2019年广东省肇庆市中考数学试卷
广东省肇庆市2019-2020学年中考第二次质量检测数学试题含解析

广东省肇庆市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列说法正确的是()A.某工厂质检员检测某批灯泡的使用寿命采用普查法B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C.12名同学中有两人的出生月份相同是必然事件D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是1 32.二元一次方程组632x yx y+=⎧⎨-=-⎩的解是()A.51xy=⎧⎨=⎩B.42xy=⎧⎨=⎩C.51xy=-⎧⎨=-⎩D.42xy=-⎧⎨=-⎩3.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3D.x=34.下列各式计算正确的是()A.a4•a3=a12B.3a•4a=12a C.(a3)4=a12D.a12÷a3=a45.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.106.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A. B. C. D.79()A .±3B .3C .9D .818.如图,线段AB 两个端点的坐标分别为A(4,4),B(6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )A .(2,2),(3,2)B .(2,4),(3,1)C .(2,2),(3,1)D .(3,1),(2,2) 9.计算6m 6÷(-2m 2)3的结果为( )A .m -B .1-C .34D .34- 10.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )A .B .C .D .11.如图,在平面直角坐标系中,以A (-1,0),B (2,0),C (0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )A .(3,1)B .(-4,1)C .(1,-1)D .(-3,1)12.如图,在△ABC 中,∠C=90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C,动点Q 从点C 出发,沿CB 方向匀速运动到终点B .已知P ,Q 两点同时出发,并同时到达终点.连结MP ,MQ ,PQ.在整个运动过程中,△MPQ 的面积大小变化情况是( )A .一直增大B .一直减小C .先减小后增大D .先增大后减小二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:a 3÷(﹣a )2=_____.14.若关于x 的一元二次方程()2k 1x 4x 10-++=有两个不相等的实数根,则k 的取值范围是______. 15.已知双曲线k 1y x +=经过点(-1,2),那么k 的值等于_______. 16.因式分解:-2x 2y+8xy-6y=__________.17.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.18.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,一次函数y =﹣13x+2的图象交x 轴于点P ,二次函数y =﹣12x 2+32x+m 的图象与x 轴的交点为(x 1,0)、(x 2,0),且21x +22x =17 (1)求二次函数的解析式和该二次函数图象的顶点的坐标.(2)若二次函数y =﹣12x 2+32x+m 的图象与一次函数y =﹣13x+2的图象交于A 、B 两点(点A 在点B 的左侧),在x 轴上是否存在点M ,使得△MAB 是以∠ABM 为直角的直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.20.(6分)如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在点E 处,BE 与AD 交于点F . (1)求证:△ABF ≌△EDF ;(2)若AB=6,BC=8,求AF 的长.21.(6分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?22.(8分)解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.23.(8分)学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B 级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了名学生;将图①补充完整;求出图②中C级所占的圆心角的度数.24.(10分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,325.(10分)已知AC =DC ,AC ⊥DC ,直线MN 经过点A ,作DB ⊥MN ,垂足为B ,连接CB .(1)直接写出∠D 与∠MAC 之间的数量关系;(2)①如图1,猜想AB ,BD 与BC 之间的数量关系,并说明理由;②如图2,直接写出AB ,BD 与BC 之间的数量关系;(3)在MN 绕点A 旋转的过程中,当∠BCD =30°,BD =2时,直接写出BC 的值.26.(12分)如图,已知点A ,C 在EF 上,AD ∥BC ,DE ∥BF ,AE =CF.(1)求证:四边形ABCD 是平行四边形;(2)直接写出图中所有相等的线段(AE =CF 除外).27.(12分)已知抛物线2y x bx c =++过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为15[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是12,故本选项错误.故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.2.B【解析】【分析】利用加减消元法解二元一次方程组即可得出答案【详解】解:①﹣②得到y=2,把y=2代入①得到x=4,∴42 xy=⎧⎨=⎩,故选:B.【点睛】此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.C【解析】【详解】试题分析:∵分式13x-有意义,∴x﹣3≠0,∴x≠3;故选C.考点:分式有意义的条件.4.C【解析】【分析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.A .a 4•a 3=a 7,故A 错误;B .3a•4a=12a 2,故B 错误;C .(a 3)4=a 12,故C 正确;D .a 12÷a 3=a 9,故D 错误.故选C .【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.5.B【解析】【分析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1,∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线,∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM ,∵∠FCE=∠FCM ,∴∠EFC=∠ECF ,∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2.故选B .6.B【解析】试题解析:选项,,A C D 折叠后都不符合题意,只有选项B 折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.7.C【解析】3=3故选C.8.C【解析】【分析】 直接利用位似图形的性质得出对应点坐标乘以12得出即可. 【详解】解:∵线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD , ∴端点的坐标为:(2,2),(3,1).故选C .【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.9.D【解析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案.详解:原式=()663684m m ÷-=-, 故选D . 点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键. 10.B【解析】【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选B.【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.11.B【解析】【分析】作出图形,结合图形进行分析可得.【详解】如图所示:①以AC为对角线,可以画出▱AFCB,F(-3,1);②以AB为对角线,可以画出▱ACBE,E(1,-1);③以BC为对角线,可以画出▱ACDB,D(3,1),故选B.12.C【解析】如图所示,连接CM,∵M是AB的中点,∴S△ACM=S△BCM=12S△ABC,开始时,S△MPQ=S△ACM=12S△ABC;由于P ,Q 两点同时出发,并同时到达终点,从而点P 到达AC 的中点时,点Q 也到达BC 的中点,此时,S △MPQ =14S △ABC ; 结束时,S △MPQ =S △BCM =12S △ABC . △MPQ 的面积大小变化情况是:先减小后增大.故选C .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a【解析】【分析】利用整式的除法运算即可得出答案.【详解】原式, .【点睛】本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.14.k <5且k≠1.【解析】试题解析:∵关于x 的一元二次方程()21410k x x -++=有两个不相等的实数根, ()2104410.k k -≠⎧∴⎨∆=-->⎩解得:5k <且1k ≠.故答案为5k <且1k ≠.15.-1【解析】【详解】分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入k 1y x +=,得:k 121+=-,解得:k =-1.16.-2 y (x -1)( x -3)【解析】分析:提取公因式法和十字相乘法相结合因式分解即可.详解:原式()2243,y x x =--+ ()()213.y x x =---故答案为()()213.y x x ---点睛:本题主要考查因式分解,熟练掌握提取公因式法和十字相乘法是解题的关键.分解一定要彻底. 17.1【解析】试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.∵正多边形的一个内角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案为1.考点:多边形内角与外角.18.23【解析】【分析】先求出球的总数,再根据概率公式求解即可.【详解】∵不透明的袋子里装有2个白球,1个红球,∴球的总数=2+1=3,∴从袋子中随机摸出1个球,则摸出白球的概率=23. 故答案为23. 【点睛】本题考查的是概率公式,熟知随机事件A 的概率P (A )=事件A 可能出现的结果数所有可能出现的结果数的商是解答此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y =﹣12x 2+32x+2=(x ﹣32)2+258,顶点坐标为(32,258);(2)存在,点M (9227,0).