染色问题

合集下载

高中染色问题练习题及讲解

高中染色问题练习题及讲解

高中染色问题练习题及讲解练习题一:题目:一个平面图有5个顶点,其中顶点A、B、C、D、E的度数分别为4、3、2、2、1。

请判断该图是否可平面染色。

解答:首先,我们需要了解平面图的定义。

一个图被称为平面图,如果它能够被画在平面上,使得其边不相交,除了在顶点处。

根据欧拉公式,对于一个连通的平面图,顶点数V、边数E和面数F满足以下关系:\[ V - E + F = 2 \]对于给定的图,我们有5个顶点,假设边数为E,根据题目中的度数信息,我们可以计算出E的值:\[ E = 4A + 3B + 2C + 2D + 1E = 4 \times 4 + 3 \times 3 + 2 \times 2 + 2 \times 2 + 1 \times 1 = 26 \]现在我们使用欧拉公式来检查图是否可能为平面图:\[ 5 - 26 + F = 2 \]\[ F = 23 \]然而,由于每个面至少由3条边组成,我们有:\[ 3F \leq 2E \]\[ 3F \leq 52 \]\[ F \leq \frac{52}{3} \approx 17.33 \]这与我们计算出的F值23相矛盾,因此该图不可能是平面图,所以该图不可平面染色。

练习题二:题目:一个图有7个顶点,每个顶点的度数都至少为5。

请证明这个图不可能是平面图。

解答:根据平面图的性质,我们知道一个图是平面图当且仅当它满足欧拉公式。

然而,对于一个图来说,如果每个顶点的度数都至少为5,则其边数E至少为:\[ E \geq 5V \]对于7个顶点的图,我们有:\[ E \geq 5 \times 7 = 35 \]现在,我们再次使用欧拉公式:\[ V - E + F = 2 \]代入V=7和E的最小值35:\[ 7 - 35 + F = 2 \]\[ F = 30 \]然而,每个面至少由3条边组成,这意味着:\[ 3F \leq 2E \]\[ 3 \times 30 \leq 2 \times 35 \]\[ 90 \leq 70 \]这显然是错误的,因此不存在这样的F值,这表明该图不可能是平面图。

小学奥数杂题染色问题【三篇】

小学奥数杂题染色问题【三篇】

小学奥数杂题染色问题【三篇】
解析:对房间染色,使最下面的两个房间染成黑色,与黑色相邻的
房染成白色,
则图中有7个黑色房间和5个白色房间.
如果要想不重复地走过每一个房间,黑色与白色房间数应该相等.故题中的想法是不能实现的.
点评:完成本题也可根据要求据图中的房间实际找下路线,看是
否能够找到.
【第二篇】
展览会有36个展室(如图),每两相邻展室之间均有门相通.能不能从入
口进去,不重复地参观完全部展室后,从出口出来呢?
答案:
不能.对展室实行染色,使相邻两房间分别是黑色和白色的.此时入
口处展室的颜色与出口处展室的颜色是相同的,而不重复参观完36个
展室,入口与出口展室的颜色应该不相同.
【第三篇】
染色问题基本解法:
三面涂色和顶点相关 8个顶点。

两面染色和棱长相关。

即新棱长(棱长-2)×12
一面染色和表面积相关。

同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*6
0面染色和体积相关。

用新棱长计算体积公式(棱长-2)×(棱长-2)×(棱长-2)
长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。

