13解直角三角形(2)

合集下载

2023年中考数学一轮专题练习 解直角三角形的实际应用2(含解析)

2023年中考数学一轮专题练习 解直角三角形的实际应用2(含解析)

2023年中考数学一轮专题练习 ——解直角三角形的实际应用(解答题部分)一、解答题(本大题共16小题)1. (湖北省恩施州2022年)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A 处测得古亭B 位于北偏东60°,他们向南走50m 到达D 点,测得古亭B 位于北偏东45°,求古亭与古柳之间的距离AB 1.41≈ 1.73≈,结果精确到1m ).2. (湖南省湘潭市2022年)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DHAH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,参考数1.732≈)3. (湖南省怀化市2022年)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.,≈1.41)4. (湖南省邵阳市2022年)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈)1.414≈, 1.7325. (湖南省郴州市2022年)如图是某水库大坝的横截面,坝高20mCD=,背水坡BC i=.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员的坡度为11:1i=A与原起点B之间的距离.(参准备把背水坡的坡度改为2≈.结果精确到0.1m)≈ 1.731.416. (天津市2022年)如图,某座山AB的项部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42︒,测得塔底B的仰角为35︒.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:,.︒≈︒≈tan350.70tan420.907. (四川省自贡市2022年)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心O 处,另一端系小重物G .测量时,使支杆OM 、量角器90°刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点,A B 共线(如图②),此目标P 的仰角POC GON ∠=∠.请说明两个角相等的理由.(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点K 处测得顶端P 的仰角60POQ ∠=,观测点与树的距离KH 为5米,点O 到地面的距离OK 为1.5米;求树高PH 1.73≈,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端P 距离地面高度PH (如图④),同学们讨论,决定先在水平地面上选取观测点,E F (,,E F H 在同一直线上),分别测得点P 的仰角,αβ,再测得,E F 间的距离m ,点12,O O 到地面的距离12,O E O F 均为1.5米;求PH (用,,m αβ表示).8. (四川省遂宁市2022年)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A 处测得塔楼顶端点E 的仰角50.2GAE ∠=︒,台阶AB 长26米,台阶坡面AB 的坡度5:12i =,然后在点B 处测得塔楼顶端点E 的仰角63.4EBF ∠=︒,则塔顶到地面的高度EF 约为多少米. (参考数据:tan50.2 1.20︒≈,tan63.4 2.00︒≈,sin50.20.77︒≈,sin63.40.89︒≈)9. (四川省内江市2022年)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)10. (四川省眉山市2022年)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45︒,求此建筑物的高.(结果保留整数.参考数据: 1.41≈,≈)1.7311. (四川省泸州市2022年)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile.求B,D间的距离(计算过程中的数据不取近似值).12. (四川省凉山州2022年)去年,我国南方菜地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C 处压折,塔尖恰好落在坡面上的点B 处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B 处测得BC 与水平线的夹角为45°,塔基A 所在斜坡与水平线的夹角为30°,A 、B 两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).13. (湖北省鄂州市2022年)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG =30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ; (2)此时飞机的高度AB ,(结果保留根号)14. (四川省成都市2022年)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)15. (黑龙江省绥化市2022年)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos480.669︒≈,tan 48 1.111︒≈)16. (四川省广元市2022年)如图,计划在山顶A 的正下方沿直线CD 方向开通穿山隧道EF .在点E 处测得山顶A 的仰角为45°,在距E 点80m 的C 处测得山顶A 的仰角为30°,从与F 点相距10m 的D 处测得山顶A 的仰角为45°,点C 、E 、F 、D 在同一直线上,求隧道EF 的长度.参考答案1. 【答案】古亭与古柳之间的距离AB 的长约为137m 【分析】过点B 作AD 的垂直,交DA 延长线于点C ,设m AC x =,则(50)m CD x =+,分别在Rt BCD 和Rt ABC △中,解直角三角形求出,BC AB 的长,再建立方程,解方程可得x 的值,由此即可得出答案. 【详解】解:如图,过点B 作AD 的垂直,交DA 延长线于点C , 由题意得:50m,60,45AD BAC D =∠=︒∠=︒, 设m AC x =,则(50)m CD AC AD x =+=+, 在Rt BCD 中,tan (50)m BC CD D x =⋅=+,在Rt ABC △中,tan m BC AC BAC =⋅∠=,2m cos ACAB x BAC==∠,则50x +=,解得25x =,则250137(m)AB x ==≈,答:古亭与古柳之间的距离AB 的长约为137m .2. 【答案】72cm 【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解. 【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒ 1cos60102AE AB AB ∴=︒⨯==,BE =,,AB AC BAD CAD AD AD =∠=∠=ADC ADB ∴≌ 90BDC ∠=︒ 45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+≈0.618DHAH≈ 0.618DHDH AD∴≈+解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈ 答:最少需要准备72cm 长的伞柄 3. 【答案】不穿过,理由见解析 【分析】先作AD ⊥BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可. 【详解】不穿过,理由如下:过点A 作AD ⊥BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x , 在Rt △ACD 中,∠ACD=45°, ∴∠CAD=45°, ∴AD=CD =x .在Rt △ABD 中,tan 30ADBD︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.4. 【答案】这艘轮船继续向正东方向航行是安全的,理由见解析 【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可. 【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°, tan ∠DBC =CD BD ,即CDBD=1 ∴CD =BD 设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x, ∵40.98km>40km∴这艘船继续向东航行安全.5. 【答案】背水坡新起点A 与原起点B 之间的距离约为14.6m 【分析】通过解直角三角形Rt BCD 和Rt ACD ∆,分别求出AD 和BD 的长,由AB AD BD =-求出AB 的长. 【详解】解:在Rt BCD 中,∵背水坡BC 的坡度11:1i =,∴1CDBD=, ∴()20m BD CD ==.在Rt ACD ∆中,∵背水坡AC 的坡度2i = ∴CD AD =∴)m AD ==,∴()2014.6m AB AD BD =-=≈.答:背水坡新起点A 与原起点B 之间的距离约为14.6m . 6. 【答案】这座山AB 的高度约为112m 【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解. 【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan ACAPC PA∠=, ∴tan ACPA APC=∠.在Rt PAB 中,tan AB APB PA∠=, ∴tan ABPA APB=∠.∵AC AB BC =+, ∴tan tan AB BC ABAPC APB+=∠∠.∴()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m . 7. 【答案】(1)证明见解析 (2)10.2米(3)tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 【分析】(1)根据图形和同角或等角的余角相等可以证明出结果;(2)根据锐角三角函数和题意,可以计算出PH 的长,注意最后的结果;(3)根据锐角三角函数和题目中的数据,可以用含αβ、、m 的式子表示出PH .(1)证明:∵9090,COG AON ∠=︒∠=︒∴POC CON GON CON ∠+∠=∠+∠∴POC GON ∠=∠(2)由题意得:KH =OQ =5米,OK =QH =1.5米,9060,OQP POQ ∠=︒∠=︒,在Rt △POQ 中tan ∠POQ =5PQ PQ OQ ==∴PQ =∴15102PH PQ QH =+=+≈..(米)故答案为:10.2米.(3)由题意得:1212, 1.5O O EF m O E O F DH m =====, 由图得:21==tan tan PD PD O D O D βα, 21tan tan PD PD O D O D βα==,, ∴1221O O O D O D =- ∴tan tan PD PD m βα=- ∴tan tan tan tan m PD αβαβ=- ∴tan tan 1.5tan tan m PH PD DH αβαβ⎛⎫=+=+ ⎪-⎝⎭米 故答案为:tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 8. 【答案】塔顶到地面的高度EF 约为47米【分析】延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,设5BP x =,则12AP x =,根据解直角三角形建立方程求解即可.【详解】如图,延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,∴FB HP =,FH BP =.由5:12i =,可设5BP x =,则12AP x =,由222BP AP AB +=可得()()22251226x x +=,解得2x =或2x =-(舍去),∴10BP FH ==,24AP =,设EF a =米,BF b =米,在Rt BEF △中tan EF EBF BF ∠=, 即tan 63.42a b︒=≈,则2a b =① 在Rt EAH 中,tan EH EF FH EF BP EAH AH AP PH AP BF++∠===++, 即10tan 50.2 1.2024a b +︒=≈+② 由①②得47a =,23.5b =.答:塔顶到地面的高度EF 约为47米.9. 【答案】(1)()米;【分析】(1)过点A 作AE ⊥l 于点E ,设CE =x ,在Rt △ADE 中可表示出DE ,在Rt △ACE 中可表示出AE ,通过解直角三角形ADE 求出x 即可;(2)过点B 作BF ⊥l ,垂足为F ,继而得出CE 的长,在Rt △BCF 中,求出CF ,继而可求出AB .(1)解:过点A 作AE ⊥l ,垂足为E ,设CE =x 米,∵CD =60米,∴DE =CE +CD =(x +60)米,∵∠ACB =15°,∠BCD =120°,∴∠ACE =180°﹣∠ACB ﹣∠BCD =45°,在Rt △AEC 中,AE =CE •tan 45°=x (米),在Rt △ADE 中,∠ADE =30°,∴tan 30°=AE ED =60x x + ∴x =,经检验:x =30是原方程的根,∴AE =(30)米,∴河的宽度为()米;(2)过点B 作BF ⊥l ,垂足为F ,则CE =AE =BF =()米,AB =EF ,∵∠BCD =120°,∴∠BCF =180°﹣∠BCD =60°,在Rt △BCF 中,CF =tan 60BF ︒= ∴AB =EF =CE ﹣CF =30﹣(∴古树A 、B 之间的距离为10. 【答案】82米【分析】设CD 的长为x ,可以得出BD 的长也为x ,从而表示出AD 的长度,然后利用解直角三角形中的正切列出方程求解即可.【详解】解:设CD 为x ,∵45CBD ∠=︒,∠CDB =90°,∴BD CD x ==,∴()60AD AB BD x =+=+,在Rt ACD 中,∠ADC =90°,∠DAC =30°,tan CD DAC AD∠=,即60x x =+ ∴30330x∴81.9m x =82m ≈.答:此建筑物的高度约为82m .11. 【答案】B ,D 间的距离为14nmile .【分析】如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .再根据锐角三角函数即可求出B ,D 间的距离.【详解】解:如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .在Rt △ABC 中,AC =BC∴AB =16(nmile),在Rt △ADE 中,AD =10 nmile ,∠EAD =60°,∴DE =AD , AE =12AD =5 (nmile), ∴BE =AB -AE =11(nmile),∴BD =14(nmile),答:B ,D 间的距离为14nmile .12. 【答案】(8+米【分析】过点B 作BD AC ⊥于点D ,在Rt △ABD 和Rt BCD 中,分别解直角三角形求出,,,AD BD CD BC 的长,由此即可得. 【详解】解:如图,过点B 作BD AC ⊥于点D ,由题意得:16AB =米,45,30,CBD E AC EF ∠=︒∠=︒⊥,BD EF ∴,30ABD E ∴∠=∠=︒,在Rt △ABD 中,182AD AB ==米,cos BD AB ABD =⋅∠=在Rt BCD 中,tan CD BD CBD =⋅∠=cos BD BC CBD ==∠则8AD CD BC ++=+答:压折前该输电铁塔的高度为(8+米.13. 【答案】(1)(2)()90米【分析】(1)先根据斜坡CF 的坡比=1:3,求出CG 的长,然后利用勾股定理求出CD 的长即可;(2)如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,BH =DG =30米,DH =BG ,证明AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,解直角三角形得到3090x x -=+ (1)解:∵斜坡CF 的坡比=1:3,铅垂高度DG =30米, ∴13DG CG =, ∴90CG =米,∴CD ==米;(2)解:如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,∴BH =DG =30米,DH =BG ,∵∠ABC =90°,∠ACB =45°,∴△ABC 是等腰直角三角形,∴AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米, 在Rt △ADH中,tan AH ADH DH ∠==,∴3090x x -=+解得90x =,∴()90AB =米.14. 【答案】约为19cm【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =10201sin 302OC,在Rt △A DO '中,18072A OC A OB ,20OA OA '==cm , ∴sin72200.9519A D OA cm .15. 【答案】4.9m【分析】 先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC =30m ,AB =10m ,∠C =90°,则BC =AC -AB =30-10=20,在Rt △ADC 中,tan 30tan 3010DC AC A =⨯∠=⨯=,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯,∴20tan 4810DE EC DC =-=⨯-即20tan 481020 1.11110 1.732 4.9DE =⨯-⨯-⨯=故广告牌DE 的高度为4.9m .16. 【答案】隧道EF 的长度()30米.【分析】过点A 作AG ⊥CD 于点G ,然后根据题意易得AG =EG =DG ,则设AG =EG =DG =x ,进而根据三角函数可得出CG 的长,根据线段的和差关系则有80x +=,最后问题可求解.【详解】解:过点A 作AG ⊥CD 于点G ,如图所示:由题意得:80m,10m,45,30CE DF AEF ADE ACE ==∠=∠=︒∠=︒,∴△EAD 是等腰直角三角形,∴AG =EG =DG ,设AG =EG =DG =x ,∴tan 30AG CG ==︒,∴80x +=,解得:40x =,∴()40m AG EG DG ===,∴()401030m EF ED DF =-=-=;答:隧道EF 的长度()30米.。

