高频小信号单调谐与双调谐放大器实验报告
高频小信号调谐放大器实验报告

⑴空载放大倍数测试
断开J2,J3,连接J1,用示波器分别测出IN1端电压Ui和OUT端电压Uo,放大倍数为:
此时将输出输入信号接示波器两探头,使用示波器直接测量显示,可得空载时的放大倍数:
(2)有载放大倍数测试
断开J2,连接J1,J3,用示波器分别测出IN1端电压Ui和OUT端电压Uo,放大倍数为:
状态。
另外我们还测得的幅频特性如下:
通过测量,可得到通频带约为10.819MHz-10.655MHz =0.164MHz。
对照着仿真要求我们一步步进行仿真:
1.改变直流电流Ie,研究Ie逐渐增大时小信号放大器电压增益的变化
Ie/mA
0.979
1.858
2.558
3.412
Av/dB
18
21
21.5
23
仿真做完后,就应该把理论用于实践了,下面是运用实验箱进行的实验步骤及数据记录
1.静态工作点与谐振回路的调整
⑴ 在实验箱主板上插上小信号调谐放大器实验电路模块。接通实验箱上电源开关,指标灯点亮。用高频信号源产生10.7MHz信号由IN1端接入小信号调谐放大器实验电路,幅度在50mV左右。
⑵在OUT端用示波器观测到放大后的输入信号,调整电位器RW2和微调电容CV2,和中周铁芯的位置,使输出信号幅度最大且失真最小,也即使电路达到谐振状态。
此时将输出输入信号接示波器两探头,使用示波器直接测量显示,可得空载时的放大倍数:
数据分析:由测量结果我们可以知道,加了负载之后电路的放大倍数略微的降低,这是什么原因?
答:我们要电路的交流等效模型来解释,其等效模型图中有负载的情况只比没有负载的情况的时候多了一个电导G,如下图:
高频电子线路_小信号调谐放大器和高频功放_实验报告

1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
小信号调谐放大器实验

小信号调谐放大器实验一、实验目的1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器的基本工作原理; 3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态范围的概念和测量方法。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理在无线电技术中,经常会遇到这样的问题—所接收到的信号很弱,而这样的信号又往往与干扰信号同时进入接收机。
我们希望将有用的信号放大,把其它无用的干扰信号抑制掉。
借助于选频放大器,便可达到此目的。
小信号调谐放大器便是这样一种最常用的选频放大器,即有选择地对某一频率的信号进行放大的放大器。
小信号调谐放大器是构成无线电通信设备的主要电路,其作用是放大信道中的高频小信号。
调谐放大器主要由放大器和调谐回路两部分组成。
因此,调谐放大器不仅有放大作用,而且还有选频作用。
小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,其主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。
小信号调谐放大器中,小信号,通常指输入信号电压一般在微伏至毫伏数量级,放大这种信号的放大器工作在线性范围内;调谐,主要是指放大器的集电极负载为调谐回路(如LC 谐振回路)。
这种放大器对谐振频率o f 的信号具有最强的放大作用,而对其他远离o f 的频率信号,放大作用很差。
调谐放大器的幅频特性如图1-1所示。
放大倍数fof 1f K0.7K oK图 1-1 调谐放大器的幅频特性(1)单调谐放大器小信号调谐放大器的种类很多,按调谐回路区分,有单调谐放大器、双调谐放大器和参差调谐放大器。
按晶体管连接方法区分,有共基极、共发射极和共集电极调谐放大器,等等。
该电路采用共发射极单调谐放大,原理电路如图1-2所示。
图 1-2 共发射极单调谐放大器原理电路图1-2中晶体管T 起放大信号的作用,R b1、R b2、R e 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。
高频小信号放大器实验报告

实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。
既令2K1置“on”,重复测量并与上步图表中数据作比较。
f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。
)2K2往上拨,接通2C6(80P),2K1置off。
高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。
2K03往下拨,使高频信号送入放大器输入端。
示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。
反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。
按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。
f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。
高频电路实验报告