专题 染色问题与染色方法

专题 染色问题与染色方法

竞赛讲座14-染色问题与染色方法1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.例1 如图29-1(a),3行7列小方格每一个染上红色或蓝色.试证:存在一个矩形,它的四个角上的小方格颜色相同.证明由抽屉原则,第1行的7个小方格至少有4个不同色,不妨设为红色(带阴影)并在1、2、3、4列(如图29-1(b)).在第1、2、3、4列(以下不必再考虑第5,6,7列)中,如第2行或第3行出现两个红色小方格,则这个问题已经得证;如第2行和第3行每行最多只有一个红色小方格(如图29-1(c)),那么在这两行中必出现四角同为蓝色的矩形,问题也得到证明.说明:(1)在上面证明过程中除了运用抽屉原则外,还要用到一种思考问题的有效方法,就是逐步缩小所要讨论的对象的范围,把复杂问题逐步化为简单问题进行处理的方法.(2)此例的行和列都不能再减少了.显然只有两行的方格盘染两色后是不一定存在顶点同色的矩形的.下面我们举出一个3行6列染两色不存在顶点同色矩形的例子如图29-2.这说明3行7列是染两色存在顶点同色的矩形的最小方格盘了.至今,染k 色而存在顶点同色的矩形的最小方格盘是什么还不得而知.例2 (第2届全国部分省市初中数学通讯赛题)证明:用15块大小是4×1的矩形瓷砖和1块大小是2×2的矩形瓷砖,不能恰好铺盖8×8矩形的地面.分析将8×8矩形地面的一半染上一种颜色,另一半染上另一种颜色,再用4×1和2×2的矩形瓷砖去盖,如果盖住的两种颜色的小矩形不是一样多,则说明在给定条件不完满铺盖不可能.证明如图29-3,用间隔为两格且与副对角线平行的斜格同色的染色方式,以黑白两种颜色将整个地面的方格染色.显然,地面上黑、白格各有32个.每块4×1的矩形砖不论是横放还是竖盖,且不论盖在何处,总是占据地面上的两个白格、两个黑格,故15块4×1的矩形砖铺盖后还剩两个黑格和两个白格.但由于与副对角线平行的斜格总是同色,而与主对角线平行的相邻格总是异色,所以,不论怎样放置,一块2×2的矩形砖,总是盖住三黑一白或一黑三白.这说明剩下的一块2×2矩形砖无论如何盖不住剩下的二黑二白的地面.从而问题得证.例3 (1986年北京初二数学竞赛题)如图29-4(1)是4个1×1的正方形组成的“L”形,用若干个这种“L”形硬纸片无重迭拼成一个m×n(长为m个单位,宽为n个单位)的矩形如图29-4(2).试证明mn必是8的倍数.证明∵m×n矩形由“L”形拼成,∴m×n是4的倍数,∴m、n中必有一个是偶数,不妨设为m.把m×n矩形中的m列按一列黑、一列白间隔染色(如图29-4(2)),则不论“L”形在这矩形中的放置位置如何(“L”形的放置,共有8种可能),“L”形或占有3白一黑四个单位正方形(第一种),或占有3黑一白四个单位正方形(第二种).设第一种“L”形共有p个,第二种“L”形共q个,则m×n矩形中的白格单位正方形数为3p+q,而它的黑格单位正方形数为p+3q.∵m为偶数,∴m×n矩形中黑、白条数相同,黑、白单位正方形总数也必相等.故有3p+q=p+3q,从而p=q.所以“L”形的总数为2p个,即“L”形总数为偶数,所以m×n 一定是8的倍数.2.线段染色和点染色下面介绍两类重要的染色问题.(1) 线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.例4 (1947年匈牙利数学奥林匹克试题)世界上任何六个人中,一定有3个人或者互相认识或者互相都不认识.我们不直接证明这个命题,而来看与之等价的下述命题例5 (1953年美国普特南数学竞赛题)空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.证明设A、B、C、D、E、F是所给六点.考虑以A为端点的线段AB、AC、AD、AE、AF,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是AB、AC、AD,且它们都染成红色.再来看△BCD的三边,如其中有一条边例如BC是红色的,则同色三角形已出现(红色△ABC);如△BCD三边都不是红色的,则它就是蓝色的三角形,同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形.如果将例4中的六个人看成例5中六点,两人认识的连红线,不认识的连蓝线,则例4就变成了例5.例5的证明实际上用染色方法给出了例4的证明.