理由见解析.【解析】【分析】(1)由根与系数的关系,结合已知条件可得9+4m =17,解方程求得m 的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数y =﹣13x+2联立并解得x =0或113,即可得点A 、B 的坐标为(0,2)、(113,79),由此求得, ,过点B 作BM ⊥AB 交x 轴于点M ,证得△APO ∽△MPB ,根据相似三角形的性质可得AP OP MP PB = ,代入数据即可求得MP =7027,再求得OM =9227,即可得点M 的坐标为(9227,0). 【详解】 (1)由题意得:x 1+x 2=3,x 1x 2=﹣2m ,x 12+x 22=(x 1+x 2)2﹣2x 1x 2=17,即:9+4m =17,解得:m =2,抛物线的表达式为:y =﹣12x 2+32x+2=(x ﹣32)2+258, 顶点坐标为(32,258); (2)存在,理由:将抛物线表达式和一次函数y =﹣13x+2联立并解得:x =0或113, ∴点A 、B 的坐标为(0,2)、(113,79), 一次函数y =﹣13x+2与x 轴的交点P 的坐标为(6,0), ∵点P 的坐标为(6,0),B 的坐标为(113,79),点B 的坐标为(0,2)、 ∴PB =221176039()()-+-=710, AP=2262+=210过点B 作BM ⊥AB 交x 轴于点M ,∵∠MBP =∠AOP =90°,∠MPB =∠APO ,∴△APO ∽△MPB ,∴AP OP MP PB = 210710= , ∴MP =7027,∴OM=OP﹣MP=6﹣7027=9227,∴点M(9227,0).【点睛】本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标.相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB、AP的长,再利用相似三角形的性质解决问题.20.(1)见解析;(2)7 4【解析】【分析】(1)根据矩形的性质可得AB=CD,∠C=∠A=90°,再根据折叠的性质可得DE=CD,∠C=∠E=90°,然后利用“角角边”证明即可;(2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可.【详解】(1)证明:在矩形ABCD中,AB=CD,∠A=∠C=90°,由折叠得:DE=CD,∠C=∠E=90°,∴AB=DE,∠A=∠E=90°,∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS);(2)解:∵△ABF≌△EDF,∴BF=DF,设AF=x,则BF=DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2,即(8﹣x)2=x2+62,x=,即AF=【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键.21.(1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.【解析】【分析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【详解】解:(1)本次抽样调查的家庭数是:30÷54360=200(个); 故答案为200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个), 学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°; 故答案为36;(4)根据题意得:3000×903020200++=2100(个). 答:该社区学习时间不少于1小时的家庭约有2100个.【点睛】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.22.﹣1≤x <1.【解析】【分析】求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.解不等式①,得x<1,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<1.不等式组的解集在数轴上表示如下:23.(1)200,(2)图见试题解析(3)540【解析】【详解】试题分析:(1)根据A级的人数与所占的百分比列式进行计算即可求出被调查的学生人数;(2)根据总人数求出C级的人数,然后补全条形统计图即可;(3)1减去A、B两级所占的百分比乘以360°即可得出结论.试题解析::(1)调查的学生人数为:5025%=200名;(2)C级学生人数为:200-50-120=30名,补全统计图如图;(3)学习态度达标的人数为:360×[1-(25%+60%]=54°.答:求出图②中C级所占的圆心角的度数为54°.考点:条形统计图和扇形统计图的综合运用24.工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.【解析】解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).在Rt△DEC中,∠DGE=600,DE=176.6米,∴DECE102.08tan DGE3==≈∠(米).∴AC CE AE102.0864.8037.2837.3=-≈-=≈(米).∴工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.在Rt△BAE和Rt△DEC中,应用正切函数分别求出AE和CE的长即可求得AC的长.25.(1)相等或互补;(2)①BD+AB=2BC;②AB﹣BD2BC;(3)BC3131. 【解析】(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题, ②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;当点C,D在直线MN两侧时,如图2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D与∠MAC之间的数量是相等或互补;(2)①猜想:BD+AB2BC如图3,在射线AM上截取AF=BD,连接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=2BC∵AF+AB=BF=2BC∴BD+AB=2BC;②如图2,在射线AM上截取AF=BD,连接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=2BC∵AB﹣AF=BF=2BC∴AB﹣BD=2BC;(3)①当点C,D在直线MN同侧时,如图3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC =45°,∵∠ABD =90°,∴∠CBD =45°,过点D 作DG ⊥BC 于G ,在Rt △BDG 中,∠CBD =45°,BD =2, ∴DG =BG =1,在Rt △CGD 中,∠BCD =30°,∴CG =3,DG =3,∴BC =CG+BG =3+1,②当点C ,D 在直线MN 两侧时,如图2﹣1,过点D 作DG ⊥CB 交CB 的延长线于G ,同①的方法得,BG =1,CG =3,∴BC =CG ﹣BG =3﹣1即:BC =31+ 或31-,【点睛】本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键. 26.(1)见解析;(2)AD =BC ,EC =AF ,ED =BF ,AB =DC.【解析】整体分析:(1)用ASA 证明△ADE ≌△CBF ,得到AD=BC ,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据△ADE ≌△CBF ,和平行四边形ABCD 的性质及线段的和差关系找相等的线段.解:(1)证明:∵AD ∥BC ,DE ∥BF ,∴∠E =∠F ,∠DAC =∠BCA ,∴∠DAE =∠BCF.在△ADE 和△CBF 中, E F AE CF DAE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CBF ,∴AD =BC ,∴四边形ABCD 是平行四边形.(2)AD =BC ,EC =AF ,ED =BF ,AB =DC.理由如下:∵△ADE ≌△CBF ,∴AD =BC ,ED =BF.∵AE =CF ,∴EC =AF.∵四边形ABCD 是平行四边形,∴AB =DC.27.y=2x +2x ;(-1,-1).【解析】试题分析:首先将两点代入解析式列出关于b 和c 的二元一次方程组,然后求出b 和c 的值,然后将抛物线配方成顶点式,求出顶点坐标.试题解析:将点(0,0)和(1,3)代入解析式得:0{13c b c =++=解得:2{0b c == ∴抛物线的解析式为y=2x +2x ∴y=2x +2x=2(1)x +-1 ∴顶点坐标为(-1,-1).考点:待定系数法求函数解析式.。
2019广东中考数学试卷及答案

2019年广东省初中毕业生学业考试数 学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数是( ) A .2 B .-2C .21D .21-2.据中新社北京2019年12月8日电,2019年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨3.将左下图中的箭头缩小到原来的21,得到的图形是( )4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .51 B .31 C .85 D .835.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.已知反比例函数xky =的图象经过(1,-2),则=k ____________. 7.使2-x 在实数范围内有意义的x 的取值范围是______ _____. 8.按下面程序计算:输入3=x ,则输出的答案是_______________.9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A =40º,则∠C =_____.A .B .D .题3图题9图B CO A10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:20245sin 18)12011(-︒+-. 12.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.13.已知:如图,E ,F 在AC 上,AD //求证:AE =CF .14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).题13图 B CD A FE 题14图题10图(1) E 题10图(2) 题10图(3)15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1+=cx y 经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶? 17.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30º,∠ABD =45º,BC =50m . 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).18.