实验一 高频小信号放大器一、单调谐高频小信号放大器图1.1 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp ;MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。
,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.325输入,输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。
4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电相应的图,压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~AvBW0.7=6.372MHz-33.401kHz5,在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
二、下图为双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A输入端波形:输出端波形:2、利用软件中的波特图仪观察通频带,并计算矩形系数。
BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。
要设置起始时间与终止时间,和输出变量。
的波形。
(2)将输入信号的振幅修改为1V,用同样的设置,观察ic(提示:单击simulate 菜单中中analyses 选项下的transient analysis...命令,在弹出的对话框中设置。
高频小信号调谐放大器实验报告

⾼频⼩信号调谐放⼤器实验报告⾼频⼩信号调谐放⼤器实验报告⼀、实验⽬的1、熟悉单级⼩信号调谐放⼤器的⼯作原理和设计⽅法2、熟悉并联调谐回路两端并联电阻RL对于频率特性的影响,并分析回路品质因数,回路通频带以及选择性之间的关系3、理解放⼤器的传输特性,了解放⼤器电压传输曲线Vom-Vim在谐振点的测量⽅法,并了解Ic对于传输特性曲线的影响⼆、实验原理⾼频⼩信号单调谐放⼤器上图为晶体管共发射极⾼频单级⼩信号单调谐放⼤器,它不仅可以放⼤⾼频信号⽽且还具有⼀定的选频作⽤,此电路采⽤LC 并联谐振回路作为负载。
Cb为输⼊耦合电容,滤除直流信号,Rb1,Rb2,Re提供静态⼯作点,使其⼯作在放⼤区Ce是Re的旁路电容,LC构成并联谐振回路。
RL是集电极交流电阻,它影响了回路的品质因数,增益带宽。
三、实验内容与步骤(1)实验电路图:(2)静态测量短接JP2_A的3_4,选择发射结电阻Re_A = 1K,断开JP_A,使RLA不连⼊电路,车辆VBQ,VEQ,VCQ。
静态⼯作点测量静态⼯作点VBQ(V) VEQ(V) VCQ(V)实际测量值 1.90 1.20 12.06(3)动态研究1、电路连接选取RLA = 10k,Re_A=1K,将⾼频信号发⽣器Vpp设置为100mV,频率为10.7MHz,接⼊电路输⼊J1_A⽰波器探头,连接J2_A,观察2、调节电路调节CT1_A的值,当电压幅度最⼤时,转去调节⾼频⼩信号发⽣器,直⾄⽰波器显⽰输出幅值最⼤,记下f0为谐振频率3、数据测量选择RL=10k,⾼频信号发⽣器调节f0,Re_A=2K,调节输⼊电压Vi从20mV--820mV,逐点记录并填表(4)数据处理频率和相应输出电压值频率与相应的输出电压值f(MHz) 7.9 8.1 8.3 8.5 8.7 8.9 9.1 9.3 9.5Vo(V)RL_A= 10K Ω 0.78 0.93 1.07 1.22 1.51 1.91 2.46 3.33 4.08RL_A= 2K Ω 0.655 0.724 0.792 0.892 0.989 1.104 1.206 1.297 1.35 RL_A= 470Ω0.370.378 0.390.398 0.406 0.410.414 0.418 0.41f(MHz) 9.79.910.110.310.510.710.911.1Vo(V)RL_A= 10K Ω 3.68 2.84 2.2 1.77 1.45 1.3 1.1 0.98 RL_A= 2K Ω 1.4 1.351.281.19 1.11 1.01 0.95 0.88 RL_A= 470Ω0.422 0.418 0.410.40.40.390.40.3900.511.522.533.544.57.588.599.51010.51111.5频率与相应的输出电压值RL_A=10KRL_A=2KRL_A=0.47K输⼊电压和相应输出电压值输⼊电压与相应的输出电压值Vi(mV) 20 70 120 170 220 270 320 370 420Vo(V)RL_A= 10K Ω 0.579 1.71 2.35 2.71 2.93 3.13 3.26 3.4 3.55 RL_A= 10K Ω 1.2 3.3 4.5 5.1 5.5 5.9 6.16.46.6 RL_A= 10K Ω2.01 5.89 8.01 9.13 9.86 10.4 10.94 11.5 11.8Vi(mV) 470520 570 620 670 720 770 820Vo(V)Re_A= 2K Ω 3.67 3.78 3.9 4.01 4.11 4.25 4.34 4.46 Re_A= 1K Ω 6.9 7.2 7.4 7.6 7.8 8 8.2 8.4 RL_A= 510Ω12.112.312.612.812.912.912.913.0四、课后思考题1、引起⼩信号谐振放⼤器不稳定的原因:主要是集电极内部反馈电容,使输出电压反馈到输⼊端如果实验中出现⾃激现象,消除的⽅法:A 、中和法B 、失配法024*********100200300400500600700800900输⼊电压与相应的输出电压值Re_A=2KRe_A=1KRe_A=0.51K2、负载电阻和三极管β值负载电阻RL增加时电压增益减⼩通频带增⼤。
实验报告——高频小信号调谐放大器实验