例6 (第6届国际数学奥林匹克试题)有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目.证明用平面上无三点共线的17个点A1,A2,…,A17分别表示17位科学家.设他们讨论的题目为x,y,z,两位科学家讨论x连红线,讨论y连蓝线,讨论z连黄线.于是只须证明以这17个点为顶点的三角形中有一同色三角形.考虑以A1为端点的线段A1A2,A1A3,…,A1A17,由抽屉原则这16条线段中至少有6条同色,不妨设A1A2,A1A3,…,A1A7为红色.现考查连结六点A2,A3,…,A7的15条线段,如其中至少有一条红色线段,则同色(红色)三角形已出现;如没有红色线段,则这15条线段只有蓝色和黄色,由例5知一定存在以这15条线段中某三条为边的同色三角形(蓝色或黄色).问题得证.上述三例同属图论中的接姆赛问题.在图论中,将n点中每两点都用线段相连所得的图形叫做n点完全图,记作k n.这些点叫做“顶点”,这些线段叫做“边”.现在我们分别用图论的语言来叙述例5、例6.定理1 若在k6中,任染红、蓝两色,则必有一只同色三角形.定理2 在k17中,任染红、蓝、黄三角,则必有一只同色三角形.(2)点染色.先看离散的有限个点的情况.例7 (首届全国中学生数学冬令营试题)能否把1,1,2,2,3,3,…,1986,1986这些数排成一行,使得两个1之间夹着一个数,两个2之间夹着两个数,…,两个1986、之间夹着一千九百八十六个数?请证明你的结论.证明将1986×2个位置按奇数位着白色,偶数位着黑色染色,于是黑白点各有1986个.现令一个偶数占据一个黑点和一个白色,同一个奇数要么都占黑点,要么都占白点.于是993个偶数,占据白点A1=993个,黑色B1=993个.993个奇数,占据白点A2=2a个,黑点B2=2b个,其中a+b=993.因此,共占白色A=A1+A2=993+2a个.黑点B=B1+B2=993+2b个,由于a+b=993(非偶数!)∴a≠b,从而得A≠B.这与黑、白点各有1986个矛盾. 故这种排法不可能.“点”可以是有限个,也可以是无限个,这时染色问题总是与相应的几何问题联系在一起的.例8 对平面上一个点,任意染上红、蓝、黑三种颜色中的一种.证明:平面内存在端点同色的单位线段.证明作出一个如图29-7的几何图形是可能的,其中△ABD、△CBD、△AEF、△GEF 都是边长为1的等边三角形,CG=1.不妨设A点是红色,如果B、E、D、F中有红色,问题显然得证.当B、E、D、F都为蓝点或黄点时,又如果B和D或E和F同色,问题也得证.现设B和D异色E和F异色,在这种情况下,如果C或G为黄色或蓝点,则CB、CD、GE、GF中有两条是端点同色的单位线段,问题也得证.不然的话,C、G均为红点,这时CG是端点同色的单位线段.证毕.还有一类较难的对区域染色的问题,就不作介绍了.练习二十九1.6×6的方格盘,能否用一块大小为3格,形如的弯角板与11块大小为3×1的矩形板,不重迭不遗漏地来铺满整个盘面.2.(第49届苏联基辅数学竞赛题)在两张1982×1983的方格纸涂上红、黑两种颜色,使得每一行及每一列都有偶数个方格是黑色的.如果将这两张纸重迭时,有一个黑格与一个红格重合,证明至少还有三个方格与不同颜色的方格重合.3.有九名数学家,每人至多会讲三种语言,每三名中至少有2名能通话,那么其中必有3名能用同一种语言通话.4.如果把上题中的条件9名改为8名数学家,那么,这个结论还成立吗?为什么?5.设n=6(r-2)+3(r≥3),求证:如果有n名科学家,每人至多会讲3种语言,每3名中至少有2名能通话,那么其中必有 r名能用同一种语言通话.6.(1966年波兰数学竞赛题)大厅中会聚了100个客人,他们中每人至少认识67人,证明在这些客人中一定可以找到4人,他们之中任何两人都彼此相识.7.(首届全国数学冬令营试题)用任意方式给平面上的每一个点染上黑色或白色.求证:一定存在一个边长为1或的正三角形,它三个顶点是同色的.练习二十九1.将1、4行染红色、2、5行染黄色、3、6行染蓝色,然后就弯角板盖住板面的不同情况分类讨论.2.设第一张纸上的黑格A与第二张纸上的红格A′重合.如果在第一张纸上A所在的列中,其余的黑格(奇数个)均与第二张纸的黑格重合,那么由第二张纸上这一列的黑格个数为偶数,知必有一黑格与第一张纸上的红格重合,即在这一列,第一张纸上有一方格B与第二张纸上不同颜色的方格B′重合.同理在A、B所在行上各有一个方格C、D,第二张纸上与它们重合的方格C′、D′的颜色分别与C、D不同.3.把9名数学家用点A1,A2,…,A9表示.两人能通话,就用线连结,并涂某种颜色,以表示不同语种。

