2016年中考数学讲、练、考第30讲 图形的相似

合集下载

中考数学复习第30课时 图形的相似与位似

中考数学复习第30课时  图形的相似与位似
考点4 相似多边形
1. 定义:各角对应相等,各边对应成比例的两个多边形 叫做相似多边形,相似多边形对应边的比叫做它们的 相似比.
2. 性质:(1)相似多边形的对应边_成__比__例___; (2)相似多边形的对应角__相__等__; (3)相似多边形周长的比__等__于__相似比,相似多边形面积
的比等于___相__似__比__的__平__方___.
(三) 中考题型突破
∵正方形ABCD与正方形BEFG是以原点O为位似中心
的位似图形,且相似比为
1, 3

AD 1 . BG 3
∵BG=6,
∴AD=BC=2.∵AD∥BG,∴△OAD∽△OBG,
∴ OA AD 1 , ∴ OA 1 , OB BG 3 2 OA 3
解得:OA=1,
∴OB=3,∴C点坐标为(3,2).
依题意,有△ADE∽△ABC.因为△ADE与△ABC 的周长之比为2∶3,所以 AD 2 . 由AD=4,得AB
AB 3 =6,所以DB=6-4=2.
(三) 中考题型突破
4. (中考南京)如图,△ABC中,CD是边AB上的高,且 AD CD . CD BD
(1)求证:△ACD∽△CBD; (2)求∠ACB的大小. 证明:(1)∵CD是边AB上的高,
(三) 中考题型突破
2. (中考连云港一模)如图,将△ABC的三边分别扩大 一倍得到△A1B1C1(顶点均在格点上),它们是以P点 为位似中心的位似图形,则P点的坐标是( A ) A.(-4,-3) B.(-3,-3) C.(-4,-4) D.(-3,-4)
(三) 中考题型突破
3.(中考咸宁)如图, 以点O为位似中心,将△ABC放 大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为( B ) A.1∶2 B.1∶4 C.1∶5 D.1∶6

苏科版数学中考专题复习:图形的相似综合压轴题 专项练习题汇编(Word版,含答案)

苏科版数学中考专题复习:图形的相似综合压轴题 专项练习题汇编(Word版,含答案)