解直角三角形知识点及跟踪习题

解直角三角形知识点及跟踪习题

解直角三角形知识点及跟踪习题 考点一、直角三角形的性质1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30° 可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点 知识点二.三角函数对于锐角A 的每一个确定的值,其对边与斜边、邻边与斜边、邻边与对边的比值也是惟一确定的. 因此这几个比值都是锐角∠A 的函数,记作sin A 、cos A 、tan A 、cot A ,即sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠, tan A =的邻边的对边A A ∠∠, cot A = 的对边的邻边A A ∠∠分别叫做锐角∠A 的正弦、余弦、正切、余切,统称为锐角∠A 的三角函数.知识点三。

锐角三角函数的特征与性质:(1)锐角三角函数的值都是正实数,并且0<sin A <1,0<cos A <1 (2)tan A •cot A =1(3)补充:sin tan cos AAA,cos cot sin AA A (视情况定) (4)补充:已知锐角∠A ,则22sin cos 1AA(视情况定)(5)锐角三角函数的增减性当角度在0°~90°之间变化时,①.正弦值随着角度的增大(或减小)而增大(或减小) ②.余弦值随着角度的增大(或减小)而减小(或增大) ③.正切值随着角度的增大(或减小)而增大(或减小) ④.余切值随着角度的增大(或减小)而减小(或增大 知识点四、一些特殊角的三角函数值三角函数 0° 30°45°60°90° sinα 0 21 22 23 1 cos α 1 23 22 21 0 tan α 0 33 1 3不存在 cot α不存在3133 0︒15020米30米从上往下看,视线与水平线的夹角叫做俯角.(2在修路、挖河、开渠和筑坝时,设计纸上都要注明斜坡的倾斜程度. 如图19.4.5,坡面的铅垂高度(h )和水平长度(l )的比叫做坡面坡度 (或坡比).记作i ,即i =lh . 坡度通常写成1∶m 的形式,如i =1∶6. 坡面与水平面的夹角叫做坡角,记作a ,有i =lh=tan a 显然,坡度越大,坡角a 就越大,坡面就越陡. 知识点六.1.解直角三角形:在直角三角形中,除一个直角外,还有2个角和3条边共5个元素,由已知元素求出未知元素 的过程,叫做解直角三角形。

《解直角三角形》数学教学PPT课件(3篇)

《解直角三角形》数学教学PPT课件(3篇)
b
获取新知
B
对边 a C
c 斜边
b 邻边 A
定义:一般地,直角三角形中,除直角外 还有五个元素,即三条边和两个锐角.由直角三 角形中的已知元素,求出其余未知元素的过程 叫做解直角三角形.
直角三角形中,未知的5个元素之间的关系
B
①三边之间的关系
a
c
a2 b2 c2
C
A
b
已知任意两边可求出第
直角三角形中,未知的5个元素之间的关系
解:过点 A作 AD⊥BC于D.
在△ACD中,∠C=45°,AC=2,
∴CD=AD=sinC·AC=2sin45°= 2 .
在△ABD中,∠B=30°, ∴BD= AD 2 6
tan B 3
∴BC=CD+BD=3 2 + 6
A
D B
归纳总结
C

AD
BB
A D
CE

提 求解非直角三角形的边角问题,常通过添加适 示
解:∵△ABD是等边三角形,∴∠B=60°.
在Rt△ABC中,AB=2,∠B=60°,
BC
AB cosB
2 1

4,AC
AB
tanB
2
3.
2
△ABC的周长为2+ 2 3 +4=6+ 2 3 .
3.在Rt△ABC中,∠C=90°,tanA= 12 ,△ABC 5
的周长为45cm,CD是斜边AB上的高,求CD的长.(精 确到0.1 cm)
例5 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分
别为a,b,c,且c=100,∠A=26°44′.求这个三角形
的其他元素.(长度精确到0.01)

人教版数学九年级下册《 解直角三角形》PPT课件

人教版数学九年级下册《  解直角三角形》PPT课件

∴ AB的长为
巩固练习
在Rt△ABC中,∠C=90°,sinA = 0.8 ,BC=8,则
AC的值为( B )
A.4
B.6
C.8
D.10
如图,在菱形ABCD中,AE⊥BC于点E,EC=4,
sin B 4 ,则菱形的周长是 ( C )
5
A.10
B.20
C.40
D.28
链接中考
如图,在△ABC中,BC=12,tan A 3 ,B=30°;求
已知一边及一锐角解直角三角形
例2 如图,在 Rt△ABC 中,∠C = 90°,∠B = 35°, b = 20,解这个直角三角形 (结果保留小数点后一位).
解:∠A 90 ∠B=90 35 =55 .
tan B b ,
a
c
a b 20 28.6.
tan B tan 35
B
35° a
sin B b,c b 20 34.9.
探究新知
A
在Rt△ABC中,
一角
(1)根据∠A= 60°,你能求出这个三角形
的其他元素吗?
不能
两角
C
B (2)根据∠A=60°,∠B=30°, 你能求出这个
你发现了
三角形的其他元素吗?
不能
一角
什么? (3)根据∠A= 60°,斜边AB=4,你能求出这个三角形的其 一边
他元素吗?
∠B
AC BC
两边
(4)根据 BC 2 3,AC= 2 , 你能求出这个三角形的
AC和AB的长.
4
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
H
∴CH 1 BC 6 ,BH BC2 CH 2 6 3 ,