小学奥数杂题染色问题【三篇】

小学奥数杂题染色问题【三篇】

小学奥数杂题染色问题【三篇】
导读:本文小学奥数杂题染色问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】 1.如图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何一个邻室的门.有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗?
解析:对房间染色,使最下面的两个房间染成黑色,与黑色相邻的房染成白色,
则图中有7个黑色房间和5个白色房间.
如果要想不重复地走过每一个房间,黑色与白色房间数应该相等.故题中的想法是不能实现的.
点评:完成本题也可根据要求据图中的房间实际找下路线,看是否能够找到.【第二篇】展览会有36个展室(如图),每两相邻展室之间均有门相通.能不能从入口进去,不重复地参观完全部展室后,从出口出来呢? 答案:不能.对展室进行染色,使相邻两房间分别是黑色和白色的.此时入口处展室的颜色与出口处展室的颜色是相同的,而不重复参观完36个展室,入口与出口展室的颜色应该不相同. 【第三篇】染色问题基本解法:三面涂色和顶点有关8个顶点。

两面染色和棱长有关。

即新棱长(棱长-2)×12一面染色和表面积有关。

同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*6 0面染色和体积有关。

用新棱长计算体积公式(棱
长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。

染色问题题目

染色问题题目

1、某影院有31排,每排29个座位.某天放映了两场电影,每个座位上都坐了一个观众.如果要求每个观众在看第二场电影时必须跟他(前、后、左、右)相邻的某一观众交换座位,这样能办到吗?为什么?
2、空间6个点,任三点不共线,对以它们为顶点的线段随意涂以红色或蓝色,是否必有两个同色三角形?
3、六年级一班全班有35名同学,共分成5排,每排7人,坐在教室里,每个座位的前后左右四个位置都叫作它的邻座。

如果要让这35名同学各人都恰好坐到他的邻座上去,能办到吗?为什么?
4、用若干个22和33的小正方形能不能拼成一个1111的大正方形?请说明理由。

5、某班有45名同学按9行5列坐好.老师想让每位同学都坐到他的邻座(前后左右)上去,问这能否办到?
6、在6×6的方格中,用若干有3个单位方格组成的L形纸片和由4个单位方格组成的凸形纸片将其完全覆盖,所用纸片最少多少张?。