苏科版数学中考专题复习:图形的相似综合压轴题专项练习题汇编1.已知四边形ABCD中,M,N两点分别在AB,BD上,且满足∠MCN=∠BDC.(1)如图1,当四边形ABCD为正方形时,①求证:△ACM∽△DCN;②求证:DN+BM=CD;(2)如图2,当四边形ABCD为菱形时,若∠BAD=120°,试探究DN,BM,CD的数量关系.2.在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D三点共线.请直接写出CD的长.3.已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.问题发现:(1)①如图1,若四边形ABCD是正方形,且DE⊥CF于G,则=;②如图2,当四边形ABCD是矩形时,且DE⊥CF于G,AB=m,AD=n,则=;拓展研究:(2)如图3,若四边形ABCD是平行四边形,且∠B+∠EGC=180°时,求证:;解决问题:(3)如图4,若BA=BC=5,DA=DC=10,∠BAD=90°,DE⊥CF于G,请直接写出的值.4.在等边△ABC中,D,E分别是AC,BC上的点,且AD=CE,连接BD、AE相交于点F.(1)如图1,当时,=;(2)如图2,求证:△AFD∽△BAD;(3)如图3,当时,猜想AF与BF的数量关系,并说明理由.5.如图1,点D是△ABC中AB边上一点,∠ACD=∠B,BC2=AB•BD.(1)求证:∠ADC=∠ACB;(2)求∠ACB的度数;(3)将图1中的△BCD绕点C顺时针旋转得到△ECF,BD的对应边EF经过点A(如图2所示),若AC=2,求线段CD的长.6.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN ⊥DM,且MN=DM,连接DN.(1)如图①,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM;(2)如图②,当AM=4BM时,求证:A,C,N三点在同一条直线上.7.在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上,AB=8,AD=6.(1)如图1,当点G在CD上时,求AE+DG的值;(2)如图2,FG与CD相交于点N,连接EN,当EF平分∠AEN时,求证:EN=AE+DN;(3)如图3,EG,FG分别交CD于点M,N,当MG2=MN•MD时,求AE的值.8.【问题背景】如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,由已知可以得到:①△≌△;②△∽△.【尝试应用】如图2,在△ABC和△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE =30°,求证:△ACE∽△ABD.【问题解决】如图3,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE =30°,AC与DE相交于点F,点D在BC上,,求的值.9.已知正方形ABCD中,点E是边CD上一点(不与C、D重合),将△ADE绕点A顺时针旋转90°得到△ABF,如图1,连接EF分别交AC、AB于点P、G.(1)请判断△AEF的形状;(2)求证:P A2=PG•PF;(3)如图2,当点E是边CD的中点时,PE=1,求AG的长.10.如图,等边△ABC的边长为12,点D,E分别在边AB,AC上,且AD=AE=4,点F 为BA延长线上一点,过点F作直线l∥BC,G为射线BC上动点,连接GD并延长交直线l于点H,连接FE并延长交BC于点M,连接HE并延长交射线BC于点N.(1)若AF=4,当BG=4时,求线段HF和EH的长;(2)若AF=a(a>0),点G在运动过程中,请判断△HGN的面积是否改变.若不变,求出其值(用含a的代数式表示);若改变,请说明理由.11.在△ABC中,∠ACB=90°,AC=8,BC=6.(1)如图1,点D为AC上一点,DE∥BC交AB边于点E,若=,求AD及DE的长;(2)如图2,折叠△ABC,使点A落在BC边上的点H处,折痕分别交AC、AB于点G、F,且FH∥AC.①求证:四边形AGHF是菱形;②求菱形的边长;(3)在(1)(2)的条件下,线段CD上是否存在点P,使得△CPH∽△DPE?若存在,求出PD的长;若不存在,请说明理由.12.如图①,AB∥MH∥CD,AD与BC相交于点M,点H在BD上.求证:.小明的部分证明如下:证明:∵AB∥MH,∴△DMH∽△DAB,∴.同理可得:=,….(1)请完成以上的证明(可用其他方法替换小明的方法);(2)求证:;(3)如图②,正方形DEFG的顶点D、E分别在△ABC的边AB、AC上,E、F在边BC 上,AN⊥BC,交DG于M,垂足为N,求证:.13.【问题情境】如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,我们可以得到如下正确结论:①CD2=AD•BD;②AC2=AB•AD;③BC2=AB•BD,这些结论是由古希腊著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③BC2=AB•BD.【结论运用】(2)如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF.①求证:△BOF∽△BED.②若CE=2,求OF的长.14.如图①,在正方形ABCD中,点P为线段BC上的一个动点,连接AP,将△ABP沿直线AP翻折得到△AEP,点Q是CD的中点,连接BQ交AE于点F,若BQ∥PE.(1)求证:△ABF∽△BQC;(2)求证:BF=FQ;(3)如图②,连接DE交BQ于点G,连接EC,GC,若FQ=6,求△GBC的面积.15.如图1,已知等边△ABC的边长为8,点D在AC边上,AD=2,点P是AB边上的一个动点.(1)连接PC、PD.①当AP=时,△APD∽△ACP;②若△APD与△BPC相似,求AP的长度;(2)已知点Q在线段PB上,且PQ=2.①如图2,若△APD与△BQC相似,则∠ACQ与∠PDC之间的数量关系是;②如图3,若E、F分别是PD、CQ的中点,连接EF,线段EF的长是否是一个定值,若是,求出EF的长,若不是,说明理由.16.