李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题: (1)此次调查的总体是什么? (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.如图,直角梯形纸片ABCD 中,AD //BC ,∠A =90º,∠C =30º.折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且BF =CF =8. (1)求∠BDF 的度数; (2)求AB 的长.第17题图) 题19图 B C E D AF 题18图五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;(3)求第n 行各数之和. 21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =9,∠BAC =∠DEF =90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形. 22.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC轴,交直线AB 于点M ,交抛物线于点N . 设点P 求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O 何值时,四边形BCMN 请说明理由.题21图(1) BH F A (D ) G C EC (E ) B F A (D ) 题21图(2)2019年广东省初中毕业生学业考试数学参考答案一、1-5、DBACB 二、6、-27、___ x ≥2__8、___12__9、__25º__ 10、2561 三、11、原式=-6 12、x ≥3 13、由△ADF ≌△CB E ,得AF =C E ,故得:AE=CF 14、(1)⊙P 与⊙P 1外切。
广东省肇庆市2019年中考数学模拟试卷

2019年广东省肇庆市中考数学模拟试卷一.选择题(满分30分,每小题3分)1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是()A.a B.b C.c D.d2.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×1073.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=a6D.(﹣a3)2=a65.桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是()A.B.C.D.6.若点(﹣2,﹣6)在反比例函数y=上,则k的值是()A.3 B.﹣3 C.12 D.﹣127.如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤58.若m、n满足|m+1|+(n﹣2)2=0,则m n的值等于()A.﹣1 B.1 C.﹣2 D.9.如图,四边形ABCD是⊙O的内接四边形,BE平分∠ABC,若∠D=110°,则∠ABE的度数是()A.30°B.35°C.50°D.55°10.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q二.填空题(满分28分,每小题4分)11.计算=.12.计算:20202﹣20192=.13.小明从P点出发,沿直线前进10米后向右转a,接着沿直线前进10米,再向右转a,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则a的度数是.14.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=.15.已知一次函数y=kx+b的图象经过点A(0,﹣3)和B(1,﹣1),则此函数的表达式为.16.如图,正方形ABCD的顶点A、B在⊙O上,若AB=2cm,⊙O的半径为2cm,则阴影部分的面积是cm2.(结果保留根号和π)17.观察下列式子:=2,=3,=4,=5,…,根据以上式子中的规律写出第n个式子为:.三.解答题18.(6分)用适当方法解方程组:19.(6分)先化简,再求值:,从﹣1,1,2,3中选择一个合适的数代入并求值.20.(6分)在平行四边形ABCD中,用尺规作图画∠BAD的角平分线(不用写过程,留下作图痕迹),交DC于点H,若BC=6,DH=2HC,求平行四边形ABCD的周长.四.解答题21.(8分)为了解市民对全市创文工作的满意程度,娄星区某中学数学兴趣小组在娄底城区范围内进行了抽样调查,将调查结果分为非常满意,满意,一般,不满意四类,回收、整理好全部问卷后,绘制了两幅不完整的统计图1、图2,结合图中信息,回答:(1)此次共调查了多少名市民?(2)将两幅统计图中不完整的部分补充完整;(3)若我市城区共有480000人口,请估算我市对创文工作“非常满意和满意”的市民人数.22.(8分)如图,在▱ABCD中,AF平分∠BAD交BC于点F,CE平分∠BCD交AD于点E.(1)若AD=12,AB=8,求CF的长;(2)连接BE和AF相交于点G,DF和CE相交于点H,求证:EF和GH互相平分.23.(8分)甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?五.解答题24.(10分)如图,已知AB=10,以AB为直径作半圆O,半径OA绕点O顺时针旋转得到OC,点A的对应点为C,当点C与点B重合时停止.连接BC并延长到点D,使得CD=BC,过点D作DE⊥AB于点E,连接AD,AC.(1)AD=;(2)如图1,当点E与点O重合时,判断△ABD的形状,并说明理由;(3)如图2,当OE=1时,求BC的长;(4)如图3,若点P是线段AD上一点,连接PC,当PC与半圆O相切时,直接写出直线PC与AD的位置关系.25.(10分)已知抛物线y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点(如图1),顶点为M.(1)a、b的值;(2)设抛物线与y轴的交点为Q(如图1),直线y=﹣2x+9与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M、Q间所夹的曲线扫过的区域的面积;(3)设直线y=﹣2x+9与y轴交于点C,与直线OM交于点D(如图2).现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)没有公共点时,试探求其顶点的横坐标的取值范围.。
2019年广东省中考数学真题试题(含答案)

2019年广东省初中学业水平考试数学(含答案)说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A .b 6÷b 3=b 2B .b 3·b 3=b 9C .a 2+a 2=2a 2D .(a 3)3=a 65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .ba <08.化简24的结果是A .﹣4B .4C .±4D .29.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1·x 2=210.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 12.如图,已知a ∥b ,∠l=75°,则∠2 =________.13.一个多边形的内角和是1080°,这个多边形的边数是_________.14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=315米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD =2,求ECAE 的值.四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C的圆心角的度数为_______度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832 与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?解析卷1.﹣2的绝对值是A .2B .﹣2C .D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×106【答案】B【解析】a ×10n 形式,其中0≤|a|<10.【考点】科学记数法213.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2 B.b3·b3=b9 C.a2+a2=2a2 D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .<0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简的结果是A .﹣4B .4C .±4D .2【答案】B【解析】公式.【考点】二次根式9.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0 C .x 1+x 2=2 D .x 1·x 2=2【答案】Db a24a a 2【解析】因式分解x (x-2)=0,解得两个根分别为0和2,代入选项排除法.【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF ,∠AHN=∠GFN ,△ANH ≌△GNF (AAS ),①正确;由①得AN=GN=1,∵NG ⊥FG ,NA 不垂直于AF ,∴FN 不是∠AFG 的角平分线,∴∠AFN ≠∠HFG ,②错误;由△AKH ∽△MKF ,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN ,∴K 为NH 的中点,即FN=2NK ,③正确;S △AFN =AN ·FG=1,S △ADM =DM ·AD=4,∴S △AFN :S △ADM =1:4,④正确. 【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+()﹣1=____________. 【答案】4212131【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a ∥b ,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n 边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.【答案】21【解析】由已知条件得x-2y=3,原式=4(x-2y )+9=12+9=21.【考点】代数式的整体思想15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).315【答案】15+15【解析】AC=CD ·tan30°+CD ·tan45°=15+15.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).【答案】a+8b【解析】每个接触部分的相扣长度为(a-b ),则下方空余部分的长度为a-2(a-b )=2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a )=a+2b ;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a )=a+4b ;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a )=a+6b ;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a )=a+8b.