九年级同步第13讲:解直角三角形的应用-教师版

九年级同步第13讲:解直角三角形的应用-教师版

ABCDE F12 3【例1】 如图,90C DEB ∠=∠=︒,FB // AC ,从A 看D 的仰角是______;从B 看D 的俯角是______;从A 看B 的______角是______;从D 看B 的______角是______.【难度】★【答案】2∠;3∠;仰;1∠;仰;3∠. 【解析】考查仰角、俯角的基本定义.【例2】 升国旗时,某同学站在离旗杆底部24米处行注目礼.当国旗升至旗杆顶端时,该 同学视线的仰角为30°.若双眼离地面1.5米,则旗杆的高度为______米.(用含根号的式子表示)【难度】★ 【答案】2338+. 【解析解:如图所示,AB 为旗杆,CD 为某同学. 则24==CA DE ,5.1==AE CD ,30BDE ∠=︒,在BDE Rt △中,DE BEBDE =∠tan ,∴2433BE=, ∴38=BE ,∴2338+=+=EB AE AB . 【总结】本题主要考查锐角三角比的实际应用以及对仰角的理解.例题解析ABC D 【例3】 如图,两建筑物水平距离为a 米,从点A 测得点C 的俯角为α,测得点D 的俯角 为β,则较低建筑物CD 的高为( )A .a 米B .(tan a αg )米C .tan a α米D .(tan tan )a αβ-米【难度】★ 【答案】D【解析】过C 作CE ⊥AB ,垂足为E . 由题意有:a BD CE ==,α=∠ACE ,β=∠ADB 在ACE Rt △中,CE AE ACE =∠tan , ∴αtan a AE =在ABD Rt △中,BDABADB =∠tan , ∴βtan a AB =∴()βαβαtan tan tan tan -=-=-==a a a AE AB BE DC【总结】本题主要考查锐角三角比的实际应用以及对俯角的理解.【例4】 如图,河对岸有一座铁塔AB ,若在河这边C 、D 处分别用测角仪器测得顶部A 的仰角为30°、45°,已知CD = 30米,求铁塔的高.(结果保留根号)【难度】★★ 【答案】15315+.【解析】解:由题意可得:︒=∠30ACB ,︒=∠45ADB . 设x AB =,则x BD =,在ABC Rt △中,BC AB ACB =∠tan ,∴3330=+x x ,解得:15315-=x . 【总结】本题主要考查锐角三角比的实际应用以及对仰角的理解.AB CDEABCDAB CDE【例5】 如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为60°,看这栋高楼 底部的俯角为30°,热气球与高楼的水平距离为120m ,请问:这栋高楼有多高?(结果精确到0.1m )【难度】★★ 【答案】277.1米.【解析】解:由题意可得:︒=∠60BAD ,︒=∠30CAD ,120=AD在ABD Rt △中,AD BDBAD =∠tan ,∴1203BD=,∴3120=BD . 在ACD Rt △中,AD CDCAD =∠tan ,∴12033CD=,∴340=CD . ∴1.27731603403120≈=+=+=CD BD BC【总结】本题主要考查锐角三角比的实际应用以及对仰角、俯角的理解和运用.【例6】 如图,某幢大楼顶部有一块广告牌CD ,甲、乙两人分别在相距8米的A 、B 两处 测得点D 和点C 的仰角为45°和60°,且A 、B 、E 三点在一条直线上,若BE = 15米,3 1.73≈,计算结果保留整数)【难度】★★ 【答案】3【解析】解:由题意可得:︒=∠60CBE ,︒=∠45ADE ,在CBE Rt △中,BE CECBE =∠tan ,∴153CE=,∴315=CE 在AED Rt △中,AEDEDAE =∠tan ,∴1581+=DE,∴23=DE . ∴323315≈-=-=ED EC CD .【总结】本题主要考查锐角三角比的实际应用以及对仰角的理解和运用.【例7】 某高层建筑物图中AB 所示,小明家住在高层建筑物附近的“祥和”大厦(图中 CD 所示),小明想利用所学的有关知识测量出高层建筑物AB 的高度.他先在自己家 的阳台(图中的Q 点)测得AB 的顶端(点A )的仰角为37°,然后来到楼下,由于附 近建筑物影响测量,小明向AB 方向走了84米,来到另一座高楼的底端(图中的点P 处),测得点A 的仰角为45°.已知点C 、P 、B 在一条直线上,小明家的阳台距地面60米,请你画出示意图,并根据上述信息求出AB 的高度.(参考数据:sin370.6︒=,cos370.8︒=,tan370.75︒=) 【难度】★★★ 【答案】492米.【解析】过Q 作AE ⊥AB ,垂足为E . 解:由题意可得:︒=∠37AQE ,︒=∠45APB , 60=CQ ,84=PC .设x BA =,则x PB = 在AQE Rt △中,QEAEAQE =∠tan , ∴xx+-=846075.0,∴492=x .【总结】本题综合性较强,需要认真分析题目中的条件,然后利用锐角三角比解决实际问题.ABC D P QE【例8】 如图,为某小区的两幢10层住宅楼,由地面向上依次为第1层、第2层、…、第 10层,每层的高度为3米,两楼间的距离AC = 30米.现需了解在某一时间段内,甲 楼对乙楼采光的影响情况.假设某一时刻甲楼楼顶B 落在乙楼的影子长EC = h ,太阳光线与水平线的夹角为α.(1)用含α的式子表示h ;(2)当α= 30°时,甲楼楼顶B 的影子落在乙楼的第几层?从此时算起,若α每小时增加10°,约几小时后,甲楼的影子刚好不影响乙楼采光.(结果精确到0.01)【难度】★★★【答案】(1)αtan 3030-=h ;(2)第4层,6小时.【解析】解:(1)由题意可得:30103=⨯=AB . 过E 作FE ⊥AB ,垂足为F .在BEF Rt △中,EFFBBEF =∠tan ,∴tan 30FBα=,∴αtan 30=BF .∴αtan 3030-=-==AF AB AF EC . (2)如图2,30==AC AB , ∴︒=∠45BCA∵若α每小时增加10°, ∴()5.1103045=÷-.∴需要1.5小时才能从30°到90°.【总结】本题综合性较强,需要认真分析题目中的条件,然后利用锐角三角比解决实际问题.BD甲 楼乙 楼太阳光EF北北偏东30°南偏西45°北偏西70°南偏东50°30° 70° 45° 50°1、 方向角指北或指南方向线与目标方向线所成的小于90°的角叫做方向角. 如图:北偏东30°,北偏西70°,南偏东50°,南偏西45°.【例9】 如果由点A 测得点B 在北偏东15°的方向,则由B 测点A 的方向为( )A .北偏东15°B .北偏西75°C .南偏西15°D .南偏东75°【难度】★ 【答案】B【解析】考查方向角的定义.【例10】 如图,小明从A 地沿北偏东30°方向走1003米到B 地,再从B 地向正南方向走200米到C 地,此时小明离A 地_____米.【难度】★ 【答案】100.【解析】解:由题意可知:︒=∠30ABD在ADB Rt △中,AB ADABD =∠cos ,∴310033BD =,∴150=BD ,35022=-=DB AB AD . 知识精讲例题解析A BC东南西D∴50150200=-=-=BD BC CD .∴10022=+=CD AD AC .【总结】本题主要考查对方位角的准确理解和运用.【例11】 如图,一艘轮船由海平面上A 地出发向南偏西40°的方向行驶40海里到达B地,再由B 地向北偏西20°的方向行驶40海里到达C 地,则A 、C 两地相距( ) A .30海里 B .40海里C .50海里D .60海里【难度】★ 【答案】B【解析】解:∵AB BC =,︒=∠60ABC ∴ABC △为等边三角形.∴40=AC .【总结】本题主要考查利用方位角解决实际问题.【例12】 在位于O 处某海防哨所的北偏东60°相距6海里的A 处,有一艘快艇正向正南方向航行,经过一段时间快艇到达哨所东南方向的B 处,则A 、B 间的距离是______海里.(精确到0.1海里,2 1.414≈,3 1.732≈)【难度】★★ 【答案】5.5.【解析】解:由题意可知:6=OA ,︒=∠30AOC ,︒=∠45BOC在AOC Rt △中,AO ACAOC =∠sin ,∴216=AC ,∴3CA =,3322=-=AC AO OC . ∴33==CO BC .∴5.5333≈+=+=BC AC AB .【总结】本题主要考查利用方位角解决实际问题.北 北 ABC【例13】 如图,一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34°方向上的B 处,请问,此时,海轮所在的B 处距离灯塔P 有多远?(精确到0.01海里,cos250.91︒≈,sin340.559︒≈)【难度】★★ 【答案】130.23.【解析】解:在APC Rt △中,APPCAPC =∠cos , ∴8091.0PC=,∴8.72=PC 在BPC Rt △中,BPPCCBP =∠sin ,∴BP8.72559.0=,∴23.130=PB . 【总结】本题主要考查利用方位角解决实际问题.【例14】 如图,A 、B 为湖滨的两个景点,C 为湖心一个景点.景点B 在景点C 的正东方向,从景点A 看,景点B 在北偏东75°方向,景点C 在北偏东30°方向.一游客自景 点A 驾船以20米/分的速度行驶了10分到达景点C ,之后又以同样的速度驶向景点B ,该游客从景点C 到景点B 需用多长时间?(tan75 3.732︒≈,精确到1分)【难度】★★ 【答案】27分.【解析】过A 作AD ⊥BC 的延长线于D . 由题意可得:︒=∠75BAD ,︒=∠30DAC ,2002010=⨯=AC .在ADC Rt △中,ACDCCAD =∠cos , ∴20023AD=,∴3100=AD ,100=DC 在ABD Rt △中,DABDBAD =∠tan ,∴3100732.3BD=,∴32.373=DB∴3824.64610032.373≈-=-=CD BD BC东南西北ABPCABC东北D∴2731.27203824.646≈==t .【总结】本题主要考查利用方位角解决实际问题.【例15】 如图,某船以36海里/时的速度向正东方向航行,在点A 测得某岛C 在北偏东60°方向上,航行半小时后到达点B ,测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁.(1)试说明点B 是否在暗礁区域外?(2)若继续向东航行有无触礁危险?请说明理由. 【难度】★★【答案】(1)B 在暗礁区外;(2)有危险. 【解析】解:(1)由题意可得:︒=∠30CAB ,︒=∠60CBD ,182136=⨯=AB .∴︒=︒-︒=∠-∠=∠303060CAB CBD ACB , ∴ACB CAB ∠=∠ ∴1618>==BC AB∴B 在暗礁区外.(2)在BDC Rt △中,BCDCBCD =∠cos , ∴1823CD=,∴16188.1539<≈=CD∴若继续向东航行有触礁危险.【总结】本题主要考查利用方位角解决实际问题,注意在触礁问题中的最小距离指的是垂直距离.东A B CD【例16】 如图,AC 是某市环城路的一段,AE 、BF 、CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A 、B 、C .经测量,花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上,AB = 2千米,15DAC ∠=︒.(1)求B 、D 之间的距离; (2)求C 、D 之间的距离. 【难度】★★【答案】(1)2;(2)332. 【解析】解:(1)由题意得:︒=∠45EAD , ︒=∠30DBF .∵FB AE ∥∴︒=∠=∠60EAB FBC ∴︒=∠30DBC ∵15DAC ∠=︒ ∴︒=∠15ADB ∴DAB ADB ∠=∠∴2==AB BD(2)∵CD AE ∥ ∴︒=∠=∠45ADC EAD ∴︒=∠30BDC过C 作CG ⊥BD ,垂足为G 在GDC Rt △中,DCDGBDC =∠cos , ∴CD123=,∴332=CD .【总结】本题主要考查利用方位角解决实际问题,要注意认真分析题意.ABCDE F和平路 文化路中山路G11 / 32【例17】 如图,甲、乙两只捕捞船同时从A 港出海捕鱼,甲船以每小时152千米的速度沿北偏西60°的方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2 小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶,结果两船在B 处相遇.(1) 甲船从C 处追赶上乙船用了多少时间?(2) 求甲船加快速度后,追赶乙船时的速度?(结果保留根号) 【难度】★★★【答案】(1)4小时;(2)231515+. 【解析】解:由题意可得:︒=∠45BCA , ︒=∠105BAC ,︒=∠30B , 2302215=⨯=AC .在ACD Rt △中,AC ADBCA =∠sin ,∴23022AD =, ∴30=AD , ∴30==AD CD ,602==AD AB ,330=BD . ∴(1)41560=÷=t ;(2)()231515433030+=÷+=v . 