(1)如图①,点E,F分别在正方形边AB,BC上,且AF⊥DE,请直接写出AF与DE的关系.(2)如图②,点E,F,G分别在矩形ABCD的边AB,BC,CD上,且AF⊥EG,求证:.(3)如图③,在(2)的条件下,连接AG,过点G作AG的垂线与CF交于点H,已知BH=3,HG=5,GA=7.5,求的值.17.【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.【初步探究】(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;【类比探究】(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.①判断线段BF与DE的数量关系,并说明理由;②连接DF,BE,若CE=6,AB=12,求DF2+BE2的值.18.在相似的复习课中,同学们遇到了一道题:已知∠C=90°,请设计三种不同方法,将Rt△ABC分割成四个小三角形,使每个小三角形与原三角形相似.(1)甲同学设计了如图1分割方法:D是斜边AB的中点,过D分别作DE⊥AC,DF ⊥BC,请判断甲同学的做法是否正确,并说明理由.(2)乙同学设计了如图2分割方法,过点D作FD⊥AB,DE⊥BC,连结EF,易证△ADF∽△ACB,△DEB∽△ACB,但是只有D在AB特殊位置时,才能证明另两个三角形与原三角形相似,李老师通过几何画板,发现∠A=30°时,,∠A=45°时,,∠A=60°时,.猜测对于任意∠A,当=(用AC,BC或AB相关代数式表示),结论成立.请补充条件并证明.(3)在普通三角形中,显然连结三角形中位线分割成四个小三角形与原三角形相似.你能参考乙同学的分割方法找到其他分割方法吗?请做出示意图并作适当分割说明(不要求证明过程).19.△ABC中,∠BAC=90°,AB=AC,点D在AB边上,点E在AC边上,连接DE,取BC边的中点O,连接DO并延长到点F,使OF=OD,连接CF,EF,令==k.(1)①如图1,若k=1,填空:=;△ECF是三角形.②如图2,将①中△ADE绕点A旋转,①中的结论是否仍然成立?若成立,请仅就图2所示情况给出证明;若不成立,请说明理由.(2)如图3,若k=,AB=AD,将△ADE由图1位置绕点A旋转,当点C,E,D三点共线时,请直接写出sin∠1的值.20.【基础探究】如图1,四边形ABCD中,∠ADC=∠ACB,AC为对角线,AD•CB=DC•AC.(1)求证:AC平分∠DAB.(2)若AC=8,AB=12,则AD=.【应用拓展】如图2,四边形ABCD中,∠ADC=∠ACB=90°,AC为对角线,AD•CB =DC•AC,E为AB的中点,连结CE、DE,DE与AC交于点F.若CB=6,CE=5,请直接写出的值.参考答案1.(1)①证明:∵四边形ABCD为正方形∴∠ACD=∠BDC=∠BAC=45°,又∵∠MCN=∠BDC,∴∠MCN=∠ACD=45°,∴∠MCA+∠ACN=∠ACN+∠DCN,∴∠MCA=∠DCN,∴△ACM∽△DCN.②证明:由①可知:△ACM∽△DCN,∴,∴DN=AM,∴AM+BM=AB=CD,∴DN+BM=CD.(2)解:如图所示:连接AC,在DN上取一点P使∠PCD=∠PDC=30°,过P作PQ ⊥CD于Q,∴∠PCD=∠PDC=30°,∴∠NPC=60°,又∵四边形ABCD为菱形且∠BAD=120°,∴∠BAC=60°,∴∠NPC=∠BAC,又∵∠ACP=∠ACD﹣∠PCD=30°,∠MCN=∠BDC=30°,∵∠MCN=∠ACP,∴∠MCA+∠ACN=∠ACN+∠NCP,∴∠MCA=∠NCP,∴△AMC∽△PNC,∴,∵,∴CD=CP,∴,∴AM,∴AM=PN,∴AM+MB=AB=CD,∴PN+MB=CD,∴(DN﹣DP)+MB=CD,∴(DN﹣CD)+MB=CD,即DN﹣CD+MB=CD,∴DN+MB=2CD.2.解:(1)∵∠ACB=∠ADE=90°,CA=CB,DA=DE,∴∠A=∠B=∠DEA=45°,∴AB=AC=m,AE=AD=m,∴CD=AC﹣AD=m,BE=AB﹣AE=m,∴BE=CD,∵∠A=45°,∴直线CD与BE的夹角为45°,故答案为:BE=CD,45°;(2)不满足,BE=CD,直线CD与BE的夹角为30°,理由如下:如图2,过点C作CH⊥AB于H,延长CD、BE交于点F,∵CA=CB,∴AH=HB,∵∠ACB=∠ADE=120°,CA=CB,DA=DE,∴∠CAB=∠CBA=30°,∠DAE=∠DEA=30°,∴AC=2CH,∠CAD=∠BAE,由勾股定理得:AH=AC,∴AB=AC,同理可得:AE=AD,∵∠CAD=∠BAE,∴△CAD∽△BAE,∴==,∠ACD=ABE,∴BE=CD,∠F=∠CAB=30°,∴BE=CD,直线CD与BE的夹角为30°;(3)如图3,点E在线段BD上,∵m=2,∴AD=DE=1,AB=2,由勾股定理得:BD==,∴BE=BD﹣DE=﹣1,∴CD=BE=,如图4,点D在线段BE上,BE=BD+DE=+1,∴CD=BE=,综上所述:当B,E,D三点共线.CD的长为或.3.(1)解:①∵四边形ABCD是正方形,∴AD=CD,∠BAD=∠ADC=90°,∵DE⊥CF,∴∠DGF=90°=∠ADC,∴∠ADE+∠EDC=90°=∠EDC+∠DCF,∴∠ADE=∠DCF,∴△ADE≌△DCF(ASA),∴DE=CF,故答案为:1;②解:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,AB=CD=m,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴=,故答案为:;(2)证明:如图所示,∠B+∠EGC=180°,∠EGC+∠EGF=180°,∴∠B=∠EGF,在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM,∵AB∥CD,∴∠A=∠CDM,∵AD∥BC,∴∠B+∠A=180°,∵∠B=∠EGF,∴∠EGF+∠A=180°,∴∠AED=∠CFM=∠CMF,∴△ADE∽△DCM,∴,即;(3)解:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,在△BAD和△BCD中,,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴,∴,∴CM=x,在Rt△CMB中,CM=x,BM=AM﹣AB=x﹣5,由勾股定理得:BM2+CM2=BC2,∴(x﹣5)2+(x)2=52,解得:x1=0(舍去),x2=8,∴CN=8,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴==.4.