初中数学重点梳理:染色问题

初中数学重点梳理:染色问题

染色问题知识定位染色是分类的直观表现,在数学竞赛中有大批以染色面目出现的问题,这类问题的特点是知识点少,逻辑性强,技巧性强,其内部蕴藏着深刻的数学思想。

同时,染色作为一种解题手段也在数学竞赛中广泛使用。

将问题中的对象适当进行染色,有利于我们观察、分析对象之间的关系,像国际象棋的棋盘那样,我们可以把被研究的对象染上不同的颜色,许多隐藏的关系会变得明了,再通过对染色图形的处理达到对原问题的解决,这种解题方法称为染色法。

知识梳理知识梳理1.染色问题解答染色问题,并不需要具备更多的数学知识,只需要具有缜密的思考能力和较强的分析能力。

纵观各种染色试题,它与我们经常使用的数学方法紧密联系。

大体上有如下几种方法:奇偶分析、归纳法、反证法、抽屉原理、构造法、组合计数等。

常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。

例题精讲【试题来源】【题目】用任意的方式将平面上的每一点染上黑色或白色(称为二染色).求证:一定存在长为1的线段,它的两个端点同色。

【答案】在平面上任作一个边长为1的正三角形,设三个顶点为A,B,C,由于平面上的每点只着黑、白两色之一,根据抽屉原理,A,B,C三点中必有两点同色,以这两同色点为端点的线段长度恰为1.【解析】在平面上任画一条长为1的线段,如图,若A,B两点同色,则结论已成立.若A,B 两点不同色,为确定起见不妨设A为黑色,B为白色,以AB为边作正三角形ABC,则AB=BC=CA=1.这时C点要么是黑点,要么是白点.若C为黑点,则AC为两个端点同色的长为1的线段.若C为白点,则BC为两个端点同色的长为1的线段.上述分析过程,其实已完成了证明过程,不过思路一旦找出,出现边长为1的正三角形的顶点A,B,C三点的构想是个关键,为此可得出如下简化的证明.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】对平面上的点黑白二染色后,一定存在三顶点同色的直角三角形.【答案】见解析【解析】对平面上的点黑白二染色,根据例1的结论,存在边长为a(a>0)的线段AB,它的两个端点同色(不妨设A,B同黑).以AB为边作正方形ABCD,对角线AC,BD交于点O,如图,如果D,O,C中有一个黑点,则该点与A,B构成三顶点同黑色的直角三角形.如果D,O,C全白色,则△DOC就是三顶点全为白色的直角三角形.因此,二染色平面上一定存在顶点同色的直角三角形.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】用任意的方式,对平面上的每个点染黑色或白色,求证:一定存在一个边长为1或3的正三角形,它的三个顶点同色.【答案】见解析【解析】若存在边长为1且顶点同色的正三角形,则问题得证.若不存在边长为1且顶点同色的正三角形,则一定存在长为1的线段AB ,两端点A ,B 异色.以AB =1为底作腰长为2的等腰三角形ABC ,则C 与A 或B 总有一对是异色的.不妨设长为2的线段AC 两端点异色(见图(a )).取AC 的中点O ,则O 必与A ,C 之一同色(见图(b )),不妨设O 与A 同色.由于不存在边长为1的同色顶点的正三角形,所以以AO 为一边的等边三角形的另外的顶点D 和E 必与A 异色.此时,△ECD 就是一个边长为3的顶点同色的正三角形.评注 事实上,当将平面分成宽度为23的水平带状区域,且每个区域含下沿直线,不含上沿直线,使相邻的带状区域染上不同颜色,对这样的平面二染色,任意边长为1的正三角形的三个顶点均不同色,但存在边长为3的三顶点同色的三角形.由例3可得更一般的结论:平面上点二染色后,要么存在边长为a (a >0)三顶点同色的正三角形,要么存在边长为3 a 三顶点同色的正三角形.【知识点】染色问题 【适用场合】当堂练习题 【难度系数】3【试题来源】【题目】连接圆周上9个不同点的36条线段染成红色或蓝色,假设9点中每3点所确定的三角形都至少含有一条红色边.证明有4点,其中每两点的连线都是红色.【答案】见解析【解析】设9个点依次为v1,v2,…,v9,首先证明必存在一点,设为v1,从v 1出发的红色线段不是5条.事实上,若不然,如果都是5条,则共有红色线段295不是整数,矛盾.若从v1出发的红色线段至少有6条,设v1v2,v1v3,v1v4,v1v5,v1v6,v 1v7均为红色,则由第26讲例8评注可知,连结v2,v3,v4,v5,v6,v7的线段中必有同色三角形.由题意知它只能为红色三角形,设为v2v3v4,则v1,v 2,v3,v4四点中两两皆连红线.若从v1出发的红色线段至多4条,则v1出发的蓝色线段至少有4条,设为v 1v2,v1v3,v1v4,v1v5,则v2,v3,v4,v54点必然两两连红线.否则,例如若v2v3是蓝色的,则△v1v2v3是蓝色三角形,与题设至少有一边为红色矛盾.以上各例中,染色都是作为问题条件给出的,有时,染色方法也作为一种分类手段,因此,用形象直观地染色进行分类,也就成了一种很有特色的解题方法.【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】某桥牌俱乐部约定,四个人在一起打牌,同一方的两个人必须都曾合作过,或都不曾合作过.试证:只要有五个人,就一定能凑齐四个人,按照约定在一起打牌.【答案】见解析【解析】本题证明采用构造一个涂色模型,使它与原问题间有一一对应的关系.如果模型中的问题证明了,那么原问题也相应地证明了.证明五个人对应为空间五个点,如两个人合作过,那么对应两点连结红色线段,如两人不曾合作过,那么对应两点连结蓝色线段.因此原问题等价于证明涂色模型:空间五个点(无三点在一条直线上),两两连线,涂上红色或蓝色之一.证明必存在两条无公共端点的同色线段.设五个点为A1,A2,A3,A4,A5,不失一般性,不妨设A1A2为红色.观察△A3A4A5三条边的颜色.(1)如果△A3A4A5中有一条边为红色,设为A3A4,那么A1A2与A3A4是满足条件的两条线段;(2)如果△A3A4A5的三条边均为蓝色,此时如A1A3,A1A4,A1A5与A2A3,A2A4,A2A5中如果有一条蓝色线段,那么问题就获证.如以A1A3是蓝色线段为例,那么A1A3与A4A5是满足条件的两条线段.反之,如果此时六条线段均为红色,如取A1A3与A2A4就是满足条件的两条线段.由于无公共端点的同色线段存在,证得原命题成立.【知识点】染色问题【适用场合】阶段测验【难度系数】3【试题来源】【题目】把平面划分成形为全等正六边形的房间,并按如下办法开门:若三面墙汇聚于一点,那么在其中两面墙上各开一个门,而第三面墙不开门.证明:不论沿多么曲折的路线走回原来的房间,所穿过的门的个数一定是偶数.【答案】见解析【解析】为方便起见,我们把有公共门的两个房间叫做相邻的.用两种不同的颜色涂平面上的这些房间,使相邻的房间的颜色不同(如图).注意,从某种颜色的房间走到同种颜色的房间,必须经过另一种颜色的房间.显然,从任一房间走到同种颜色的房间,必定经过偶数个门.这样,利用图形和不同的颜色就可以解出这道题.