【总结】本题主要考查利用方位角解决实际问题,要注意认真分析题意.东东北 ABCD12 / 32【例18】 如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2千米,点B 位于点A 北偏东60°方向且与点A 相距10千米处.现有一艘轮船从位于点B 南偏 西76°方向的C 处,正沿该航线自西向东航行,5分钟后该轮船行至点A 正北方向的点D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度.(结果精确到0.1千米/时)(参考数据:3 1.73≈,sin760.97︒≈,cos760.24︒≈,tan76 4.01︒≈)【难度】★★★【答案】(1)3;(2)40.4.【解析】解:(1)由题意有:2=AD ,︒=∠30BAH .在BAH Rt △中,521==AB BH ,3522=-=BH AB AH ,∴325=-=-=-=AD BH FH BH BF .(2)在BCF Rt △中,BF CFCBF =∠tan ,∴301.4CF=,∴03.12=CF . ∴3503.12-=-=-=AH CF DF CF CD .∴()()112.03535min 12.035340.4/12v km km h km h =-÷=-÷≈. 【总结】本题主要考查利用方位角解决实际问题,要注意认真分析题目中给出的条件.ABC D E l东北F H13 / 32ABCDABC【例19】 某人沿着坡度为3 : 4的斜坡前进了10米,则他所在的位置比原来的位置升高______米.【难度】★ 【答案】6.【解析】考查坡度的定义.【例20】 某铁路路基的横断面是等腰梯形,其上底为10米,下底为13.6米,高1.2米,则腰面坡角的正切值为______.【难度】★ 【答案】32.【解析】考查等腰梯形双高的辅助线.【例21】 如图,坡角为30°的斜坡上两树间的水平距离AC 为2米,则两树间的坡面距离AB 为( )A .4米B 3C 43D .43米【难度】★ 【答案】C【解析】考查坡角的定义.【例22】 如图,燕尾槽的横断面中,槽口的形状是等腰梯形,其外口宽AD = 15毫米,槽的深度为12毫米,B 的正切值为43,则它的里口宽BC = ______.【难度】★★14 / 32【答案】33毫米.【解析】考查等腰梯形双高的辅助线.【例23】 河堤横断面是梯形,上底为4米,堤高为6米,斜坡AD 的坡度为1 : 3,斜坡CB 的坡角为45°,则河堤横断面的面积为______平方米.【难度】★★ 【答案】96.【解析】考查坡角的基本定义.【例24】 如图,一个大坝的横断面是一个梯形ABCD ,其中坝顶AB = 3米,经测量背水坡AD = 20米,坝高10米,迎水坡BC 的坡度i = 1 : 0.6,求迎水坡BC 的坡角C ∠的余切值和坝底宽CD .【难度】★★【答案】53;3109+.【解析】过A 、B 作AE ⊥CD ,BF ⊥CD .由题意可得:356.01tan ==C ,10==BF AE ,∴5316.0cot ==C . 在BCF Rt △中,CFBFC =∠tan , ∴CF1035=,∴6=CF .在ADE Rt △中,31022=-=AE AD DE ,ABCDE F15 / 32ABCD∴931063310+=++=++=FC EF DE CD .【总结】本题主要考查坡脚和坡比的概念.【例25】 如图,某村开挖一条长1600米的水渠,渠道的横断面为等腰梯形,渠道深0.8米,下底宽1.2米,坡度为1 : 1.求一共挖土多少立方米?【难度】★★ 【答案】2560. 【解析】()6.18.02.18.221=⨯+⨯=ABCD S 梯形,256016006.1=⨯=V .【总结】考查等腰梯形双高辅助线的做法和坡度的基本定义.【例26】 如图,小杰发现垂直地面的旗杆AB 的影子落在地面和斜坡上,影长分别为BC 和CD ,经测量得BC =10米,CD =10米,斜坡CD 的坡度为1:3i =,且此时测得垂直于地面的1米长标杆在地面上影长为2米,求旗杆AB 的长度.(答案保留整数,其中10 3.2≈) 【难度】★★ 【答案】13.【解析】解:延长AD 和BC 交于点E ,过D 作DF ⊥BE .由题意可知:31tan =∠DCF ,21tan =E .在DCF Rt △中,CF DF DCF =∠tan ,∴CF DF=31.设x DF =,x CF 3=,则()101032222==+=+=x x x FC FD DC ,∴10=x .∴10=DF ,103=CF .AB CDEF16 / 32在DEF Rt △中,EFDFE =∠tan , ∴EF1021=,∴102=EF 在ABC Rt △中,EBABE =∠tan ,∴1021031021++=AB ,∴1351025≈+=AB . 【总结】本题主要考查利用坡脚和坡比的概念以及锐角三角比的相关概念解决实际问题.【例27】 如图,斜坡AP 的坡度为1:2.4,坡长AP 为26米,在坡顶A 处的同一水平面上有一座古塔BC ,在斜坡底P 处测得该塔的塔顶B 的仰角为45°,在坡顶A 处测得该塔的塔顶B 的仰角为76°.求:(1)坡顶A 到地面PQ 的距离;(2)古塔BC 的高度.(结果精确到1米)(参考数据:sin760.97︒≈,cos760.24︒≈,tan76 4.01︒≈)【难度】★★【答案】(1)10;(2)19.【解析】解:延长BC 交PQ 于点E ,过A 作AD ⊥PQ由题意可知:︒=∠76BAC ,︒=∠45BPE1254.2:1tan ==∠APD .在APD Rt △中,PD DA APD =∠tan ,∴PD DA=125.设x DA 5=,x PD 12=, 则()()26131252222==+=+=x x x PD AD PA ,∴2=x .∴10=DA ,24=PD . 在BAC Rt △中,AC BC BAC =∠tan ,∴ACBC=01.4 设x CA =,x BC 01.4=,ABCPQD E17 / 32ABCDE F G H 在PBE Rt △中,EPEBBPE =∠tan , ∴241001.41++=x x ,∴65.4=x .∴1901.4≈=x BC .【总结】本题主要考查利用坡脚和坡比的概念以及锐角三角比的相关概念解决实际问题.【例28】 如图,某堤坝的横截面是梯形ABCD ,背水坡AD 的坡度i 为1 : 1.2,坝高为5米.现为了提高堤坝的防洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD 加宽1米,形成新的背水坡EF ,其坡度为1 : 1.4,已知堤坝总长度为4000米.(1)求完成该工程需要多少立方米的土?(2)该工程由甲、乙两个工程队同时合作完成.按原计划需要20天.准备开工前接到上级 通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队 工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少立方米?【难度】★★★【答案】(1)30000;(2)甲:1000;乙:500.【解析】由题意可知:652.1:1tan ==∠DAG ,754.1:1tan ==∠EFG .在AGD Rt △中,AGDG DAG =∠tan ,∴AG565=,∴6=AG . ∴516=-=-=GH AG AH . 在EFH Rt △中,FHEHEFG =∠tan , ∴FH575=,∴7=FH . ∴257=-=-=AH FH AF . ∴()()2155212121=⋅+=⋅+=EH AF ED S EDAF 梯形.∴300004000215=⨯=V . (2)设原计划甲工程队每天完成x 立方米,乙工程队每天完成y 立方米,18 / 32则根据题意可得:()()()()⎩⎨⎧=+++-=+30000]401301[5203000020y x y x %%,解得:⎩⎨⎧==5001000y x .∴原计划甲工程队每天完成1000立方米,乙工程队每天完成500立方米.【总结】本题主要考查利用坡脚和坡比的概念以及锐角三角比的相关概念解决实际问题. 【例29】 如图所示,在风景区观测塔高时,塔的底部不能直接到达.测绘员从观景台(横截面为梯形ABCD )的底部A 沿坡面AB 方向走30米到达顶部B 处,用测角仪(测角 仪的高度忽略不计)在点B 处测得塔顶E 的仰角是45°,沿BC 方向走20米到达点C 处 测得塔顶E 的仰角是60°.已知坡面AB 的坡度是1:3,根据上述测量数据能否求出塔高?若能,请求出塔高(精确到1米);若不能,说明还需测出哪些量才能求出塔高.【难度】★★★ 【答案】能,62米.【解析】由题意可知:︒=∠45EBC ,︒=∠60ECG .333:1tan ==∠BAD . 过B 作BH ⊥AD . 在ECG Rt △中,CGEG ECG =∠tan ,∴31EGCG =.设x CG =,x EG 3=, 在EBG Rt △中,BGEGEBG =∠tan , ∴BGEG=1. ∴2031+=x x,∴31010+=x . ∵333:1tan ==∠BAD , ∴︒=∠30BAC .∴1521==AB BH .∴6231045153≈+=+=+=x GF EG EF .【总结】本题主要考查利用坡脚和坡比的概念以及锐角三角比的相关概念解决实际问题,注AB C DEFGH19 / 32意认真分析题目中的条件,分析清楚仰角分别指的是哪个角.【例30】 如图,小智所住的楼房在一个不高的斜坡EF 上,楼房旁边不远处有一棵笔直而垂直于水平地面BE 的大树HD .小智想要测量这棵大树HD 的高度.在下午的某个 时刻,他观察到这棵大树树梢H 的影子落在楼房的外墙面上的点G 处.同时,他又观 察到在大树旁边有一根笔直而垂直于水平地面BE 的木柱AB ,它在水平地面BE 上的影 子BC 也清晰可见.小智通过测量得到以下一些数据:AB = 1.6米,BC = 3.2米,DE =7.2米,EF = 2.6米,斜坡EF 的坡度i =1 : 2.4,FG = 1.6米.试求大树HD 的高.【难度】★★★ 【答案】7.4米.【解析】解:由题意可得:12:54.2:1tan ==∠FEN ,212.36.1tan tan ===∠=∠BC AB ACB HGM过F 作FM ⊥HD ,过F 作FN ⊥DN在EFN Rt △中,EN FN FEN =∠tan ,∴EN FN=125.设x FN 5=,x EN 12=, ∴则()()6.2131252222==+=+=x x x EN FN EF ,∴2.0=x .∴1=FN ,4.2=EN .∴6.94.22.7=+=+==EN DE DN MG .在HGM Rt △中,MG HMHGM =∠tan ,∴6.921HM =,∴8.4=HM .∴4.716.18.4=++=++=+=FN GF HM MD HM HD .【总结】本题主要考查利用坡脚和坡比的概念以及锐角三角比的相关概念解决实际问题,注意认真分析题目中的条件.A B CDEF GHM N随堂检测【习题1】某飞机在离地面1200米的上空测得地面控制点的俯角为60°,此时飞机与该地面控制点之间的距离是______米.【难度】★800.【答案】3【解析】考查俯角的定义.【习题2】一船在海上点B处沿南偏东10°方向航行到点C处,这时在小岛A测得点C 在南偏西80°方向,则=______.ACB【难度】★【答案】90°【解析】考查方向角的定义.【习题3】某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为25米,则这个坡面的坡度为______.【难度】★【答案】1:2【解析】考查坡度的定义.20/ 32AB CDE【习题4】 如图,已知楼房AB 高50米,铁塔塔基距楼房房基间的水平距离BD = 50米, 塔高DC 150503+ ) A .由楼顶望塔顶仰角为60° B .由楼顶望塔基俯角为60° C .由楼顶望塔顶仰角为30°D .由楼顶望塔基俯角为30°【难度】★★ 【答案】C .【解析】解:由图可知:50====AE DE DB AB , ∴3350503350150=-+=-=ED CD EC . 在ACE Rt △中,33503350tan ===∠AE CE CAE ,∴︒=∠30CAE .∴由楼顶望塔顶仰角为30°.【总结】本题主要考查利用已知条件解直角三角形,再利用锐角三角比的值求出角的度数.【习题5】 A 港在B 地的正南103A 港开出向西航行,某人第一次 在B 处望见该船在南偏西30°,半小时后,有望见该船在南偏西60°,则该船速度为______.【难度】★★ 【答案】40h km /.【解析】解:在ACB Rt △中,ABAC CBA =∠tan ,∴33310=CA ,解得:10=CA . 在ADB Rt △中,ABAD DBA =∠tan ,∴3310=DA ,解得:30=DA .∴201030=-=-=AC AD CD ,∴402120=÷=v . 【总结】本题主要考查利用方位角解决实际问题.DABCNM 【习题6】 如图,一架飞机在高度为5千米的点A 时,测得前方的山顶D 的俯角为30°, 水平向前飞行2千米到达点B 时,又测得山顶D 的俯角为45°,求这座山的高度DN .