解:(1)如图,∵∠ABC=∠C=60°,∴△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,∵AD=CE,∴△ABD≌△CAE(SAS),∴∠EAC=∠DBA,∵,∴点D是AC中点,且△ABC是等边三角形,∴∠DBA=30°,∴∠EAC=30°,∴∠BAE=∠DBA=30°,∴AF=BF,∴,故答案为:1;(2)由(1)可得△ABD≌△CAE,∴∠EAC=∠DBA,∵∠ADF=∠BDA,∴△AFD∽△BAD;(3)由(1)可得△ABD≌△CAE,∴BD=AE,∠EAC=∠DBA,∴∠BFE=∠DBA+∠BAF=∠EAC+∠BAF=∠BAD=60°,设AF=x,BF=y,AB=AC=BC=n,AD=CE=1,BD=AE=m,∵∠EAC=∠DBA,∠ADB=∠ADB,∴△ADF∽△BDA,∴,∴①,∵∠BFE=∠C=60°,∠DBC=∠DBC,∴△BFE∽△BCD,∴,∴②,①÷②得:,∴,∵,即n=4,∴.5.(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB.∴∠ADC=∠ACB.(2)解:∵BC2=AB•BD,∴.又∵∠B=∠B,∴△ABC∽△CBD.∴∠ACB=∠CDB.∵∠ADC+∠CDB=180°,∠ADC=∠ACB,∴∠ACB=∠CDB=∠ADC=90°.(3)解:∵△BCD绕点C顺时针旋转得到△ECF,∴CE=BC,∠E=∠B.∵∠ACD=∠B,∴∠ACD=∠E.∴AC=AE.∵∠ADC=90°,∴CE⊥AB.∴CD=DE=CE.∴∵△ADC∽△ACB,∴.∴AD=•AC=1,在Rt△ADC中,.6.证明:(1)①∵四边形ABCD为矩形,DM⊥MN,∴∠A=∠DMN=90°,∵AB=6,AD=4,MN=DM,∴,∴△ABD∽△MND;②∵四边形ABCD为矩形,DM⊥MN,∴∠ABC=∠DMN=90°,∴∠ABD+∠CBD=90°,由①得△ABD∽△MND,∴∠ABD=∠DNM,又∵∠MEB=∠DEN,∴△MBE∽△DNE,∴,又∵∠MED=∠BEN,∴△DME∽△NBE,∴∠NBE=∠DME=90°,∴∠CBN+∠CBD=90°,∴∠CBN=∠DNM;(2)如图②,过点N作NF⊥AB,交AB延长线于点F,连接AC,AN,则∠NF A=90°,∵四边形ABCD为矩形,AD=4,AB=6,∴∠A=∠ABC=90°,BC=AD=4,,则∠ADM+∠AMD=90°,∵AM=4BM,AB=6,∴AM=AB=,又∵DM⊥MN,∴∠DMN=90°,∴∠AMD+∠FMN=90°,∴∠ADM=∠FMN,∴△ADM∽△FMN,∴,,∴MF=6,FN=,∴,∴,∵∠ABC=∠AFN=90°,∴△ABC∽△AFN,∴∠BAC=∠F AN,∴A,C,N三点在同一条直线上.7.(1)解:∵四边形ABCD是矩形,∴∠A=∠D=90°,EF=FG,∵∠EFG=90°,∴∠AFE+∠DFN=90°,∠AFE+∠AEF=90°,∴∠DFN=∠AEF.∴△DFG≌△AEF(AAS),∴AF=DG,AE=DF,∴AE+DG=AF+DF=AD=6;(2)证明:如图,延长NF,EA相交于H,∴∠HFE=90°,∠HAF=90°,∵∠HFE=∠NFE,EF=EF,∠HEF=∠NEF,∴△HFE≌△NFE(ASA),∴FH=FN,HE=NE,∵∠AFH=∠DFN,∠HAF=∠D,∴△HF A≌△NFD(AAS),∴AH=DN,∵EH=AE+AH=AE+DN,∴EN=AE+DN;(3)解:如图,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,∵MG2=MN•MD,∴=,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴∠GDM=45°,∠PDG=45°,∴△PDG是等腰直角三角形,PG=PD,∵∠AFE+∠PFG=90°,∠AFE+∠AEF=90°,∴∠PFG=∠AEF,∵∠A=∠P=90°,EF=FG,∴△PFG≌△AEF(AAS),∴AF=PG,AE=PF,∴AE=PD+DF=AF+DF=AD=6.8.【问题背景】∵△ABC和△ADE是等腰直角三角形,∴△ABC∽△ADE.∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,故答案为:①△ABD≌△ACE;②△ABC∽△ADE.【尝试应用】∵△ABC∽△ADE,∴,∠CAB=∠EAD,∴∠CAE=∠BAD,∴△ACE∽△ABD;【问题解决】连接CE,由【尝试应用】知,△ABD∽△ACE,∴∠ACE=∠ABD=∠ADE=30°,∵∠AFD=∠EFC,∴△ADF∽△ECF,∴,∵,∴,∵,∴.9.(1)解:△AEF是等腰直角三角形,理由如下:由旋转的性质可知:AF=AE,∠F AE=90°,∴△AEF是等腰直角三角形;(2)证明:∵四边形ABCD是正方形,∠CAB=45°,由(1)知∠AFE=45°,∴∠P AG=∠AFP=45°,又∵∠APG=∠FP A,∴△APG∽△FP A,∴,∴P A2=PG•PF;(3)解:设正方形的边长为2a,∵将△ADE绕点A顺时针旋转90°得到△ABF,∴∠ABF=∠D=90°,DE=BF,∵∠ABC=90°,∴∠FBC=180°,∴F,B,C三点共线,∵DE=EC=BF=a,BC=2a,∴CF=3a,EF===a,∵BG∥EC,∴BG:EC=FB:CF=FG:FE=1:3,∴BG=,AG=,GE=a,∵∠GAP=∠EG=45°,∠AGP=∠EGA,∴△AGP∽△EGA,∴,∴AG2=GP•GE,∴()2=()×,∴a=或a=0(舍去),∴AG=.10.