【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)3317.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值: ,其中x=.【答案】解:原式==×=当x=,原式===1+.【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.4-x x-x 2-x 1-2-x x22÷⎪⎭⎫⎝⎛22-x 1-x 4-x x-x 22÷2-x 1-x ()()()1-x x 2-x 2x +x 2x +2222+2222+2DB ADEC AE【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC∴= ∵=2 ∴=2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将EC AE DB AD DB AD EC AE测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种404∴P (甲乙)== 答:同时抽到甲、乙两名学生的概率为. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的623131三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB==,AC==,BC==(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=BC= (或用等面积法AB ·AC=BC ·AD 求出AD 长度)∵S 阴影=S △ABC -S 扇形EAFS △ABC =××=202262+1022262+1022284+54215221102102S 扇形EAF ==5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=图象过点A (﹣1,4) ()25241π xk 2xk2xk 2∴4=,解得k 2=﹣4∴反比例函数表达式为∵反比例函数图象过点B (4,n )∴n==﹣1,∴B (4,﹣1)∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1) ∴,解得 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP :S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC1-k 2x 4-y =x 4-y =44-⎩⎨⎧+=+=b k 41-b -k 411⎩⎨⎧==3b1-k1∴ ∵MN=a+1,BN=4-a∴,解得a= ∴-a+3= ∴点P 坐标为(,) (或用两点之间的距离公式AP=,BP=,由解得a 1=,a 2=-6舍去) 【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.BNMN BP AP =21a -41a =+32373237()()224-3a -1a +++()()223-a 1-a -4++21BP AP =32【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D∴ED=EC(2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA∴ ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识 25.如题25-1图,在平面直角坐标系中,抛物线y=与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;BCAB AB BE =837 -x 433x 832+(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y==得点D 坐标为(﹣3,) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:837 -x 433x 832+()32-3x 83+32过点D 作DG⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC∽△FOC∴ 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF,OA=1,DG=3,CG=m+∵CO⊥FA ∴FO=OA=1∴,解得m= (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=x+,再求出点C 的坐标)∴点C 坐标为(0,) ∴CD=CE==6∵tan∠CFO== ∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC∥BA∵BF=BO-FO=6∴CE=BFCOCG FO DG =32m32m 13+=3333()223233++FOCO 3∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=(A )当P 在点A 右侧时,m >1 (a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在 (b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴,解得m 1=(舍去),m 2=1(舍去),这种不存在 (B )当P 在线段AB 之间时,﹣7<m <1(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴,解得m 1=,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时 ∴﹣,解得m 1=﹣11,m 2=1(舍去) 837-m 433m 832+3211DD AD AM PM =3241-m 837-m 433m 832=+35-11DD AD AM PM =3241-m 837-m 433m 832=+35-11AD DD AM PM =3241-m 837-m 433m 832=+432(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴﹣,解得m 1=,m 2=1(舍去) 综上所述,点P 的横坐标为,﹣11,,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想11DD AD AM PM =3241-m 837-m 433m 832=+337-35-337-。
2019年广东省中考数学试题及参考答案

2019年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分) 1、-2的绝对值是( ) A 、2 B 、-2 C 、12 D 、1-2答案:A解析:-2的绝对值是2,故选A 。
2、如图1所示,a 和b 的大小关系是( ) 图1 A 、a <b B 、a >b C 、a=b D 、b =2a 答案:A3、下列所述图形中,是中心对称图形的是( )A 、直角三角形B 、平行四边形C 、正五边形D 、正三角形 答案:B4、据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为( )A 、70.27710⨯ B 、80.27710⨯ C 、72.7710⨯ D 、82.7710⨯ 答案:C考点:本题考查科学记数法。
解析:科学记数的表示形式为10na ⨯形式,其中1||10a ≤<,n 为整数,27700000=72.7710⨯。
故选C 。
5、如图,正方形ABCD 的面积为1,则以相邻两边 中点连接EF 为边的正方形EFGH 的周长为( )A 2B 、22C 21D 、221 答案:B6、某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数为( )A 、4000元B 、5000元C 、7000元D 、10000元 答案:B7、在平面直角坐标系中,点P (-2,-3)所在的象限是( )baABD C HFEA、第一象限B、第二象限C、第三象限D、第四象限答案:C8、如图,在平面直角坐标系中,点A坐标为(4,3),那么cosα的值是()A、34B、43C、35D、45答案:D由勾股定理,得OA=5,所以,4cos5OBOAα==,选D。
9、已知方程238x y-+=,则整式2x y-的值为()A、5B、10C、12D、15答案:A10、如图4,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系的图象大致是()答案:C当点P在AB上时,y=211()22a a a x-⨯⨯-=12ax,是一次函数,且a>0,所以,排除A、B、D,选C。
2019年广东省中考数学试题(含答案,解析版)

2019年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A.2.21×106B.2.21×105 C.221×103 D.0.221×106【答案】B【解析】a×10n形式,其中0≤|a|<10.【考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2B.b3·b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念 7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a| < |b|C .a+b>0D .ba <0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简24的结果是A .﹣4B .4C .±4D .2【答案】B【解析】公式aa2 .【考点】二次根式9.已知x1、x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=2 【答案】D【解析】因式分解x(x-2)=0,解得两个根分别为0和2,代入选项排除法. 【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K.则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN: S△ADM =1 : 4.其中正确的结论有A.1个B.2个C.3个D.4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF,∠AHN=∠GFN,△ANH≌△GNF(AAS),①正确;由①得AN=GN=1,∵NG⊥FG,NA不垂直于AF,∴FN不是∠AFG的角平分线,∴∠AFN≠∠HFG,②错误;由△AKH∽△MKF,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN,∴K为NH的中点,即FN=2NK,③正确;S△AFN =21AN·FG=1,S△ADM =21DM·AD=4,∴S△AFN : S△ADM =1 :4,④正确.【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 【答案】4【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a ∥b ,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质 13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n 边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.