(结果可保留根号)【难度】★★ 【答案】43-米.【解析】解:由题意可得:5==CN AM , 2=AB ,︒=∠30CAD ,︒=∠45CBD .设x CD =,则x BC =.在ACD Rt △中,tan DC CAD AC ∠=,∴233+=x x,解得:13+=x , ∴()34135-=+-=-=CD CN DN .【总结】本题主要考查利用仰角和俯角的有关概念解决实际问题.【习题7】 小岛B 正好在深水港口A 的东南方向,一艘集装箱货船从港口A 出发,沿正 东方向以每小时30千米的速度行驶,40分钟后在C 处测得小岛B 在它的南偏东15°方向,求小岛B 离深水港口A 的距离.(精确到0.1千米)(参考数据:2 1.41≈,6 2.45≈,sin150.26︒≈,cos150.97︒≈,tan150.27︒≈) 【难度】★★ 【答案】38.6千米.【解析】解:由题意可得:203230=⨯=AC , ︒=∠45CAB ,︒=∠30B .过C 点作CD ⊥AB .在ACD Rt △中,ACDC CAD =∠sin ,∴2022CD=,解得:210=CD ,∴210==CD AD .在BCD Rt △中,BDDCB =tan ,∴BD 21033=,解得:610=BD . ∴6.38610210≈+=+=BD AD AB . 【总结】本题主要考查利用方位角解决实际问题.ABC北 北 D【习题8】 如图,以水库大坝横断面是梯形ABCD ,坝顶宽6米,坝高23米,斜坡AB的坡度1:3AB i =,斜坡CD 的坡度1:2.5CD i =.(1)求斜坡AB 和坝底AD 的长度;(2)若要把坝宽增加3米,同时背水坡AB 的坡度AB i 由原来的1 : 3变为1 : 5,请求出大坝横断面的面积增加了多少平方米.【难度】★★【答案】(1)1023,132.5;(2)598. 【解析】解:由题意可得: 6=BC ,23==CF BE ,31tan =A ,525.21tan ==D .在ABE Rt △中,AEBE A =tan ,∴AE2331=,解得:69=AE . ∴102369232222=+=+=AE BE AB . 在CDF Rt △中,DFCF D =tan ,∴DF 2352=,解得:2115=DF .∴5.1322115669=++=++=FD EF AE AD . (2)由(1)可得:66369=-=-=ME AE AM .在HGM Rt △中,HM GM H =tan , ∴HM2351=,∴115=HM . ∴4966115=-=-=AM HM AH .∴()()598234932121=⋅+=⋅+=GM AH GB S GHAB 梯形.【总结】本题主要考查利用坡度来解决实际问题,注意对题目中条件的认真分析.ABCDEFCD F G H【习题9】 某城市规划期间,欲拆除河岸边的一根电线杆AB (如图),已知距电线杆AB 水平距离14米处是河岸,即BD = 14米,该河岸的坡面CD 的坡比为1 : 2,岸高CF 为2米,在坡顶C 处测得杆顶A 的仰角为30°,D 、E 之间是宽2米的人行道,请你通 过计算说明在拆除电线杆AB 时,为确保安全,是否需要将此人行道封上?(在地面上以点B 为圆心,以AB 长为半径的圆形区域为危险区域)【难度】★★★【答案】不需要将此人行道封上. 【解析】解:由题意可知:︒=∠30ACG ,21tan =D .在Rt CDF △中,DF CF D =tan ,∴DF221=,解得:4=DF , ∴52422222=+=+=DF CF CD . ∴18414=+=+=DF BD BF .在AGC Rt △中,GC AG ACG =∠tan ,∴1833AG=,解得:36=AG , ∴392.12236≈+=+=GB AG AB . ∴BD AB <.∴不需要将此人行道封上.【总结】本题主要考查利用坡度来解决实际问题,注意对题目中条件的认真分析.【习题10】 如图,小唐同学在操场上放风筝,风筝从A 处起飞,一会儿便飞抵C 处,此 时,在AQ 延长线B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°.若绳子在空中视为一条线段,求绳子AC 约为多长?(结果保留根号)【难度】★★★ 【答案】65215+.【解析】解:(1)由题意可知:︒=∠30B , ︒=∠45PAQ ,10=PQ .在PBQ Rt △中,BQPQB =tan ,∴BQ1033=,解得:310=BQ , ∵10==PQ AQ ,∴10310+=+=QA BQ AB . (2)由题意有:︒=∠75CAD ∴︒=︒-︒=∠453075C . 过A 作AE ⊥BC ,在ABE Rt △中,ABAE B =sin ,∴3101023+=AE ,解得:1535+=AE ,在ACE Rt △中,ACEA C =sin ,∴AC351522+=,解得:65215+=AC . 【总结】本题综合性较强,主要是利用已知条件,结合仰角和俯角的运用解直角三角形.BCDPE【作业1】 身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300米,250 米,200米,线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则 三人所放的风筝( )A .甲的最高B .乙的最低C .丙的最低D .乙的最高【难度】★ 【答案】D .【解析】由仰角的定义和解直角三角形可得:甲的风筝离地面150米,乙的风筝离地面 2125米,丙的风筝离地面3100米.∵150********>>∴乙的风筝最高.【总结】本题主要考查方位角的概念以及特殊角的锐角三角比的值.【作业2】 小明在东西方向是沿江大道A 处,测得江中灯塔P 在北偏东60°方向上,在A 处正东400米的B 处,测得江中灯塔P 在北偏东30°方向上,则灯塔P 到沿江大道的距离为______米.【难度】★ 【答案】3200.【解析】解:由题意可知:︒=∠30PAB ,︒=∠120PBA . ∴︒=∠30APB ∴APB PAB ∠=∠ ∴400==PB AB过P 作PC ⊥AB ,垂足为C 在PBC Rt △中,PBPCPBC =∠sin , ∴40023PC=∴3200=PC .【总结】本题主要考查方位角的概念及运用.课后作业【作业3】 某人从地面沿着坡度1:3i =的山坡走了100米,这时他离地面的高度是______米.【难度】★ 【答案】50【解析】考查坡度的定义和解直角三角形.【作业4】 如图,一渔船上的渔民在A 处看见灯塔M 在北偏东60°的方向,这艘渔船以 28海里/时的速度向正东航行,半小时到达B 处,在B 处看见灯塔M 在北偏东15°的方 向,此时灯塔M 与渔船的距离是( )A .14海里B .142海里C .7海里D .72海里【难度】★★ 【答案】D【解析】解:由题意有:︒=∠30MAB ,︒=∠105ABM ,142128=⨯=AB .∴︒=∠45M .过B 作BC ⊥AM ,垂足为C在ABC Rt △中,721==AB BC ;在MBC Rt △中,MBBCM =sin , ∴722MB=.∴27=MB .【总结】本题主要考查利用方位角结合锐角三角比解决实际问题.A BM北东C【作业5】 如图,在同一地面上有甲、乙两幢楼AB 、CD ,甲楼AB 高10米,从甲楼AB 的楼顶测得乙楼CD 的楼顶C 的仰角为30°,从乙楼CD 的楼顶C 拉下的节日庆典条幅 CE 与地面所成的角为60°,这时条幅与地面的固定点E 到甲楼B 的距离为24米,求条幅CE 的长度.【难度】★★【答案】24310+米.【解析】解:由题意可知:︒=∠30CAF ,︒=∠60CED 设x CE 2=,则x ED =,x CD 3=在ACF Rt △中,AF CF CAF =∠tan ,∴xx +-=2410333, ∴1235+=x .∴243102+==x CE .【总结】本题主要考查利用仰角和俯角的相关概念结合锐角三角比解决实际问题.AB CDEF【作业6】 如图,水坝的横截面是梯形ABCD ,上底AD = 4米,坝高3AM DN ==米,斜坡AB 的坡比11:3i =,斜坡DC 的坡比21:1i =.(1)求坝底BC 的长;(结果保留根号)(2)为了增加水坝的抗洪能力,在原来的水坝上增加高度,使得水坝的上底2EF =米,求水坝增加的高度.(精确到0.1米,参考数据3 1.73≈)【难度】★★【答案】(1)733+;(2)0.7米.【解析】解:(1)在MBA Rt △中,MBAMB =tan , ∴BM331=,∴33=MB . 在DNC Rt △中,NCDNC =tan , ∴NC31=,∴3=NC .∴7333433+=++=++=NC MN BM BC .(2)在EGB Rt △中,BG EGB =tan ,∴BG EG =31, 在FCH Rt △中,HC FH C =tan ,∴HCFH=1, 设x FH EG ==,则x BG 3=,x CH =,∴73323+=++=++=++=x x HC EF BG HC GH BG BC . ∴32+=x .∴7.013332≈-=-+=∆h .【总结】本题主要考查利用坡度和坡比的相关概念结合锐角三角比解决实际问题.ABCDNMABCDNMEF GH【作业7】 如图,某人在建筑物AB 的顶部测得一烟囱CD 的顶端C 的仰角为45°,测得点C 在湖中的倒影C 1的俯角为60°,已知AB = 20米,求烟囱CD 的高.【难度】★★【答案】40320+米.【解析】解:由题意可得:︒=∠45CAE ,︒=∠601EBC .过A 作AE ⊥CD ,垂足为E . 设x CE =,则x AE =. ∵C 和C 1关于BD 对称, ∴201+==x D C CD . 在1AEC Rt △中,AEEC EAC 11tan =∠, ∴xx 403+=,∴20320+=x .∴4032020+=+=x CD .【总结】本题主要考查利用俯角的相关概念结合锐角三角比解决实际问题,注意认真分析.【作业8】 如图,一水渠的横断面是等腰梯形,已知其迎水斜坡AD 和BC 的坡度为1: 0.6,现在测得放水前的水面宽EF 为1.2米,当水闸放水后,水渠内水面宽GH 为2.1米,求放水后水面上升的高度.【难度】★★【答案】放水后水面上升的高度为0.75米.【解析】解:由题意可知:四边形GEFH 为等腰梯形. 356.0:1tan ==∠MGE .过E 作EM ⊥GH ,过F 作FN ⊥GH 由等腰梯形的性质可得:45.0==NH GM .在GME Rt △中,GM EMMGE =∠tan ,∴45.035EM=,∴75.0=EM .∴放水后水面上升的高度为0.75米.【总结】本题主要考查利用坡度和坡比的相关概念结合锐角三角比解决实际问题.ABC DC 1E AC D EF GHMN31 / 32 【作业9】 台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋 风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220千米的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就减弱一级,该台风中心现在以每小时15千米的速度沿北偏东30︒方向往C 移动,且台风中心风力不 变,若城市所受风力达到四级,则称受台风影响.(1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长?(3)该城市受台风影响的最大风力是几级?【难度】★★★【答案】(1)受影响;(2)h 154;(3)6.5级.【解析】解:(1)会受到台风影响.过A 作AD ⊥BC .台风在移动时,距离A 最近D 处时, 在ABD Rt △中,1102202121=⨯==AB AD 110÷20=5.5;12-5.5=6.5;6.5超过4级,受台风影响. (2)当台风在移动,其与A 距离是()km 16041220=-⨯时开始受影响或结束影响.持续时间为h h t 15415110160222=-⨯=. (3)由(1)可得:该城市受台风影响的最大风力是6.5级.【总结】本题主要考查对方位角的理解以及是否受影响的理解,解题时要认真分析题意.A B C D32 / 32 【作业10】 如图,小明发现在小丘上种植着一棵香樟树AB ,它的影子恰好落在丘顶平地BC 和斜坡的坡面CD 上.小明测得BC = 4米,斜坡的坡面CD 的坡度为41:3,CD =2.5米.如果小明同时还测得附近的一根垂直于地面的2米高的木柱MN 的影长NP = 1.5 米,求这棵香樟树AB 的高度.【难度】★★★ 【答案】6.5米.【解析】解:由题意可得:4:334:1tan ==∠CDE 345.12tan tan ==∠=ADE P . 4==EF BC , 设x FC 3=,x DF 4=, ∴()()5.25432222==+=+=x x x DF CF CD . ∴5.0=x ,∴5.1=CF ,2=DF ,∴5.1==CF BE .在AED Rt △中,ED AE ADE =∠tan , ∴245.134++=AB , ∴5.6=AB .【总结】本题综合性较强,考查的知识点比较多,要认真分析题意,并且熟练使用相似的性质以及通过锐角三角比解直角三角形的方法.A B CD 光线P N M E F。