解:(1)如图1,由题意可得:BD=DF=8,∵HF∥BC,∴∠HFD=∠B,在△HFD和△GBD中,,∴△HFD≌△GBD(ASA),∴HF=BG=4,连接DE,∵△ABC是等边三角形,∴∠B=∠BAC=60°,∵AD=AE=4,∴△ADE是等边三角形,∴DE=AD=4,∠ADE=60°,∴∠ADE=∠B,∴DE∥BC,∴DE∥FH,∵FH=DE=4,∴四边形DEFH是平行四边形,∴HE和DF互相平分,∵DA=AF,∴HE经过点A,∴HE=2AE=8;(2)如图2,面积不变,理由如下:连接DE,作FK⊥BC于K,在Rt△BFK中,∠B=60°,BF=12+a,∴FK=BF•sin60°=,由(1)得,DE∥FH=BC,∴△HDE∽△HGN,△HFD∽△GBD,∴,,∴,∴,∴,∴GN=,∴S△HGN===,11.解:(1)∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴AD=2,;(2)①由翻折不变性可知:AF=FH,AG=GH,∠AFG=∠GFH,∵FH∥AC,∴∠AGF=∠GFH,∴∠AGF=∠AFG,∴AG=AF,∴AG=AF=FH=HG,∴四边形AGHF是菱形;②∵FH∥AC,∴△FBH∽△ABC,∴,又∵BC=6,AC=8,AB=10,∴BH:FH:BF=3:4:5,∴设BH=3a,则FH=AF=4a,BF=5a,∴4 a+5a=10,∴,∴FH=,即菱形的边长为;(3)在点P使得△CPH∽△DPE,理由如下:∵△CPH∽△DPE,∴,∵BH=,∴CH=,∴,∴.12.证明:(1)∴=,两边都除以MH,得,;(2)如图1,作AE⊥BD于E,MF⊥BD于F,CG⊥BD于G,∴AE∥MF∥CG,∴,∵HH∥AB,∴,∴,同理可得:,由(1)得,,两边乘以,得,(3)如图2,∵DG∥BC,∴△ADG∽△ABC,∴,∵,∴,∵四边形DEFG是正方形,∴MN=DE=DG,∴,两边都除以DG,得,.13.(1)证明:∵CD⊥AB,∴∠BDC=90°=∠ACB,∵∠CBD=∠ABC,∴△CBD∽△ABC,∴,∴BC2=AB•BD;(2)①证明:∵四边形ABCD是正方形,∴OC⊥BO,∠BCD=90°,∴BC2=BO•BD,∵CF⊥BE,∴BC2=BF•BE,∴BO•BD=BF•BE,即,∵∠OBF=∠EBD,∴△BOF∽△BED;②解:在Rt△BCE中,∵BC=6,CE=2,∴BE==2,∴DE=4,BO=3,由①知△BOF∽△BED,∴,∴,∴OF=.14.(1)证明:如图①中,∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB∥CD,∴∠ABF=∠CQB,由翻折的性质可知,∠E=∠ABC=90°∵PE∥BQ,∴∠AFB=∠E=90°,∴△AFB∽△BCQ;(2)证明:如图①中,设AB=BC=CD=AD=2a,∵Q是CD的中点,∴CQ=QD=a,∵∠C=90°,∴BQ===a,∵△AFB∽△BCQ,∴=,∴=,∴BF=a,∴QF=a,∴==,∴BF=QF;(3)解:如图②,建立如图平面直角坐标系,过点E作EH⊥AB于点T.∵BF=FQ,FQ=6,∴BF=4,∴BQ=BF+FQ=4+6=10,∴CQ=2,AB=BC=CD=AD=4,∴Q(4,2),∴直线BQ的解析式为y=x,∵∠EAT=∠CBQ,∠ATE=∠BCQ=90°,∴△ATE∽△BCQ,∴==,∴==,∴AT=8,ET=4,∴BT﹣AB﹣AT=4﹣8,∴E(4,4﹣8),∵D(4,4),∴直线DE的解析式为:y=x+2﹣10,由,解得,∴G(4﹣4,2﹣2),∴S△BCG=××(2﹣2)=20﹣4.15.解:(1)①∵等边△ABC的边长为8,∴AC=8,∵△APD∽△ACP,∴,∵AD=2,∴,∴AP=4,故答案为4;②∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=60°,∵△APD与△BPC相似,∴△APD∽△BPC或△APD∽△BCP,Ⅰ、当△APD∽△BPC时,,∴,∴AP=,Ⅱ、当△APD∽△BCP时,,∴,∴AP=4,即△APD与△BPC相似时,AP的长度为或4;(2)①∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=∠ACB=60°,∵△APD与△BQC相似,∴△APD∽△BQC或△APD∽△BCQ,Ⅰ、当△APD∽△BQC时,∠APD=∠BQC,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BQC,∴∠BQC=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(180°﹣∠B﹣∠BAC)=∠B+∠BQC﹣120°=60°+∠PDC﹣60°﹣120°=∠PDC﹣120°,∴∠PDC+∠ACQ=120°;Ⅱ、当△APD∽△BCQ时,∠APD=∠BCQ,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BCQ,∴∠BCQ=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(∠PDC﹣60°)=120°﹣∠PDC,∴∠ACQ+∠PDC=120°,即满足条件的∠ACQ与∠PDC之间的数量关系是∠ACQ+∠PDC=120°或∠PDC﹣∠ACQ=120°;②线段EF的长是一个定值,为.如图,连接AE并延长至G,使AE=GE,连接PG,QG,∵点E是DP的中点,∴DE=PE,∵∠AED=∠GEP,∴△AED≌△GEP(SAS),∴AE=GE,PG=AD=2,∠ADE=∠GPE,∴PG∥AD,∴∠QPG=∠BAC=60°,∵PQ=2=PG,∴△PQG为等边三角形,∴QG=2,∠PQG=60°=∠B,∴QG∥BC,连接GF并延长交BC于H,∴∠FQG=∠FCH,∵点F是CQ的中点,∴FQ=FC,∵∠QFG=∠CFH,∴△QFG≌△CFH(ASA),∴FG=FH,CH=QG=2,连接AH,过点A作AM⊥BC于M,∴∠AMC=90°,CM=BC=4,在Rt△AMC中,AC=8,根据勾股定理得,AM2=AC2﹣CM2=82﹣42=48,在Rt△AMH中,MH=CM﹣CH=2,根据勾股定理得,AH===2,∵AE=GE,FG=FH,∴EF是△AHG的中位线,∴EF=AH=,即线段EF的长是一个定值.16.