【解析】由已知条件得x-2y=3,原式=4(x-2y)+9=12+9=21.【考点】代数式的整体思想15米,在实验楼的15.如图,某校教学楼AC与实验楼BD的水平间距CD=3顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是_________________米(结果保留根号).【答案】15+153【解析】AC=CD·tan30°+CD·tan45°=15+153.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a、b代数式表示).【解析】每个接触部分的相扣长度为(a-b ),则下方空余部分的长度为a-2(a-b )=2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a )=a+2b ;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a )=a+4b ;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a )=a+6b ;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a )=a+8b.【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 【答案】解:原式=2-x 1-x 4-x x -x 22÷ =2-x 1-x ×()()()1-x x 2-x 2x + =x 2x +当x=2,原式=222+=2222+=1+2. 【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD=2,求EC AE的值.【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC ∴EC AE =DB AD∵DB AD =2 ∴ECAE =2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×404=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种∴P (甲乙)=62=31 答:同时抽到甲、乙两名学生的概率为31. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB=2262+=102,AC=2262+=102, BC=2284+=54(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=21BC=52 (或用等面积法AB ·AC=BC ·AD 求出AD 长度) ∵S 阴影=S △ABC -S 扇形EAFS △ABC =21×102×102=20 S 扇形EAF =()25241π =5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=x k 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>x k 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP : S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=x k 2图象过点A (﹣1,4) ∴4=1-k 2,解得k 2=﹣4 ∴反比例函数表达式为x4-y = ∵反比例函数x4-y =图象过点B (4,n ) ∴n=44-=﹣1,∴B (4,﹣1) ∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1)∴⎩⎨⎧+=+=bk 41-b -k 411,解得⎩⎨⎧==3b 1-k 1 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP : S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC ∴BNMN BP AP = ∵MN=a+1,BN=4-a ∴21a -41a =+,解得a=32 ∴-a+3=37 ∴点P 坐标为(32,37) (或用两点之间的距离公式AP=()()224-3a -1a +++,BP=()()223-a 1-a -4++,由21BP AP =解得a 1=32,a 2=-6舍去)【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF是⊙O的切线;(3)如题24-2图,若点G是△ACD的内心,BC·BE=25,求BG的长.【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D ∴ED=EC (2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA ∴BCAB AB BE ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832+与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y=837 -x 433x 832+=()32-3x 83+得点D 坐标为(﹣3,32) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:过点D 作DG ⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC ∽△FOC ∴COCG FO DG = 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF ,OA=1,DG=3,CG=m+32 ∵CO ⊥FA∴FO=OA=1 ∴m 32m 13+=,解得m=3 (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=3x+3,再求出点C 的坐标)∴点C 坐标为(0,3)∴CD=CE=()223233++=6 ∵tan ∠CFO=FO CO =3∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC ∥BA∵BF=BO -FO=6∴CE=BF∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,837-m 433m 832+),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=32(A )当P 在点A 右侧时,m >1 (a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在(b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-(舍去),m 2=1(舍去),这种不存在(B )当P 在线段AB 之间时,﹣7<m <1 (a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在第 21 页 (共 21 页) (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时11AD DD AM PM = ∴﹣3241-m 837-m 433m 832=+432,解得m 1=﹣11,m 2=1(舍去) (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴﹣3241-m 837-m 433m 832=+,解得m 1=337-,m 2=1(舍去) 综上所述,点P 的横坐标为35-,﹣11,337-,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想。
2019肇庆中考数学试题及答案

2019肇庆中考数学试题及答案2019年肇庆市中考数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是正数?()A. -5B. 0C. 1D. -1答案:C2. 以下哪个数是无理数?()A. 0.5B. πC. 0.333...D. √4答案:B3. 以下哪个是二次根式?()A. √2B. √(-2)C. √(4)D. √(0)答案:A4. 以下哪个是单项式?()A. 3x^2yB. 3x^2 + 2xyC. 3x^2 - 2D. 3x^2y + 2答案:A5. 以下哪个是多项式?()A. 3x^2yB. 3x^2 + 2xyC. 3x^2 - 2D. 3x^2y + 2答案:B6. 以下哪个是等腰三角形?()A. 两边相等的三角形B. 两角相等的三角形C. 三边相等的三角形D. 三角形的两边相等答案:D7. 以下哪个是相似三角形?()A. 形状相同,大小不同的三角形B. 形状相同,大小相同的三角形C. 形状不同,大小不同的三角形D. 形状不同,大小相同的三角形答案:A8. 以下哪个是锐角三角形?()A. 三角形的三个角都小于90度B. 三角形的三个角都大于90度C. 三角形的两个角小于90度,一个角大于90度D. 三角形的两个角大于90度,一个角小于90度答案:A9. 以下哪个是正比例函数?()A. y = 2xB. y = 2x + 3C. y = 2x^2D. y = 2/x答案:A10. 以下哪个是反比例函数?()A. y = 2xB. y = 2x + 3C. y = 2x^2D. y = 2/x 答案:D二、填空题(每题3分,共30分)11. 计算:(-2)^3 = _______。
答案:-812. 计算:√9 = _______。
答案:313. 计算:(-3)^2 = _______。
答案:914. 计算:√(4) = _______。
答案:215. 计算:3x^2 - 2x + 1 = 0 的解为 _______。
广东省肇庆市2019-2020学年中考数学第三次调研试卷含解析