实验报告——高频小信号调谐放大器实验一、实验目的1.熟悉高频电路实验箱,示波器,扫频仪的使用。
2.掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
3.熟悉谐振回路的调谐方法及幅频特性测试分析方法。
4.掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
二、实验条件实验仪器1、1号板信号源模块 1块2、2号板小信号放大模块 1块3、6号板频率计模块 1块4、双踪示波器 1台5、扫频仪(可选) 1块三、实验原理1、单调谐小信号放大器高频信号放大器工作频率高,但带宽相对工作频率却很窄。
按器件分:BJT、FET、集成电路(IC);按带宽分:窄带、宽带;按电路形式分:单级、多级;按负载性质分:谐振、非谐振。
晶体管集电极负载通常是一个由LC组成的并联谐振电路。
由于LC并联谐振回路的阻抗是随着频率变化而变化。
理论上可以分析,并联谐振在谐振频率处呈现纯阻,并达到最大值,即放大器在回路谐振频率上将具有最大的电压增益。
若偏离谐振频率,输出增益减小。
调谐放大器不仅具有对特定频率信号的放大作用,同时一也起着滤波和选频的作用。
单调谐放大器电路原理图谐振频率:谐振增益:12fe Vp p y Ag∑=通频带:2、双调谐放大器电路原理图双调谐回路放大器具有频带宽、选择性好的优点,并能较好地解决增益与通频带之间的矛盾,从而在通信接收设备中广泛应用。
在双调谐放大器中,被放大后的信号通过互感耦合回路加到下级放大器的输入端,若耦合回路初、次级本身的损耗很小,则均可被忽略。
电压增益为:通频带:1202fe Vp p y Ag=0.722LffQ ∆=为弱耦合时,谐振曲线为单峰;为强耦合时,谐振曲线出现双峰;临界耦合时,双调谐放大其的通频带BW四、实验步骤单调谐小信号放大器单元电路实验1、单频率谐振的调整断电状态下,按图连好电路,用示波器观测TP3,调节①号板信号源模块,使之输出幅度为200mV、频率为10.7MHz正弦波信号。
高频电子线路实验报告