解:(1)∵AF⊥DE,∴∠ADE+∠DAF=90°,∵∠ADE+∠AED=90°,∴∠DAF=∠AED,∵∠ADE=∠ABF=90°,AD=AB,∴△ADE≌△DAF(AAS),∴AF=DE;(2)过点G作GM⊥BA交于点M,∵AF⊥EG,∴∠F AB+∠AEG=90°,∵∠F AB+∠AFB=90°,∴∠AEG=∠AFB,∵∠GME=∠ABF=90°,∴△GME∽△ABF,∴=,∵AD=GM,∴;(3)连接AH,∵AG⊥GH,∴△AGH是直角三角形,∵HG=5,GA=7.5,∴AH=,在Rt△ABH中,BH=3,AH=,∴AB=,∵∠AGH=90°,∴∠DGA+∠CGH=90°,∵∠DGA+∠GAD=90°,∴∠GAD=∠CGH,∴△DAG∽△CGH,∴==,∴==,∴AD=6,由(2)知,∴==.17.解:(1)如图②,BF与CD交于点M,与DE交于点N,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∵△ECF是等腰直角三角形,∴CF=CE,∠ECF=90°,∴∠BCD=∠ECF,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∴△BCF≌△DCE(SAS),∴BF=DE,∠CBF=∠CDE,∵∠BMC=∠DMF,∠CBF+∠BMC=90°,∴∠CDE+∠DMF=90°,∴∠BND=90°,∴BF⊥DE,故答案为:BF=DE,BF⊥DE;(2)①如图③,,理由:∵四边形ABCD是矩形,∴∠BCD=90°,∵∠ECF=90°,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∵,∴△BCF∽△DCE,∴=;②如图③,连接BD,∵△BCF∽△DCE,∴∠CBF=∠CDE,∵四边形ABCD是矩形,∴CD=AB=12,∵CE=6,,∴=,∴CF=8,BC=16,∵∠DBO+∠CBF+∠BDC=∠BDO+∠CDE+∠BDC=∠DBO+∠BDO=90°,∴∠BOD=90°,∴∠DOF=∠BOE=∠EOF=90°,在Rt△DOF中,DF2=OD2+OF2,在Rt△BOE中,BE2=OB2+OE2,在Rt△DOB中,DB2=OD2+OB2,在Rt△EOF中,EF2=OE2+OF2,∴DF2+BE2=OD2+OF2+OB2+OE2=DB2+EF2,在Rt△BCD中,BD2=BC2+CD2=162+122=400,在Rt△CEF中,EF2=EC2+CF2=62+82=100,∴BD2+EF2=400+100=500,∴DF2+BE2=500.18.解:(1)甲的做法正确,理由如下:∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∵∠C=90°,∴四边形DECF是矩形,∴∠EDF=90°,DE∥BC,DF∥AC,∴,△AED∽△ACB,△BFD∽△BCA,即:AE=CE,同理可得:BF=CF,∴DF∥AC,EF∥AB,∴四边形AEFD是平行四边形,△CEF∽△CAB,同理可得:四边形DEFB是平行四边形,∴∠EFD=∠A,∵∠AED=∠EDF,∴△AED∽△FDE,∴四个小三角形与△ABC相似;(2)当时,△EDF∽△AFD∽△FEC,理由如下:∵△ADF∽△ACB,△DEB∽△ACB,∴①,②,得,,∴DE=EF,∵DE∥AF,∴四边形ADFE是平行四边形,由(1)可得,△DEF和△CEF与△ABC相似,故答案是:;(3)如图,根据和AC和AB及AB的长度找出点D的位置,然后作DE∥AC交BC于E,作EF∥AB交AC于F,连接DF即可.19.解:(1)①∵O是BC的中点,∴OB=OC,在△BOD和△COF中,,∴△BOD≌△COF(SAS),∴CF=BD,∠OCF=∠B,∵AD=AE,AB=AC,∴BD=CE,∴CE=CF,即:,∵∠B+∠ACB=90°,∴∠OCF+∠ACB=90°,∴∠ECF=90°,∴△ECF是等腰直角三角形,故答案是:1,等腰直角三角形,解:(2)如图1,仍然成立,理由如下:连接BD,由(1)得:CF=BD,CF∥BD,∴∠CFO=∠DBO,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠CAE=∠BAD,在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD,∠ACE=∠ABD,∴CE=CF,∵∠ACB+∠ABC=90°,∴∠ACE+∠EAO+∠ABC=90°,∴∠ABD+∠EAO+∠ABC=90°,∴∠EAO+∠DBO=90°,∴∠EAO+∠CFO=90°,∴∠FCE=90°,∴=1,△ECF是等腰直角三角形;(3)如图2,连接BD,作AG⊥CD于G,设AD=a,则AB=,AC=a,AE=,由(2)得:∠CAE=∠BAD,CF=BD,∵,∴△CAE∽△BAD,∴,∠ACD=∠ABD,∴,同理(2)得:∠CEF=90°,∴∠ECF=∠EAD=90°,∴点C、A、B、D共圆,∴∠1=∠ACG,∵AD=a,AE=,∠DAE=90°,∴DE=,由S△ADE=得,AG=a,∴sin∠ACD===,∴sin∠1=.20.(1)证明:∵∠ADC=∠ACB,,∴△ADC∽△ACB,∴∠DAC=∠CAB,∴AC平分∠DAB;(2)解:∵△ADC∽△ACB,∴,∴AC2=AB×AD,∵AC=8,AB=12,∴64=12AD,∴AD=,故答案为:;(3)解:∵∠ACB=90°,点E为AB的中点,∴AB=2CE=10,∴AC=8,∵△ADC∽△ACB,∴AD==6.4,由(1)知∠DAC=∠EAC,∵CE=AE,∴∠ECA=∠EAC,∴∠DAC=∠ECA,∴△AFD∽△CFE,∴.。