广东省肇庆市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.a 、b 是实数,点A (2,a )、B (3,b )在反比例函数y=﹣2x的图象上,则( ) A .a <b <0B .b <a <0C .a <0<bD .b <0<a2.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A .0个B .1个C .2个D .3个3.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A .以点E 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DB .以点E 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点DC .以点F 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点D D .以点F 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点D4.已知关于x 的不等式组﹣1<2x+b <1的解满足0<x <2,则b 满足的条件是( ) A .0<b <2B .﹣3<b <﹣1C .﹣3≤b≤﹣1D .b=﹣1或﹣35.如果k <0,b >0,那么一次函数y=kx+b 的图象经过( ) A .第一、二、三象限 B .第二、三、四象限 C .第一、三、四象限D .第一、二、四象限6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表: 班级 参加人数 平均数 中位数 方差 甲 55 135 149 191 乙55135151110某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀); ③甲班成绩的波动比乙班大. 上述结论中,正确的是( ) A .①②B .②③C .①③D .①②③7.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于( )A .2﹣2B .1C .2D .2﹣l8.若函数y=kx ﹣b 的图象如图所示,则关于x 的不等式k (x ﹣3)﹣b >0的解集为( )A .x <2B .x >2C .x <5D .x >59.如果将直线l 1:y =2x ﹣2平移后得到直线l 2:y =2x ,那么下列平移过程正确的是( ) A .将l 1向左平移2个单位 B .将l 1向右平移2个单位 C .将l 1向上平移2个单位 D .将l 1向下平移2个单位10.下列计算正确的是( ) A .a 2•a 3=a 6 B .(a 2)3=a 6C .a 6﹣a 2=a 4D .a 5+a 5=a 1011.已知A (,1y ),B (2,2y )两点在双曲线32my x +=上,且12y y >,则m 的取 值范围是( ) A .m 0>B .m 0<C .3m 2>-D .3m 2<-12.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是( ) A .平均数是15B .众数是10C .中位数是17D .方差是443二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒2cm 的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC 沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为_____.14.化简:34()2b a b--=r r r________.15.如图,D、E分别为△ABC的边BA、CA延长线上的点,且DE∥BC.如果35DEBC=,CE=16,那么AE的长为_______16.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB 的平分线.做法中用到全等三角形判定的依据是______.17.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O 方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是_____;…按此规律运动到点A2019处,则点A2019与点A0间的距离是_____.18.在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都相等,若填在图中的数字如图所示,则x+y的值是_____.2x 3 2 y ﹣34y三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AD 是等腰△ABC 底边BC 上的高,点O 是AC 中点,延长DO 到E ,使AE ∥BC ,连接AE .求证:四边形ADCE 是矩形;①若AB =17,BC =16,则四边形ADCE 的面积= . ②若AB =10,则BC = 时,四边形ADCE 是正方形.20.(6分)如图,抛物线y=﹣213x +bx+c 交x 轴于点A (﹣2,0)和点B ,交y 轴于点C (0,3),点D 是x 轴上一动点,连接CD ,将线段CD 绕点D 旋转得到DE ,过点E 作直线l ⊥x 轴,垂足为H ,过点C 作CF ⊥l 于F ,连接DF . (1)求抛物线解析式;(2)若线段DE 是CD 绕点D 顺时针旋转90°得到,求线段DF 的长;(3)若线段DE 是CD 绕点D 旋转90°得到,且点E 恰好在抛物线上,请求出点E 的坐标.21.(6分)如图,ABC △中AB AC =,AD BC ⊥于D ,点E F 、分别是AB CD 、的中点.(1)求证:四边形AEDF 是菱形(2)如果10AB AC BC ===,求四边形AEDF 的面积S22.(8分)如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18,2 ≈1.41,3 ≈1.73)23.(8分)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k =1. (1)求证:方程有两个不相等的实数根; (2)当方程有一个根为1时,求k 的值.24.(10分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,AB=32,且点A ,B ,C 的横坐标x A ,x B ,x C 满足x A <x C <x B ,那么符合上述条件的抛物线条数是( )A .7B .8C .14D .1625.(10分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ 与MN 平行,河岸MN 上有A 、B 两个相距50米的凉亭,小亮在河对岸D 处测得∠ADP=60°,然后沿河岸走了110米到达C 处,测得∠BCP=30°,求这条河的宽.(结果保留根号)26.(12分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE 的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积.27.(12分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加▲ 件,每件商品盈利▲ 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】解:∵2yx=-,∴反比例函数2yx=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数2yx=-的图象上,∴a<b<0,故选A.2.B【解析】【分析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③当x<3时,y1>y2错误;故正确的判断是①.故选B.【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.3.D【解析】【分析】根据作一个角等于已知角的作法即可得出结论.【详解】解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB 于点E、F,第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.故选:D.【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.4.C【解析】【分析】根据不等式的性质得出x的解集,进而解答即可.【详解】∵-1<2x+b<1∴1122b bx---<<,∵关于x的不等式组-1<2x+b<1的解满足0<x<2,∴12122bb--⎧≥⎪⎪⎨-⎪≤⎪⎩,解得:-3≤b≤-1,故选C.【点睛】此题考查解一元一次不等式组,关键是根据不等式的性质得出x 的解集. 5.D 【解析】 【分析】根据k 、b 的符号来求确定一次函数y=kx+b 的图象所经过的象限. 【详解】 ∵k <0,∴一次函数y=kx+b 的图象经过第二、四象限. 又∵b >0时,∴一次函数y=kx+b 的图象与y 轴交与正半轴. 综上所述,该一次函数图象经过第一、二、四象限. 故选D . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交. 6.D 【解析】分析:根据平均数、中位数、方差的定义即可判断; 详解:由表格可知,甲、乙两班学生的成绩平均成绩相同; 根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数; 根据方差可知,甲班成绩的波动比乙班大. 故①②③正确, 故选D .点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 7.D 【解析】∵△ABC 绕点A 顺时针旋转45°得到△A′B′C′,∠BAC=90°,,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,, ∴AD ⊥BC ,B′C′⊥AB ,∴AD=12BC=1,AC′=1,∴DC′=AC′-AD=2-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=12×1×1-12×(2-1)2=2-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.8.C【解析】【分析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.【详解】解:∵一次函数y=kx﹣b经过点(2,0),∴2k﹣b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x﹣3)﹣b>0,移项得:kx>3k+b,即kx>1k;两边同时除以k,因为k<0,因而解集是x<1.故选C.【点睛】本题考查一次函数与一元一次不等式.9.C【解析】【分析】根据“上加下减”的原则求解即可.【详解】将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.故选:C.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键. 10.B 【解析】 【分析】根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解. 【详解】A 、a 2•a 3=a 5,错误;B 、(a 2)3=a 6,正确;C 、不是同类项,不能合并,错误;D 、a 5+a 5=2a 5,错误; 故选B . 【点睛】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错. 11.D 【解析】 【分析】∵A (1-,1y ),B (2,2y )两点在双曲线32my x+=上, ∴根据点在曲线上,点的坐标满足方程的关系,得1232m 32my y 12++==-,. ∵12y y >,∴32m 32m >12++-,解得3m 2<-.故选D. 【详解】 请在此输入详解! 12.C 【解析】 【详解】解:中位数应该是15和17的平均数16,故C 选项错误,其他选择正确. 故选C . 【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1 【解析】作PD⊥BC于D,PE⊥AC于E,如图,AP=2t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC为直角三角形,∴∠A=∠B=45°,∴△APE和△PBD为等腰直角三角形,∴PE=AE=22AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四边形PECD为矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四边形QPCP′为菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值为1.故答案为1.【点睛】此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 . 14.47a b-+r r【解析】【分析】根据平面向量的加法法则计算即可【详解】34()46472b a b b a b a b --=-+=-+r r r r r r r r . 