【知识点】染色问题【适用场合】课后两周练习【难度系数】3【试题来源】【题目】有一个2003⨯2003的棋盘和任意多个l⨯2及1⨯3的矩形纸片,规定l⨯2的纸片只能沿着棋盘的格线水平地放置,而1⨯3的纸片只能沿着棋盘的格线铅直地放置. 请问是否可依上述规定取用一些纸片不重叠地盖满整个棋盘?【答案】不可以【解析】先将棋盘的每一行黑白交错涂色,即第一行,第二行,第三行,…,依次为黑色,白色,黑色,….经过这样涂色后,开始时棋盘的黑白方格数之差为2003个.沿着棋盘的格线水平地放置1⨯2的纸片,每放上一个l⨯2的纸片,就能盖住黑白方格各一个,所以这个操作并不会改变黑白方格数之差;而每一个1⨯3的矩形纸片沿着棋盘的格线铅直地放置,所覆盖的三个方格都是同一颜色,所以每放置一片l⨯3的矩形纸片,棋盘的黑白方格数之差就增加3个或减少3个.因为2003不是3的倍数,所以,依题述规定取用一些1⨯2及l⨯3的矩形纸片是不可能不重叠地盖满整个棋盘的.【知识点】染色问题【适用场合】课后一个月练习【难度系数】3【试题来源】【题目】证明:如图,用15块4×1的矩形瓷砖与1块2×2的方形瓷砖,不能覆盖8×8的正方形地面(瓷砖不许断开!).【答案】见解析【解析】本例题有多种证法.一个共同点是:“不能覆盖”的证明,通常借助于反证法.证法1将8×8的正方形地面的小方格,用黑、白色涂之,染色法如图.于是,每一块4×1瓷砖,不论怎样辅设,都恰好盖住两个白格两个黑格.15块4×1瓷砖共盖住30个白格和30个黑格.一块2×2瓷砖,无论怎么放,总是盖住“三白一黑”或“三黑一白”,即只能盖住奇数个白格和奇数个黑格.而盘中的黑白格总数相等(全为32个).所以用15块4×1砖与1块2×2砖不能完全覆盖8×8地面.证法2将8×8的正方形地面的小方格.用代号为1,2,3,4的四种颜色涂之,染色法如(a).这时,4×1砖每次总能盖住1,2,3,4四色;而2×2砖不论放何处,总是不能同时盖住1,2,3,4四色.故是不可能的.证法3同样用四色涂之,涂法如(b).用反证法,设4×1砖横着盖住i 色的有x i 块,竖着盖住的有y 块.2×2砖盖住阴影格处(不妨假定,余仿此).假定能够盖住.那么有:⎩⎨⎧=+=+,144,16421y x y x 相减得4(x 1-x 2)=2.因为x 1与x 2均为整数,这是不可能的.【知识点】染色问题 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】(1)用1×1,2×2,3×3三种型号的正方形地板砖铺设23×23的正方形地面,请你设计一种辅设方案,使得1×1的地板砖只用一块.(2)请你证明:只用2×2,3×3两种型号的地板砖,无论如何铺设都不能铺满23×23的正方形地面而不留空隙.【答案】见解析【解析】(1)首先用12块地板砖与6块地板砖能铺成的长方形地面, 再利用4个的板块,恰用1块地板砖,可以铺满的正方形地面. (2)我们将的大正方形分成23行23列共计529个的小方格,再将第1行,第4行,第7行,第10行,第13行,第16行,第19行,第22行这八行染红色,其余的15行都染白色,任意或的小正方块无论怎样放置(边线与大正方形格线重合),每块或的正方块都将盖住偶数块的白色小方格.假设用及的正方形地板砖可以铺满后正方形地面,则它们盖住的白色的小方格总数为偶数个.然而地面染色后共有(奇数)个的白色小方格,矛盾.所以,只用,两种型号地板砖无论如何铺设,都不能铺满的正方形地面而不留空隙.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,对A,B,C,D,E,F,G七个区域分别用红、黄、绿、蓝、白五种颜色中的某一种来着色,规定相邻的区域着不同的颜色.那么有种不同的着色方法.【答案】2880【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有种不同的着色方式.因此,本题正确答案是:2880.【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】一块2×2的方格由4个1×1的方格构成,每个小方格被涂上红、绿两种颜色之一.如果要求绿色小方格的上方和右方不能与红色方格邻接.且上述四个小方格可以全部不涂绿色,也可全部涂上绿色.则可能的涂色方法共有种.【答案】2880【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有5×4×4×2×3×3×2=2880种不同的着色方式.故答案为:2880.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】在9×9的方格表中,有29个小格被染上了黑色,如果m表示至少包含5个黑色小方格的行的数目,n表示至少包含5个黑色小方格的列的数目,试确定m+n的最大值.【答案】10【解析】∵m表示至少包含5个黑色小方格的行的数目,∴5m小于29,∴m的最大值为5,当m=5时,则n的最大值为5.故m+n的最大值为5+5=10.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】将凸五边形ABCDE的5条边和5条对角线染色,且满足任意有公共顶点的两条线段不同色,求颜色数目的最小值.【答案】5【解析】由于顶点A是4条线段AB,AC,AD,AE的公共点,因此至少需要4种颜色.若只有4种颜色,不妨设为红、黄、蓝、绿,则每个顶点引出的4条线段的颜色包含红、黄、蓝、绿各一种,因此,红色的线段共有条,矛盾.所以,至少需要5种颜色.下面的例子说明5种颜色可以将这10条线段染为满足条件的颜色.将AB,CE 染为1号颜色;将BC,DA染为2号颜色;将CD,EB染为3号颜色;将DE,AC染为4号颜色;将EA,BD染为5号颜色,则任意有公共顶点的两条线段不同色.综上所述,颜色数目的最小值为5.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】有10个表面涂满红漆的正方体,其棱长分别为2,4,6,…,20.若把这些正方体全部锯成棱长为1的小正方体,求有多少个至少一面有漆的小正方体.【答案】8000【解析】【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】将直线上的每一个点都染上红、黄两色中的一种,证明:必存在同颜色的三个点,使得其中一点是另两点为端点的线段的中点.【答案】见解析【解析】【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】某班有50个学生,男女各占一半,他们围成一圈,席地而坐开营火晚会,求证:必能找到一位两旁都是女生的学生.【答案】见解析【解析】【知识点】染色问题【适用场合】课后两周练习【难度系数】3【试题来源】【题目】若由“L”形的4个小方格,无重迭地拼成一个4×n的矩形.试证:n必为偶数.【答案】见解析【解析】【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】将一个棱长分别为36厘米、54厘米和72厘米的长方体切割成一些大小相同、棱长是整数厘米的正方体,然后给这些正方体的表面涂色。