人教版数学《图形的相似》

人教版数学《图形的相似》

人教版数学《图形的相似》(PPT优秀 课件)
检测反馈
1.下列四个命题:①所有的直角三角形都相
似;②所有的等腰三角形都相似;③所有的
正方形都相似;④所有的菱形都相似.其中
正确的有 ( D ) A.2个 B.3个 C.4个 D.1个
解析:所有的正方形的形状相同,所以③正确;直 角三角形、等腰三角形、菱形的形状和内角有关, 角度不同,图形的形状就不同,所以所有的直角 三角形、所有的等腰三角形、所有的菱形不一定
人教版数学《图形的相似》(PPT优秀 课件)
人教版数学《图形的相似》(PPT优秀 课件)
认识相似图形
问题思考
【思考1】 以上展示的图片之间有什么特点?它 们的形状和大小有怎样的关系?
它们形状相同、大小不等.
形状相同的图形叫做相似图形.
【思考2】全等形一定是相似图形吗?相似图形一 定全等吗?它们之间有什么关系?
全等图形是相似图形的一种特殊情况.全等图形一 定相似,相似图形不一定全等.
【思考3】 你能举出现实生活中一些相似图形的 例子吗?
人教版数学《图形的相似》(PPT优秀 课件)
人教版数学《图形的相似》(PPT优秀 课件)
相似图形的特征
观察下列每组图形,是不是相似图形?
【思考】
【结论】相似图形
(1)两个相似的平面图形之间有什么关系? 的特征是:形状相同.
得到的.
人教版数学《图形的相似》(PPT优秀 课件)
人教版数学《图形的相似》(PPT优秀 课件)
如图所示的是一个女孩从平面镜和哈哈 镜里看到的自己的形象,这些镜中的形象相似吗?
【思考】 (1)在平面镜中的像与
物体的形状 相同 , 大小 相等 ,则从平面 镜里看到的自己的形象与 女孩 是 相似图形(

初中数学华东师大九年级上册图形的相似PPT

初中数学华东师大九年级上册图形的相似PPT

如如果图一24个.三3.角3,形任的意三画个两角个分三别角形与(另可一以个画三 角在形本的书三最个后角所附对的应格相点等图,上那)么,使它其们三相对似角吗分?别
对应相等.用刻度尺量一量两个三角形的对应边, 看看两个三角形的对应边是否成比例.你能得出 什么结论?
图 24.3.3
图 24.3.3
我们可以发现,它们的对应边成比例,即: 如果一 个三角形的三个角分别与另一个三角形的三个角对应 相等,那么这两个三角形__________.
而根据三角形内角和等于180°,我们知道如果两个 三角形有两对角分别对应相等,那么第三对角也一 定对应相等.
于是,我们可以得到判定两个三角形相 似的一个较为简便的方法: 如果一个三角形的两个角分别与另一个三角形 的两个角对应相等,那么这两个三角形相似.
图 24.3.3
几何语言: ∵∠A= ∠A/, ∠B= ∠B/ ∴△ABC∽ △A/B/C/
(1)求∠ADE的度数
(2)若DE=2,求△ADE与△ABC相似比及AD,AE的长。
变式:在不等边三角形ABC中,P是AB上一点(异 于A,B),过点P作一直线,使截得的三角形与 △ABC相似,则满足条件的直线一共有多少条?
A
P•
B
C
5如图,AD∥BC,∠B=∠DCA. 若AB=10,BC=12,CA=6.求AD、CD的长.
课堂练习
1.找出图中所有的相似三角形.
(第 1 题)
2、下图中若∠ 1=∠2= ∠3,则共有( 似三角形。
)对相
AFຫໍສະໝຸດ BCHG
D
2E
1
A
3B
C
D E
3、若AB∥CD,AE∥FD,则图中的相似三角形有( 。

2016年全国中考数学真题分类 相似形及应用(习题解析)