故答案为:47a b -+r r【点睛】本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.15.1【解析】【分析】根据DE ∥BC ,得到35DE EA BC AC ==,再代入AC=11-AE ,则可求AE 长. 【详解】∵DE ∥BC , ∴DE EA BC AC=. ∵35DE BC =,CE=11, ∴3 165AE AE -=,解得AE=1. 故答案为1.【点睛】本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.16.SSS .【解析】【分析】由三边相等得△COM ≌△CON ,即由SSS 判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【详解】由图可知,CM=CN ,又OM=ON ,∵在△MCO 和△NCO 中MO NO CO CO NC MC ⎧⎪⎨⎪⎩===,∴△COM ≌△CON (SSS ),∴∠AOC=∠BOC ,即OC 是∠AOB 的平分线.故答案为:SSS .【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.17.231.【解析】【分析】据题意求得A0A1=4,A0A1=23,A0A3=1,A0A4=23,A0A5=1,A0A6=0,A0A7=4,…于是得到A1019与A3重合,即可得到结论.【详解】解:如图,∵⊙O的半径=1,由题意得,A0A1=4,A0A1=3A0A3=1,A0A4=3A0A5=1,A0A6=0,A0A7=4,…∵1019÷6=336…3,∴按此规律A1019与A3重合,∴A0A1019=A0A3=1,故答案为3 1.【点睛】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.18.0【解析】【分析】根据题意列出方程组,求出方程组的解即可得到结果.【详解】解:根据题意得:23223424232x yx y y x++=-+⎧⎨++=++⎩,即231x yy①②+=-⎧⎨=⎩,解得:-11xy=⎧⎨=⎩,则x+y=﹣1+1=0,故答案为0【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)见解析;(2)①1; ②102. 【解析】 试题分析:(1)根据平行四边形的性质得出四边形ADCE 是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)①求出DC ,根据勾股定理求出AD ,根据矩形的面积公式求出即可;②要使ADCE 是正方形,只需要AC ⊥DE ,即∠DOC=90°,只需要OD 2+OC 2=DC 2,即可得到BC 的长.试题解析:(1)证明:∵AE ∥BC ,∴∠AEO=∠CDO .又∵∠AOE=∠COD ,OA=OC ,∴△AOE ≌△COD ,∴OE=OD ,而OA=OC ,∴四边形ADCE 是平行四边形.∵AD 是BC 边上的高,∴∠ADC=90°.∴□ADCE 是矩形.(2)①解:∵AD 是等腰△ABC 底边BC 上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD=22AC CD -=22178-=12,∴四边形ADCE 的面积是AD×DC=12×8=1. ②当BC=102时,DC=DB=52.∵ADCE 是矩形,∴OD=OC=2.∵OD 2+OC 2=DC 2,∴∠DOC=90°,∴AC ⊥DE ,∴ADCE 是正方形.点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中.20. (1) 抛物线解析式为y=﹣215336x x ++;2;(3) 点E 的坐标为E 1(4,1)或E 2(﹣92 ,﹣152)或E 3(114094+ ,﹣234094)或E 4(114094-,﹣234094). 【解析】【分析】(1)将点A 、C 坐标代入抛物线解析式求解可得;(2)证△COD ≌△DHE 得DH=OC ,由CF ⊥FH 知四边形OHFC 是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;(3)设点D 的坐标为(t ,0),由(1)知△COD ≌△DHE 得DH=OC 、EH=OD ,再分CD 绕点D 顺时针旋转和逆时针旋转两种情况,表示出点E 的坐标,代入抛物线求得t 的值,从而得出答案.【详解】(1)∵抛物线y=﹣213x+bx+c 交x 轴于点A (﹣2,0)、C (0,3),∴42033b c c ⎧--+=⎪⎨⎪=⎩,解得:563b c ⎧=⎪⎨⎪=⎩,∴抛物线解析式为y=﹣213x +56x+3; (2)如图1. ∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC ,∴∠OCD=∠HDE . 又∵DC=DE ,∴△COD ≌△DHE ,∴DH=OC .又∵CF ⊥FH ,∴四边形OHFC 是矩形,∴FH=OC=DH=3,∴DF=32;(3)如图2,设点D 的坐标为(t ,0).∵点E 恰好在抛物线上,且EH=OD ,∠DHE=90°,∴由(2)知,△COD ≌△DHE ,∴DH=OC ,EH=OD ,分两种情况讨论:①当CD 绕点D 顺时针旋转时,点E 的坐标为(t+3,t ),代入抛物线y=﹣213x +56x+3,得:﹣13(t+3)2+56(t+3)+3=t ,解得:t=1或t=﹣152,所以点E 的坐标E 1(4,1)或E 2(﹣92,﹣152); ②当CD 绕点D 逆时针旋转时,点E 的坐标为(t ﹣3,﹣t ),代入抛物线y=﹣213x +56x+3得:﹣13(t ﹣3)2+56(t ﹣3)+3=﹣t ,解得:23409+23409-.故点E 的坐标E 311409+23409+)或E 411409-23409-;综上所述:点E的坐标为E1(4,1)或E2(﹣92,﹣152)或E311409+23409+E411409-23409-).【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用.21.(1)证明见解析;(2)253 2.【解析】【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE,DF=12AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)根据等边三角形的性质得出EF=5,3AEDF的面积S.【详解】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=12AB=AE,Rt△ACD中,DF=12AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵AB=AC=BC=10,∴EF=5,AD=53,∴菱形AEDF的面积S=12EF•AD=12×5×53=2532.【点睛】本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.22.30.3米.【解析】试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.试题解析:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=AEDE,∠1=30°,∴AE=DE× tan∠1=40×tan30°=40×3≈40×1.73×13≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=BEDE,∠2=10°,∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2∴AB=AE+BE≈23.1+7.2=30.3米.23.(2)证明见解析;(2)k2=2,k2=2.【解析】【分析】(2)套入数据求出△=b2﹣4ac的值,再与2作比较,由于△=2>2,从而证出方程有两个不相等的实数根;(2)将x=2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值.【详解】(2)证明:△=b2﹣4ac,=[﹣(2k+2)]2﹣4(k2+k),=4k2+4k+2﹣4k2﹣4k,=2>2.∴方程有两个不相等的实数根;(2)∵方程有一个根为2,∴22﹣(2k+2)+k2+k=2,即k2﹣k=2,解得:k2=2,k2=2.【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出△=b2﹣4ac的值;(2)代入x=2得出关于k的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.24.C【解析】【分析】根据在OB上的两个交点之间的距离为32,可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.【详解】解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=1.故选C.【点睛】本题是二次函数综合题.主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.25.303米.【解析】试题分析:根据矩形的性质,得到对边相等,设这条河宽为x 米,则根据特殊角的三角函数值,可以表示出ED 和BF ,根据EC=ED+CD ,AF=AB+BF ,列出等式方程,求解即可.试题解析:作AE ⊥PQ 于E,CF ⊥MN 于F.∵PQ ∥MN ,∴四边形AECF 为矩形, ∴EC=AF,AE=CF.设这条河宽为x 米, ∴AE=CF=x.在Rt △AED 中,60ADP ∠=o Q ,3.tan6033AE ED x ∴===o ∵PQ ∥MN ,30.CBF BCP ∴∠=∠=o ∴在Rt △BCF 中,3.tan303CF BF x ===o ∵EC=ED+CD ,AF=AB+BF ,3110503.x x +=+ 解得30 3.x =∴这条河的宽为303.26.(1)证明详见解析;(2)证明详见解析;(3)1.【解析】【分析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案.【详解】(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF=DB .∵AD 为BC 边上的中线∴DB=DC ,∴AF=CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点,∴AD=DC=12BC , ∴四边形ADCF 是菱形;(3)连接DF ,∵AF ∥BD ,AF=BD ,∴四边形ABDF 是平行四边形,∴DF=AB=5,∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC▪DF=12×4×5=1. 【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.27.(1)2x 50-x(2)每件商品降价20元,商场日盈利可达2100元.【解析】【分析】【详解】(1)2x 50-x.(2)解:由题意,得(30+2x)(50-x)=2 100解之得x1=15,x2=20.∵该商场为尽快减少库存,降价越多越吸引顾客.∴x=20.答:每件商品降价20元,商场日盈利可达2 100元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在如图所示的网格中,每个小正方形的边长为 ,每个小正方形的顶点叫格点, 的三个顶点均在格点上,以点 为圆心的 与 相切于点 ,分别交 、 于点 、 .