小学五年级竞赛 第十二讲 染色问题

小学五年级竞赛 第十二讲 染色问题

第十二讲染色问题一、课前热身:1、如果用红、黄、绿三种颜色给下列两幅图涂色,共有几种不同的涂色方法。

(要求:相邻的部分不能涂相同的颜色)2、图中的网格是由6个相同的小正方形构成,将其中4个小正方形涂上灰色,要求每行每列都有涂色的小正方形,经旋转后两种涂色的网格相同,则视为相同的涂法,那么有多少种不同的涂色方法?二、典例精析:3、如图,用红、黄、蓝、绿四种颜色给小方块涂色(每个小方块涂一种颜色),且每种颜色都要用上,共有多少种涂法?4、小明想要对图中的每个小三角形进行染色,要求任意一个三角形的三边都是一条染红色、一条染绿色、一条染蓝色。

图中给出了某些边的颜色,则AB边应该染色。

5、用五种颜色染下面的图形,相邻两块不同色,有种方法。

6、在3×3的方格纸上(如图1),用铅笔涂其中的5个方格,要求每横行和每竖行列被涂方格的个数都是奇数,如果两种涂法经过旋转后相同,则认为它们是相同类型的涂法,否则是不同类型的涂法.例如图2和图3是相同类型的涂法。

回答最多有多少种不同类型的涂法?7、如图,在5×5的方格表中,涂黑若干个小方格,使得在任意3×3的正方形内恰好有4个黑格。

请画出黑格最多和最少的涂法,并说明理由。

8、有一个正方体木块,外表全部涂上红色后将它切成27个小正方体(如图),切好后:涂有1面红色的小正方体有块;涂有2面红色的小正方体有块;涂有3面红色的小正方体有块。

9、如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块。

10、把一个棱长为整数的长方体的表面都涂上红色,然后切割成棱长为1的小立方体.其中,两面有红色的小立方块有40块,一面有红色的小立方块有66块,那么这个长方体的体积是多少?三、竞赛真题:11、(2010•华罗庚金杯)如图,对A,B,C,D,E,F,G七个区域分别用红、黄、绿、蓝、白五种颜色中的某一种来着色,规定相邻的区域着不同的颜色.那么有种不同的着色方法。

染色问题数论

染色问题数论

染色问题数论
染色问题是指在一个图中对节点进行染色,使得相邻的节点染的颜色不同。

数论与染色问题的关系在于,染色问题可以转化为数论问题,通过数论的方法解决染色问题。

染色问题是一个经典的数学问题,也是图论中一个重要的研究方向。

在数论中,有一个重要的定理叫做四色定理,它是染色问题的一个重要结果。

四色定理指出,对于任意的平面图,只需要四种颜色就可以对所有的节点进行染色,使得任意两个相邻节点的颜色不同。

这个定理的证明过程运用了多个数论的工具和方法,包括图的边界颜色距离的计算,集合交并运算等等。

染色问题也可以转化为数论中的模运算问题。

例如,对于一个正整数n,可以将图中的节点编号为1到n,然后通过求模运算来确定每个节点的颜色。

另外,染色问题也与欧拉图和哈密顿图等图论概念有关。

通过分析图的结构和特性,可以运用数论的方法解决染色问题。

例如,对于一个欧拉图,可以通过分析其度数序列来确定颜色的分配方案。

总之,数论在染色问题中发挥了重要的作用,通过数论的方法可以解决染色问题并给出具体的染色方案。

染色问题和数论相辅相成,相互促进,共同推动了数学的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是染色问题
这里的染色问题不是要求如何染色,然后问有多少种染色方法的那类题目,它指的是一种解题方法。

染色方法是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中所蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。

这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会几种典型的染色方法。

染色问题基本解法:
三面涂色和顶点有关 8个顶点。

两面染色和棱长有关。

即新棱长(棱长-2)×12
一面染色和表面积有关。

同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*6
0面染色和体积有关。

用新棱长计算体积公式(棱长-2)×(棱长-2)×(棱长-2)
长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。

染色问题的解题思路
染色问题是数奥解题中的难点,这类问题初看起来好像无从着手,其实只要认真思考问题也很容易解决,下面就染色问题的解题思路说一下。

图一
首先,拿到一道题先认真观察,看这个题的突破点。

什么是染色问题的突破点呢?那就是找染色区域中的一个最多,这个最多是指一个区域,其他区域与它连接的最多。

例如图一中A区域A与B、C、D、E、 F连接最广所以A为特殊区域。

找到这个区域问题就容易解决了。

这个区域可以任意添色就是染最多的颜色。

本题中有4种颜色那么A可以染4种颜色了。

完成这个事件需要A、B、C、D、E、F6步所以用乘法原理。

这道题找到了最特殊的A 区域第二特殊区域和第三区域的确定也就容易了,C区域是与A相连,连接区域的数量仅次于A区域图一中的C和E区域都可以做第二个特殊区域了,但只能选一个,我们把C当成第二特殊的区域,则C可以染3种颜色。

区域B跟A、C相连那么 B可以染2种。

D与A、C、E相连则只能选1种,对吗?我们仔细观察,按顺序说A----4,C------3,B-------2,D 则连接A、C当A 选色后C有3种可能,D在A、C选色后只有2种可能。

E连接A、D也有两种可能。

F也是连接着A、E有两种可能。

这道题就解出来了。

有4×3×2×2×2=96种可能。

这道题跟以下一道题有异曲同工之效,大家不妨一起看下图二。

图二
图中A与B、C相连有4种染色方式,为第一特殊区域。

而B是与A相连的第二特殊区域(切记,此时选第二特殊区域,乃是跟第一特殊区域相连的一个区域)B有3种可能,C 连接A、B则有2种可能,D连接B、C则有2种可能,同理E也有2种可能。

