适用于各向同性、线 弹性材料,在小变形时的 等圆截面直杆。
τ
O
② 式中: —该点到圆心的距离。
T—横截面上的扭矩,由截面法通过外力偶矩求得。 IP—极惯性矩,纯几何量,无物理意义。
重点:扭转内力、应力。 难点:切应力互等定理的证明。 学时安排:2
Mechanic of Materials
第八讲内容目录 第三章 扭 转
§ 3.1 扭转的概念和实例和实例 § 3.2 外力偶的计算 扭矩与扭矩图 § 3.3 纯剪切 § 3.4 圆轴扭转时横截面上的应力
目录
§ 3.1 扭转的概念和实例
§3-4 圆轴扭转时横截面上的应力
约为80GPa。
剪切弹性模量、弹性模量和泊松比是表明材料弹性性质的三
个常数。对各向同性材料,这三个弹性常数之间存在下列关系:
G
E 2(1
)
22
Mechanic of Materials
§ 3.4 圆轴扭转时横截面上的应力
一、圆轴扭转时横截面上的应力公式推导思路 (一)几何方面:
扭转时,圆轴的表面 变形和薄壁圆筒表面变形 相似。实验现象:
M
A
9549
36 300
1146N.m
MB
MC
9549
11 300
350N.m
MD
9549
T
IP
27
§ 3.4 圆轴扭转时横截面上的应力
Mechanic of Materials
T
Ip
—横截面上距圆心为处任一点切应力计算公式。
4. 公式讨论:
① 仅适用于各向同性、线 弹性材料,在小变形时的 等圆截面直杆。
τ
O
② 式中: —该点到圆心的距离。
T—横截面上的扭矩,由截面法通过外力偶矩求得。 IP—极惯性矩,纯几何量,无物理意义。
重点:扭转内力、应力。 难点:切应力互等定理的证明。 学时安排:2
Mechanic of Materials
第八讲内容目录 第三章 扭 转
§ 3.1 扭转的概念和实例和实例 § 3.2 外力偶的计算 扭矩与扭矩图 § 3.3 纯剪切 § 3.4 圆轴扭转时横截面上的应力
目录
§ 3.1 扭转的概念和实例
§3-4 圆轴扭转时横截面上的应力
约为80GPa。
剪切弹性模量、弹性模量和泊松比是表明材料弹性性质的三
个常数。对各向同性材料,这三个弹性常数之间存在下列关系:
G
E 2(1
)
22
Mechanic of Materials
§ 3.4 圆轴扭转时横截面上的应力
一、圆轴扭转时横截面上的应力公式推导思路 (一)几何方面:
扭转时,圆轴的表面 变形和薄壁圆筒表面变形 相似。实验现象:
M
A
9549
36 300
1146N.m
MB
MC
9549
11 300
350N.m
MD
9549
材料力学 扭转(2)

2. 刚度校核
1
M d n1 dx 1 GIp
2
M d n2 dx 2 GI p
M n1 d 因 M n1 M n 2 故 max 1 GI p dx max
max
180 N m 180 0.43 ( ) / m [ ] (80109 Pa)(3.0 105 10-12 m 4 ) π
§4-5 扭转扭转时的变形和刚度条件
一、圆轴扭转时的变形计算 1、扭转变形(相对扭转角)
d M n dx GI P Mn d dx GI P d M n dx GI P
扭转变形与内力计算式
Mn Mn
Mn L dx GI P
rad m ——单位长度的扭转角
扭转角单位:弧度(rad) GIP——抗扭刚度。
2.绘扭矩图
7640 N m
3.直径d1的选取 按强度条件
d1
A M e1
( )
M e2
d 2 M e3
C
max
3
16M n 3 d1
3
B
4580 N m
16M n d1 π[ ]
16 7640 π 70 106
82.2 103 m 82.2mm
n
3)等直圆杆受分布扭矩 t 作用,t 的单位为 N m m。
从中取 dx 段,dx 段两相邻截面的扭转角为:
M n x dx AB 截面相对扭转角为: l d l GI p
M n x dx d GI p
4)变截面圆杆,A、B 两端直径 分别为 d1、d2 。
解: 1.外力
P M e1 9549 1 n
1
M d n1 dx 1 GIp
2
M d n2 dx 2 GI p
M n1 d 因 M n1 M n 2 故 max 1 GI p dx max
max
180 N m 180 0.43 ( ) / m [ ] (80109 Pa)(3.0 105 10-12 m 4 ) π
§4-5 扭转扭转时的变形和刚度条件
一、圆轴扭转时的变形计算 1、扭转变形(相对扭转角)
d M n dx GI P Mn d dx GI P d M n dx GI P
扭转变形与内力计算式
Mn Mn
Mn L dx GI P
rad m ——单位长度的扭转角
扭转角单位:弧度(rad) GIP——抗扭刚度。
2.绘扭矩图
7640 N m
3.直径d1的选取 按强度条件
d1
A M e1
( )
M e2
d 2 M e3
C
max
3
16M n 3 d1
3
B
4580 N m
16M n d1 π[ ]
16 7640 π 70 106
82.2 103 m 82.2mm
n
3)等直圆杆受分布扭矩 t 作用,t 的单位为 N m m。
从中取 dx 段,dx 段两相邻截面的扭转角为:
M n x dx AB 截面相对扭转角为: l d l GI p
M n x dx d GI p
4)变截面圆杆,A、B 两端直径 分别为 d1、d2 。
解: 1.外力
P M e1 9549 1 n
材料力学(第五版)扭转切应力

(
)
d 2 = 0.8D2=43 mm π 2 d1 A1 452 4 = = =1.95 2 2 A2 π D2 1 α2 53.7 1 0.8 2 4
(
)
(
)
空心圆轴能比实心圆轴更充分的使用材料。 空心圆轴能比实心圆轴更充分的使用材料。
理由? 理由?
空心圆轴能比实心圆轴更充分的使用材料的原因: 空心圆轴能比实心圆轴更充分的使用材料的原因:
(
)
五、圆轴扭转时的强度条件 圆轴扭转时的最大切应力不能超过 材料的许用切应力
τmax
T ax m = ≤ [τ] W p
例题 d2
A
B
C
d1 mA mB mC
已知: 已知:阶梯轴尺寸如图 mA = 22 kN m, mB = 36 kN m, mC =14 kN m
[τ]= 80 MPa
d1 =120 m , d2 =100m m m
对于钢材: 对于钢材:
200 G= = 80GPa 2(1+ 0.25)
§3-4 圆轴扭转时的应力
一、变形几何条件 1、变形观察: 变形观察:
圆周线不变(大小、 圆周线不变(大小、 间距都不变) 间距都不变) 纵向线倾斜, 纵向线倾斜, 倾斜角相同 表面矩形变成 平行四边形
薄壁圆筒由于壁很薄, 薄壁圆筒由于壁很薄,表 面变形即为内部变形。 面变形即为内部变形。
圆轴内部任意一点的切应力 圆轴内部任意一点的切应力 τ ρ 与该点到圆心的距离ρ 与该点到圆心的距离ρ成正比
d τ ρ = Gρ dx
(c)
ρ =0
τρ = 0
ρ=R
τ ρ =τ max
d = GR dx
三、静力关系