高频电子线路实验报告起止日期:年至年第学期学生姓名班级学号成绩指导教师电气与信息工程学院实验一高频小信号调谐放大器(3课时)一、实验目的1.掌握小信号调谐放大器的基本工作原理。
2.谐振放大器电压增益、通频带、选择性的定义、测试及计算。
二、实验仪器、器材1.THCGP-1 型高频电子线路综合实验箱 1 台2.双踪示波器 DS-5042M 1台万用表 MF-47 型 1 块3.器材:单调谐小信号放大模块 1 块三、实验原理单调谐小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图 2-1 所示(模块②上)。
图 2-1 实验电路该电路由三极管 Q1 及其集电极选频回路 T1 组成。
它对输入的高频小信号进行放大,并具有一定的选频作用。
基极偏置电阻 W3、R22、R4 和射极电阻 R5 决定三极管的静态工作点。
可变电阻 W3 改变基极偏置电阻将改变三极管的静态工作点,从而可改变放大器的增益。
四、实验步骤(一)单调谐小信号放大器单元电路实验1.根据图 2-1 实验电路熟悉实验板电路,并在电路板上找出与原理图对应的各测试点。
2.按图 2-2 所示图连接好实验电路。
3.打开实验箱电源,按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮。
4.打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮。
5.调节信号源“RF 幅度”和“频率调节”旋钮,使输出端口“RF1”“RF2”输出。
频率为 10.5MHz 左右的高频信号。
将信号输入到 2 号板的 J4 口。
先用示波器在 TH1 处观察信号峰-峰值约为 50mV。
(先调频率再调幅度)图 2-2 测试连接图6.调节高频信号发生器的输出信号频率,使单调谐放大器谐振:操作方法:将示波器探头接在调谐放大器的输出端 TH2,调节示波器直至能观察到输出信号的波形,先调节 W3 使输出信号幅度最大,再调节高频信号发生器的输出信号频率使示波器上的信号幅度最大(先用 500KHz 档调节,再用 20 KHz 档调节,直到示波器上的信号幅度最大),此时放大器即被调谐到输入信号的频率点上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频小信号单调谐与双调谐放大器
实验报告
14044012 孙胤邦
14 级电子一班
•输出电压幅值U/mV
1 \
j \
J____ ■
实验表格及图像
单调谐放大器的电压幅值
输入信号频率f/fHz 5.
4
5.
5
5.
6
5.
7
5.
8
5.
9
6 6.
1
6.
2
6.
3
6.
4
6.
5
6.
6
6.
7
6.
8
6.
9
输出电压幅值
U/m V 1.
6
1.
76
2
2.
16
2.
4
2.
7
3.
12
3.
84
4.
8
6.
32
7.
92
8.
08
7.
52
6.
08
4.
8
3.
84
单调谐放大器幅频特性
输入信号频率
9 8 7
2 1
如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )单调谐的峰值为8.08mV , 下降到0.707倍时的值为5.71mv 。
输入 信号 频率 f/MHz 4
8 5
5 2
5 4
5 6 5 7 5 8 5 9 6
6 1
6
2 6
3 6
4 6
5 6
6 6
7 6
8 6 9 7 7 1 输出 电压 幅值 U/mV 0 6
1 1 4
2
5
7 4
6 8
5 8
5 4
5 6
6 4
7 2
7 4
6 2
4 4
3 6
2 2 8
1 6 8
1 4
1 1 2
双调谐回路幅频特性
如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )双调谐的峰值为7.40mV 和7.40mv 下降到0.707倍时的值为5.23mV 和5.23mV 。
这样看来,单调谐放大器优点是电路简单,缺点是通频带窄、选择性差、增益低。
双调谐放大器具有良好的选择性、 较宽的通频带。
而且由图可以看出双调谐的选 择性明显优于单调谐放大器。
值幅压电岀输
2 3 4 5 输入信号频率
6 7 8
8 7 6 5
4 3 2 1 0
放大器输入电压与输出电压关系
三、(纵坐标为输出电压V,横坐标为输入电压mV )。
当放大器的输入电压增加到一定的程度之后,输出的波形会失真,和输入波形不再一模一样。
二、实验结论及感想
这是这一学期的第一次高频实验,通过低频放大的和高频所学内容,使我更真切地了解了高频小信号调谐放大器的工作原理,尤其
是单级单调谐放大器和双级单调谐放大电路的原理,更是巩固了通电
理论课上学到的谐振放大器电压增益、通频带、选择性的相关知识和计算方法,并在实验中测试了各组数据,验证了理论知识。
当然了,通过在实验室调试各种高频仪器,我基本上学会了使用高频中的扫频仪、示波器、万用表、直流稳压电源和信号源,以及消除自激的方法。
总体说来,本次实验是一次很好的尝试,让我对高频电路有了进一步了解,激发了学习通信电子电路的兴趣。