(完整)【解直角三角形】专题复习(知识点+考点+测试)(2),推荐文档

(完整)【解直角三角形】专题复习(知识点+考点+测试)(2),推荐文档

一、直角三角形的性质《解直角三角形》专题复习1、直角三角形的两个锐角互余A几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。

1D几何表示:【∵∠C=90°∠A=30°∴BC= AB 】23、直角三角形斜边上的中线等于斜边的一半。

几何表示:【∵∠ACB=90° D 为 AB 的中点 ∴ CD= 1 AB=BD=AD 】2C B4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在 Rt△ABC 中∵∠ACB=90° ∴ a 2 + b 2 = c 2 】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项, 每条直角边是它们在斜边上的射影和斜边的比例中项。

即:【∵∠ACB=90°CD⊥AB∴ CD 2 = AD • BDAC 2 = AD • AB BC 2 = BD • AB 】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。

( a • b = c • h )由上图可得:AB • CD=AC • BC二、锐角三角函数的概念如图,在△ABC 中,∠C=90°sin A = ∠A 的对边 =a斜边 c cos A = ∠A 的邻边 =b斜边 c tan A = ∠A 的对边 =a∠A 的邻边 b cot A = ∠A 的邻边 =b ∠A 的对边 a锐角 A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sinα≤1,0≤cosα≤1,tanα≥0,cotα≥0.三、锐角三角函数之间的关系(1) 平方关系(同一锐角的正弦和余弦值的平方和等于 1) sin 2 A + cos 2 A = 1 (2) 倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA • tan(90°—A)=1; cotA • cot(90°—A)=1; (3) 弦切关系tanA= sin A cos A cotA= cos Asin A (4) 互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A)30°23 60°C仰角俯角北东南iα1tanA=cot(90°—A),cotA=tan(90°—A)四、特殊角的三角函数值A说明:锐角三角函数的增减性,当角度在 0°~90°之间变化时. (1) 正弦值随着角度的增大(或减小)而增大(或减小) B(2)余弦值随着角度的增大(或减小)而减小(或增大) A(3) 正切值随着角度的增大(或减小)而增大(或减小) (4) 余切值随着角度的增大(或减小)而减小(或增大)2五、 解直角三角形2 在 Rt△中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三 角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