所以此题有
4×3×2×2×2=96种可能的染色。

再来看一个稍微复杂点的问题如图三
图三
图中A有5种染色方式C------ 4,B-----3,D-----3,E------3,F------3,G------3。

这道题首先应当注意染色的顺序,先选第一特殊区域,再看跟 A相连的区域中的第二特殊区域。

还有一道更复杂的题,
图四
有5种颜色,图中个区域染不同的颜色,问有几种染色方式。

还依照前面的思路过程解,首先看哪个区域是图中与其他区域相连最多的当成第一特殊区域,A 为这个区域,其次为B,C和D为对称的哪个为第三特殊区域都可以,我们把D看成第三特殊区域,最后为C、E、F。

分好各个区域就开始解题,A有5种颜色可以用,B则有4种,D有3种,C则有2种,F就复杂了,它的颜色受制于E、C,则E跟C相同的有2种颜色可以选(因为C有2
种颜色选择),跟C不同的有4 种颜色选择(因为A、D的颜色确定了,E有5-2=3种,则E与C的搭配有2×3=6种颜色可以选择,E不考虑与C相同则有6-2=4种颜色可以选择),。

所以E和C的颜色确定了,最后考虑F,若E和C同色,则F有5-2=3种颜色可以选择,若E和C异色则F有5-3=2种颜色选择。

那么当E和C同色时F有2×3=6种可以选择,当E 和C异色是则F有4×2=8种可以选择,那么这道题就出来了染色的方式有
5×4×3×2×3+5×4×3×4×2=840种方式。

下面再简略的看一道此类问题,如图四,4种颜色相邻的区域染不同的颜色,有几种不同的染色方式。

还按照以前的思索方式,首先选第
一特殊区域,则A为所选,A有4种染色方式,其次,C为第二特殊区域,我们可以按
图五 A、C、B、E、D的方式解。

则C有3种染色方式。

则B有2种染色方式,E跟B对称则E跟B相同则有2种染色方式,E和B不同则有则有2种染色方式。

则E的染色方式为2×2=4。

则D的染色依靠B、E,那么B、E同色B、E有2种方式,不同色B、E有4-2=2种方式,D的染色依靠B、E的染色,若B、E同色则D有4-2=2种染色方式,若B、E不同则D有4-3=1种方式,那么在B、E同色时D染色方式有2×2=4,在B、E异色时D有2×1=2种,则依据上面的思路我们可以求出此题的解4×3×2×2+4×3×2×1=48+24=72种方式。

总之,染色问题也有路可循,分清了问题中的第一特殊区域,以及依次的各个区域问题就迎刃而解了。

其中最关键的部分是找特殊区域,不要找错了,如例四若让B 当第二特殊区域就不会得到正确答案了。

染色问题的例题讲解一(区域染色问题)
染色问题例题讲解4(面染色问题)
六年级染色问题:难度:中难度
下图是由14个大小相同的方格组成的图形。

试问能不能剪裁成7个由相邻两方格组成的长方形?
分析:将这14个小方格黑白相间染色(见下图),有 8个黑格, 6个白格。

相邻两个方格必然是一黑一白,如果能剪裁成7个小长方形,那么14个格应当是黑、白各7个,与实际情况不符,所以不能剪裁成 7个由相邻两个方格组成的长方形。

六年级染色问题:难度:高难度
下图是由40个小正方形组成的图形,能否将它剪裁成20个相同的长方形?
分析:将40个小正方形剪裁成20个相同的长方形,就是将图形分割成 20个1×2的小长方形,将图形黑白相间染色后,发现有21黑, 19白,黑、白格数目不等,而1×2的小长方形覆盖的总是黑白格各一个,所以不可能做到。

1.如图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何一个邻室的门.有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗?
解析:对房间染色,使最下面的两个房间染成黑色,与黑色相邻的房染成白色,则图中有7个黑色房间和5个白色房间.
如果要想不重复地走过每一个房间,黑色与白色房间数应该相等.
故题中的想法是不能实现的.
点评:完成本题也可根据要求据图中的房间实际找下路线,看是否能够
找到.
1.难度:★★★★★在下图的每个区域内涂上A、B、C、D四种颜色之一,使得每个圆里面恰有四种颜色,则一共有__________种不同的染色方法.
【解析】因为每个圆内4个区域上染的颜色都不相同,所以一个圆内的4个区域一共有种染色方法.如下图所示,当一个圆内的1、2、3、4四个区域的颜色染定后,由于6号区域的颜色不能与2、3、4三个区域的颜色相同,所以只能与1号区域的颜色相同,同理5号区域只能与4号区域的颜色相同,7号区域只能与2号区域的颜色相同,所以当1、2、3、4四个区域的颜色染定后,其他区域的颜色也就相应的只有一种染法,所以一共有24种不同的染法.
11。

相关文档
最新文档