(1)求 三边的长;
(2)求图中由线段 、 、 及 所围成的阴影部分的面积.
五、解答题(三)(本大题3小题,每小题9分,共27分)
(2)求证:四边形 是平行四边形;
(3)如图 ,过顶点 作 轴于点 ,点 是抛物线上一动点,过点 作 轴,点 为垂足,使得 与 相似(不含全等).
①求出一个满足以上条件的点 的横坐标;
②直接回答这样的点 共有几个?
参考答案与试题解析
2019年广东省肇庆市中考数学试卷
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
(1)求证: = ;
(2)求证: 是 的切线;
(3)如图 ,若点 是 的内心, = ,求 的长.
如图 ,在平面直角坐标系中,抛物线 与 轴交于点 、 (点 在点 右侧),点 为抛物线的顶点,点 在 轴的正半轴上, 交 轴于点 , 绕点 顺时针旋转得到 ,点 恰好旋转到点 ,连接 .
(1)求点 、 、 的坐标;
绝对值
数轴
【解析】
此题暂无解析
【解答】
此题暂无解答
8.
【答案】
此题暂无答案
【考点】
算三平最根
【解析】
此题暂无解析
【解答】
此题暂无解答
9.
【答案】
此题暂无答案
【考点】
根与三程的关系
【解析】
此题暂无解析
【解答】
此题暂无解答
10.
【答案】
此题暂无答案
【考点】
正方来的性稳
相验极角家的锰质与判定
全根三烛形做给质与判定
三.解答题(一)(本大题3小题,每小题6分,共18分)
解不等式组:
先化简,再求值: ,其中 .
如图,在 中,点 是 边上的一点.
(1)请用尺规作图法,在 内,求作 ,使 = , 交 于 ;(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,若 ,求 的值.
四、解答题(二)(本大题3小题,每小题7分,共21分)
1.
【答案】
此题暂无答案
【考点】
绝对值
【解析】
此题暂无解析
【解答】
此题暂无解答
2.
【答案】
此题暂无答案
【考点】
科学较盛法含-表项较大的数
【解析】
此题暂无解析
【解答】
此题暂无解答
3.
【答案】
此题暂无答案
【考点】
简单组水都的三视图
【解析】
此题暂无解析
【解答】
此题暂无解答
4.
【答案】
此题暂无答案
【考点】
同底射空的除法
8.化简 的结果是()
A. B. C. D.
9.已知 , 是一元二次方程 = 的两个实数根,下列结论错误的是()
A. = B. C. = D. =
10.如图,正方形 的边长为 ,延长 至 使 = ,以 为边在上方作正方形 ,延长 交 于 ,连接 , , 为 的中点,连接 分别与 , 交于点 、 :则下列结论:
(2)甲、乙、丙是 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.
某校为了开展“阳光体育运动”,计划购买篮球、足球共 个,已知每个篮球的价格为 元,每个足球的价格为 元.
(1)若购买这两类球的总金额为 元,求篮球,足球各买了多少个?
同底水水的乘法
幂的乘表与型的乘方
合较溴类项
【解析】
此题暂无解析
【解答】
此题暂无解答
5.
【案】
此题暂无答案
【考点】
中心较称图腾
轴正算图形
【解析】
此题暂无解析
【解答】
此题暂无解答
6.
【答案】
此题暂无答案
【考点】
中位数
【解析】
此题暂无解析
【解答】
此题暂无解答
7.
【答案】
此题暂无答案
【考点】
有理根惯小比较
为了解某校九年级全体男生 米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为 、 、 、 四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:
成绩等级频数分布表
成绩等级
频数
合计
(1) =________, =________,扇形图中表示 的圆心角的度数为________度;
【解析】
此题暂无解析
【解答】
此题暂无解答
如图,一次函数 = 的图象与反比例函数 的图象相交于 、 两点,其中点 的坐标为 ,点 的坐标为 .
(1)根据图象,直接写出满足 的 的取值范围;
(2)求这两个函数的表达式;
(3)点 在线段 上,且 = ,求点 的坐标.
如图 ,在 中, = , 是 的外接圆,过点 作 = 交 于点 ,连接 交 于点 ,延长 至点 ,使 = ,连接 .
2019年广东省肇庆市中考数学试卷
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1. 的绝对值是()
A. B. C. D.
2.某网店 年母亲节这天的营业额为 元,将数 用科学记数法表示为()
A. B. C. D.
3.如图,由 个相同正方体组合而成的几何体,它的左视图是( )
已知 ,则代数式 的值是________.
如图,某校教学楼 与实验楼 的水平间距 = 米,在实验楼顶部 点测得教学楼顶部 点的仰角是 ,底部 点的俯角是 ,则教学楼 的高度是________米(结果保留根号).
如图 所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图 所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用 个这样的图形(图 )拼出来的图形的总长度是________(结果用含 , 代数式表示).
① ;
② = ;
③ = ;
④ = .其中正确的结论有()
A. 个B. 个C. 个D. 个
二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.
计算: =________.
如图,已知 , ,则 ________.
已知一个多边形的内角和是 ,这个多边形的边数是________.
A. B. C. D.
4.下列计算正确的是( )
A. B. C. D.
5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
6.数据 , , , , 的中位数是()
A. B. C. D.
7.实数 , 在数轴上的对应点的位置如图所示,下列式子成立的是
A. B. C. D.