解直角三角形的函数值列举:(2)

解直角三角形的函数值列举:(2)

∙概念:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形。

解直角三角形的边角关系:在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,(1)三边之间的关系:(勾股定理);(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:。

∙解直角三角形的函数值:锐角三角函数:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a(1)互余角的三角函数值之间的关系:若∠A+∠B=90°,那么sinA=cosB或sinB=cosA(2)同角的三角函数值之间的关系:①sin2A+cos2A=1②tanA=sinA/cosA③tanA=1/tanB④a/sinA=b/sinB=c/sinC(3)锐角三角函数随角度的变化规律:锐角∠A的tan值和sin值随着角度的增大而增大,cos值随着角度的增大而减小。

∙解直角三角形的应用:一般步骤是:(1)将实际问题抽象为数学问题(画图,转化为直角三角形的问题);(2)根据题目的条件,适当选择锐角三角函数等去解三角形;(3)得到数学问题的答案;(4)还原为实际问题的答案。

∙解直角三角形的函数值列举:sin1=0.01745240643728351 sin2=0.03489949670250097sin3=0.05233595624294383sin4=0.0697564737441253 sin5=0.08715574274765816sin6=0.10452846326765346sin7=0.12186934340514747 sin8=0.13917310096006544sin9=0.15643446504023087sin10=0.17364817766693033 sin11=0.1908089953765448sin12=0.20791169081775931sin13=0.22495105434386497 sin14=0.24192189559966773sin15=0.25881904510252074sin16=0.27563735581699916 sin17=0.2923717047227367 sin18=0.3090169943749474sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027sin22=0.374606593415912 sin23=0.3907311284892737 sin24=0.40673664307580015sin25=0.42261826174069944 sin26=0.4383711467890774 sin27=0.45399049973954675sin28=0.4694715627858908 sin29=0.48480962024633706 sin30=0.49999999999999994sin31=0.5150380749100542 sin32=0.5299192642332049 sin33=0.544639035015027sin34=0.5591929034707468 sin35=0.573576436351046 sin36=0.5877852522924731sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.6293203910498375sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.6691306063588582sin43=0.6819983600624985 sin44=0.6946583704589972 sin45=0.7071067811865475sin46=0.7193398003386511 sin47=0.7313537016191705sin48=0.7431448254773941sin49=0.7547095802227719 sin50=0.766044443118978 sin51=0.7771459614569708sin52=0.7880107536067219 sin53=0.7986355100472928 sin54=0.8090169943749474sin55=0.8191520442889918 sin56=0.8290375725550417 sin57=0.8386705679454239sin58=0.848048096156426 sin59=0.8571673007021122 sin60=0.8660254037844386sin61=0.8746197071393957 sin62=0.8829475928589269 sin63=0.8910065241883678sin64=0.898794046299167 sin65=0.9063077870366499 sin66=0.9135454576426009sin67=0.9205048534524404 sin68=0.9271838545667873 sin69=0.9335804264972017sin70=0.9396926207859083 sin71=0.9455185755993167 sin72=0.9510565162951535sin73=0.9563047559630354 sin74=0.9612616959383189 sin75=0.9659258262890683sin76=0.9702957262759965 sin77=0.9743700647852352 sin78=0.9781476007338057sin79=0.981627183447664 sin80=0.984807753012208sin81=0.9876883405951378sin82=0.9902680687415704 sin83=0.992546151641322 sin84=0.9945218953682733sin85=0.9961946980917455 sin86=0.9975640502598242 sin87=0.9986295347545738sin88=0.9993908270190958 sin89=0.9998476951563913 sin90=1cos1=0.9998476951563913 cos2=0.9993908270190958 cos3=0.9986295347545738cos4=0.9975640502598242 cos5=0.9961946980917455 cos6=0.9945218953682733cos7=0.992546151641322 cos8=0.9902680687415704 cos9=0.9876883405951378cos10=0.984807753012208 cos11=0.981627183447664 cos12=0.9781476007338057cos13=0.9743700647852352 cos14=0.9702957262759965 cos15=0.9659258262890683cos16=0.9612616959383189 cos17=0.9563047559630355 cos18=0.9510565162951535cos19=0.9455185755993168 cos20=0.9396926207859084 cos21=0.9335804264972017cos22=0.9271838545667874 cos23=0.9205048534524404cos24=0.9135454576426009cos25=0.9063077870366499 cos26=0.898794046299167 cos27=0.8910065241883679cos28=0.882947592858927 cos29=0.8746197071393957 cos30=0.8660254037844387cos31=0.8571673007021123 cos32=0.848048096156426 cos33=0.838670567945424cos34=0.8290375725550417 cos35=0.8191520442889918 cos36=0.8090169943749474cos37=0.7986355100472928 cos38=0.7880107536067219 cos39=0.7771459614569709cos40=0.766044443118978 cos41=0.754709580222772 cos42=0.7431448254773942cos43=0.7313537016191705 cos44=0.7193398003386512 cos45=0.7071067811865476cos46=0.6946583704589974 cos47=0.6819983600624985 cos48=0.6691306063588582cos49=0.6560590289905074 cos50=0.6427876096865394 cos51=0.6293203910498375cos52=0.6156614753256583 cos53=0.6018150231520484 cos54=0.5877852522924731cos55=0.5735764363510462 cos56=0.5591929034707468cos57=0.5446390350150272cos58=0.5299192642332049 cos59=0.5150380749100544 cos60=0.5000000000000001cos61=0.4848096202463371 cos62=0.46947156278589086 cos63=0.4539904997395468cos64=0.43837114678907746 cos65=0.42261826174069944 cos66=0.4067366430758004cos67=0.3907311284892737 cos68=0.3746065934159122 cos69=0.35836794954530015cos70=0.3420201433256688 cos71=0.32556815445715675 cos72=0.30901699437494745cos73=0.29237170472273677 cos74=0.27563735581699916 cos75=0.25881904510252074cos76=0.24192189559966767 cos77=0.22495105434386514 cos78=0.20791169081775923cos79=0.19080899537654491 cos80=0.17364817766693041 cos81=0.15643446504023092cos82=0.13917310096006546 cos83=0.12186934340514749 cos84=0.10452846326765346cos85=0.08715574274765836 cos86=0.06975647374412523 cos87=0.052335956242943966cos88=0.03489949670250108 cos89=0.0174524064372836 cos90=0tan1=0.017455064928217585 tan2=0.03492076949174773 tan3=0.052407779283041196tan4=0.06992681194351041 tan5=0.08748866352592401 tan6=0.10510423526567646tan7=0.1227845609029046 tan8=0.14054083470239145 tan9=0.15838444032453627tan10=0.17632698070846497 tan11=0.19438030913771848 tan12=0.2125565616700221tan13=0.2308681911255631 tan14=0.24932800284318068 tan15=0.2679491924311227tan16=0.2867453857588079 tan17=0.30573068145866033 tan18=0.3249196962329063tan19=0.34432761328966527 tan20=0.36397023426620234 tan21=0.3838640350354158tan22=0.4040262258351568 tan23=0.4244748162096047 tan24=0.4452286853085361tan25=0.4663076581549986 tan26=0.4877325885658614 tan27=0.5095254494944288tan28=0.5317094316614788 tan29=0.554309051452769 tan30=0.5773502691896257tan31=0.6008606190275604 tan32=0.6248693519093275 tan33=0.6494075931975104tan34=0.6745085168424265 tan35=0.7002075382097097 tan36=0.7265425280053609tan37=0.7535540501027942 tan38=0.7812856265067174 tan39=0.8097840331950072tan40=0.8390996311772799 tan41=0.8692867378162267 tan42=0.9004040442978399tan43=0.9325150861376618 tan44=0.9656887748070739 tan45=0.9999999999999999tan46=1.0355303137905693 tan47=1.0723687100246826 tan48=1.1106125148291927tan49=1.1503684072210092 tan50=1.19175359259421 tan51=1.234897156535051tan52=1.2799416321930785 tan53=1.3270448216204098 tan54=1.3763819204711733tan55=1.4281480067421144 tan56=1.4825609685127403 tan57=1.5398649638145827tan58=1.6003345290410506 tan59=1.6642794823505173 tan60=1.7320508075688767tan61=1.8040477552714235 tan62=1.8807264653463318 tan63=1.9626105055051503tan64=2.050303841579296 tan65=2.1445069205095586 tan66=2.246036773904215tan67=2.355852365823753 tan68=2.4750868534162946 tan69=2.6050890646938023tan70=2.7474774194546216 tan71=2.904210877675822 tan72=3.0776835371752526tan73=3.2708526184841404 tan74=3.4874144438409087 tan75=3.7320508075688776tan76=4.0107809335358455 tan77=4.331475874284153 tan78=4.704630109478456tan79=5.144554015970307 tan80=5.671281819617707 tan81=6.313751514675041tan82=7.115369722384207 tan83=8.144346427974593 tan84=9.514364454222587tan85=11.43005230276132 tan86=14.300666256711942 tan87=19.08113668772816tan88=28.636253282915515 tan89=57.289961630759144 tan90=(无限)。

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析1.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:,)【答案】53米.【解析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC 中,利用三角函数即可求解.试题解析:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC-∠B=60°-30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.【考点】解直角三角形的应用-仰角俯角问题.2.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(2);(3).【解析】(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;(2)∵∠A=∠ABD=36°,∴AD=BD,∵BD=BC,∴AD=BD=CD=1,设CD=x,则有AB=AC=x+1,∵△ABC∽△BCD,∴,即,整理得:x2+x-1=0,解得:x1=,x2=(负值,舍去),则x=;(3)过B作BE⊥AC,交AC于点E,∵BD=CD,∴E为CD中点,即DE=CE=,在Rt△ABE中,cosA=cos36°=,在Rt△BCE中,cosC=cos72°=,则cos36°-cos72°=-=.【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.3.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AD=3,cosB=3/5,则AC等于()A.4B.5C.6D.7【答案】B.【解析】∵∠BAC=90°,AD⊥BC于D,∴∠BAD+∠CAD=90°,∠BAD+∠B=90°,∴∠CAD=∠B,∴cos∠CAD=cosB=,在直角△ACD中,∵∠ADC=90°,AD=3,∴cos∠CAD=,∴AC=5.故选B.【考点】解直角三角形.4.在△ACB中,∠C=90°,AB=10,,,.则BC的长为()A.6B.7.5C.8D.12.5【答案】A.【解析】∵∠C=90°,∴.又∵AB=10,∴.故选A.【考点】1.解直角三角形;2.锐角三角函数定义.5.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【答案】(1)10米;(2)19米.【解析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AH的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.试题解析::(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴,设AH=5k,则PH=12k,由勾股定理,得AP=13k.∴13k=26.解得k=2.∴AH=10.答:坡顶A到地面PQ的距离为10米.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x-14.在Rt△ABC中,tan76°=,即,解得x=,即x≈19,答:古塔BC的高度约为19米.【考点】1.解直角三角形的应用-坡度坡角问题;2.解直角三角形的应用-仰角俯角问题.6.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)【答案】(1)112(米) (2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时)∴此车没有超过限制速度.7.在△ABC中,若∠A、∠B满足|cos A-|+=0,则∠C=________.【答案】75°【解析】∵|cos A-|+=0,∴cos A-=0,sin B-=0,∴cos A=,sin B=,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°.8.在△ABC中,∠C=90°,,则().A.B.C.D.【答案】D.【解析】由sin A=,设∠A的对边是3k,则斜边是5k,∠A的邻边是4k.再根据正切值的定义,得tanA=.故选D.【考点】锐角三角函数.9.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】2.7【解析】过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7 cm.10.如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE∶ED,单位:m)【答案】(7.5+4)m【解析】解:作BF⊥AD于点F.则BF=CE=4m,在直角△ABF中,AF===3m,在直角△CED中,根据i=,则ED===4m.则AD=AF+EF+ED=3+4.5+4=(7.5+4)m.11.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)【答案】(5+5-5)千米【解析】解:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC-(AD+BD)=10+5-(5+5)=5+5-5(千米).答:汽车从A地到B地比原来少走(5+5-5)千米.12.在Rt△ABC中,若∠C=90°,cosA=,则sinA的值为()A.B.C.D.【答案】A.【解析】先根据特殊角的三角函数值求出∠A的值,再求出sinA的值即可.∵Rt△ABC中,∠C=90°,∴∠A是锐角,∵cosA==,∴设AB=25x,BC=7x,由勾股定理得:AC=24x,∴sinA=.故选A.考点:同角三角函数的关系.13.如图,在△中,,,则△的面积是()A.B.12C.14D.21【答案】A【解析】如图,作因为,所以.由勾股定理得.又,所以所以所以所以14.计算下列各题:(1);(2).【答案】(1)2 (2)【解析】解:(1)(2)15.在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.【答案】C.【解析】在Rt△ABC中,∠C=90°,sinA=,设BC=3x,则AB=5x,∴AC=4x.∴cosB=.故选C.考点: 互余两角三角函数的关系.16.计算:【答案】-2.【解析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、负整数指数幂以及绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:考点: 实数的混合运算.17.若(为锐角),则=【答案】1.【解析】因为所以得,代入可得值为1【考点】正切和正、余弦函数的关系.18.如图所示,直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是________【答案】.【解析】折叠后形成的图形相互全等,利用三角函数的定义可求出.根据题意,BE=AE.设CE=x,则BE=AE=8-x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8-x)2=62+x2解得x=,∴tan∠CBE==考点:(1)锐角三角函数的定义;(2)勾股定理;(3)翻折变换(折叠问题).19.(1)一个人由山底爬到山顶,需先爬450的山坡200m,再爬300的山坡300m,求山的高度(结果可保留根号)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BC
解: 设横断面面积为S m2.
A
则S=
1 2

1 2
(BC+AD)×CF (6+128.55)×22.28
EF ∴需用土石方v=s
=1498.9×150
l
D
≈1498.9(m2),
=224835(m3)
答:斜坡CD的坡角约为21048’,坡底宽约为128.6m,建
造这个堤坝需用土石方224835m3.
1、如图
试一试
1)若h=2cm, l=5cm,则i= 2 ; 5
2)若i=1:1.5, h=2m,则l= 3m ;
2、水库的横断面是梯形ABCD,迎水坡AB的坡比i=1:2,坝高
h=20m,则迎水坡的水平宽度= 40m , tanB= 1 ;
2
B
h
C
l
A
例2 体育项目400m栏比赛中,规
定相邻两栏架的路程为45m。在弯
,如i=1∶6 .
l
坡面与水平面的夹角叫
做坡角,记作 ,有
i= h =tan .
l
铅垂 高度
h
i i 坡比或坡度
坡角
l
l水平长度
显然,坡比越大,坡角 就越大,坡面就越陡.
例1 水库堤坝的横断面是梯形.测得BC长为6m,CD长为
60m,斜坡CD的坡比为1:2.5,斜坡AB的坡比为1:3,求: (1)斜坡CD的坡角∠D和坝底AD的宽(角度精确到1’,宽
6. 已知在△ABC中,AB=5cm,AC=4cm,AB和AC
的夹角为 .设△ABC的面积为S(cm2). (1)若 为锐角,求S关于 的函数表达式. 若 为钝角呢?
(2)何时△ABC的面积最大?最大面积为多少?
如图,沿水库拦水坝的背水坡将坝面 加宽两米,坡度由原来的1:2改成 1:2.5,已知原背水坡长BD=13.4米,
度精确到0.1m);
BC
解:作BE⊥AD, CF⊥AD.
在Rt△CDF中, A
tanD=
CF DF

1 2.5
=0.4,
∴∠D≈21048’
∴CF=CD·sinD
=60×sin21048’≈22.28(m) DF=CD·cosD
EF
D

BE AE

1 3
∴ AE=3BE
=3CF=66.84(m),
∴AD=AE+EF+DF
答:B栏架离A栏架的距离 约为42.2m.
1.如图,一个零件的轴截面为梯形,且关于直线m成
轴对称。已知倾角 =5.2°,零件的长度l=20cm,大
头直径D=10cm,求小头直径d(精确到0.1cm).
2.如图:⊙O的直径为10cm,直径CD⊥AB于点E, OE=4cm,求A⌒B的长( 精确到0.1cm ).
=66.84+6+55.71
=60×cos21048’≈55.71(m)
=128.55≈128.6(m).
例1 水库堤坝的横断面是梯形.测得BC长为6m,CD长为 60m,斜坡CD的坡比为1:2.5,斜坡AB的坡比为1:3,求:
(2)若堤坝长l =150m,问建造这个堤坝需用多少土石方?
(精确到1m3)
道处,以跑道离内侧0.3m处的弧
B
45
线(如图中的虚线)的长度作为
36
相邻两栏架之间的间隔路程。已
知跑道的内侧线半径为36m,问在
设定A栏架后,B栏架离栏架A的距 O
A
离是多少(π取3.14,结果精确
到0.1m)
解: 连结AB, 由题意得
弧AB=45m, OB=36.3m
B
由弧长公式 l

n=
180 l
(2) 你发现sin18°和黄金比有怎样的关系?
谈谈今天的收获
许多有关图形的计算问题都可以 直接或间接通过添加辅助线,化 归解直角三角形问题来解决
求: (1)原背水坡的坡角 和加宽后
的背水坡的坡角 ;
(2)加宽后水坝的横截面面积增 加了多少?(精确
A
B
E
F
如图,在圆内接正十边形中,AB 是正十边形 的一条边,M 是∠ABO 的平分线与半径 OA 的交点. (1) 设⊙O 的半径为 R,用关于 R 的代数 式表示正十边形的边长 AB.
πR

nπR 180
,
36
=3.11840××3465.3 ≈71.06(度). O
45
C
A
作OC⊥AB于点C.
∵OA=OB, ∴AC=BC
且∠AOC=
1 2
∠AOB=35.530
∴AC=OAsin∠AOC
=36.3×sin35.530
≈21.09 (m)
∴AB=2AC
=2×21.09≈42.2(m).
解直角三角形思想:利用这些法则,直角三
在直角角三形角中形知道中其,中由的已两个知量的(一至些少边有一、边角),,求出
另一些边、就角可以的求过出程其,余叫的做三个解未直知角的三量角。形.
B
解 1.两锐角之间的关系:

∠A+∠B=900
a
c
角 三 角 形
2.三边之间的关系:
C
b A
a2+b2=c2
许多有关图正形弦的函计数算:s问in题a 都可a斜 的以边 对边
法 则
3间.的边直 归关角接 为系之或 解间直接角余通三弦过角函添形数加问:c辅题os助来a 线解 , 决a斜 的 化 。边 邻边
正切函数:tan
a
a的对边 a的邻边
修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的 倾斜程度.
坡面的铅垂高度(h)和水平长度(l)的比叫做坡面的坡比 (或坡度),记作i , 即i = h .坡比通常写成1∶m 的形式
相关文档
最新文档