2016年全国中考数学真题分类 相似形及应用(习题解析)

2016年全国中考数学真题分类相似形及应用一、选择题1.(2016安徽,8,4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.2.(2016甘肃定西,7,3分)如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2, 故选:D .【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.3. (2016浙江杭州,2,3分) 如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC=,则DE EF=( )FE D CB A cb a nmA. 13B.12C. 23D.1 【答案】B4.(2016新疆生产建设兵团,7,5分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A .DE=BCB . =C .△ADE ∽△ABCD .S △ADE :S △ABC =1:2【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据中位线的性质定理得到DE ∥BC ,DE=BC ,再根据平行线分线段成比例定理和相似三角形的性质即可判定. 【解答】解:∵D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=BC , ∴=,△ADE ∽△ABC ,∴,∴A,B,C正确,D错误;故选:D.【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.5.(2016河北,15,2分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是( C )第15题图答案:C解析:只要三个角相等,或者一角相等,两边成比例即可。

《图形的相似》相似PPT优质课件

《图形的相似》相似PPT优质课件

《图形的相似》相似PPT优质课件
人教版九年级数学下册《图形的相似》相似PPT优质课件,共37页。

学习目标
1.了解相似图形和相似比的概念.
2.理解相似多边形的定义.
3.能根据多边形相似进行相关的计算.
探究新知
相似图形的定义
指能够完全重合的两个图形,即它们的形状和大小完全相同.
相似图形的关系
两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.
相似多边形的定义和相似比的概念
下图是两个等边三角形,它们相似吗?它们的对应角、对应边分别有什么关系?
两个等边三角形相似,它们的对应角相等,对应边成比例.
下图是两个正六边形,它们相似吗?它们的对应角、对应边分别有什么关系?
两个正六边形相似,它们的对应角相等,对应边成比例.
两个边数相等的正多边形相似,且对应角相等、对应边成比例.
归纳:
相似多边形的定义:
各角分别相等、各边成比例的两个多边形叫做相似多边形.
相似多边形的特征:
相似多边形的对应角相等,对应边成比例.
相似比:
相似多边形的对应边的比叫做相似比.
课堂小结
形状相同的图形叫做相似图形
相似图形的大小不一定相同
对应角相等,对应边成比例
相似多边形对应边的比叫做相似比
... ... ...
关键词:图形的相似PPT课件免费下载,相似PPT下载,.PPTX格式;。

相似图形PPT课件


习题链接
温馨提示:点击 进入讲评
1A 2 凝固 3 熔化;凝固
4C
5B
答案呈现
6 非晶体 7D 8C 9 10
夯实基础·逐点练
9 【中考•连云港】质量相同的0 ℃的冰比0 ℃的水冷却 效果好,这是因为冰___熔__化___(填物态变化名称)时吸 收热量,此过程中冰的温度保__持__不__变__(填“升高”“降 低”或“保持不变”).为几种物质在1标准大气压 下的熔点和沸点,下列说法中正确的是( )
物质 铁 水银 酒精 钨
熔点/℃ 1 535 -38.8 -117 3 410
沸点/℃ 2 750 357 78 5 927
夯实基础·逐点练
11 下列现象中不属于熔化现象的是( B )
夯实基础·逐点练
1 【淮安洪泽区期中】中国传统文化博大精深,传统民间艺
人会制作一种“糖画”,先把糖加热到流体状态,用它画 成各种小动物图案,再慢慢晾干变硬,送给小朋友.关于 制作“糖画”的全过程,下列表述正确的是( A ) A.糖的物态变化是先熔化后凝固 B.糖的温度一直在增加 C.糖的物态变化是先凝固后熔化 D.晾干变硬是汽化过程
B. 将一个图案放大过程中原有图案和放大图案
C. 某人的侧身照片和正面照片 D. 大小不同的两张同版本的中国地图
解题秘方:紧扣“相似图形的定义”解答.
解:用“排除法”: A , B , D 都符合相似图形的定 义,因此 A , B ,D 都是相似图形 . 所以选 C.
感悟新知
归纳
知1-讲
1.“形状相同”是判定相似图形的唯一条件. 2. 两个图形相似是指它们的形状相同,与它们的位置、
∵ AD ∥ BC ,∠ C =60 °,
∴∠ D =180 °➖ ∠ C =120 ° . ∴∠ D ′ =120 °.

中考真题,,相似三角形2016年中考英语真题

中考真题,,相似三角形2016年中考英语真题2016年中考真题,,相似三角形:2016中考相似三角形专题复习2016中考数学相似三角形专题复习【知识点及方法总结】:一、相似的模型1. 相似基本模型回顾2. 相似高级模型① 双垂直模型及其变形45°120°60°② 大角夹半角相似模型:如上右图。

二、位似图形60°60(1)概念:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.【典型例题讲解】例1. (2015山东省德州市)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由. (3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC 为半径的圆与AB相切,求t的值.例2.(15山东威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.试题训练一.选择题:1.(15淄博)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为()A.B.C.D.第7题图1题图2题图3题图4题图2.(14贵阳)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1 B. P2 C.P3 D.P4 3.(15武汉市)如图,在直角坐标系中,有两.点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)13D.(3,1)4.(15株洲)如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( ) A.1234 B.C.D.33455.(14本溪)如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A.1 B.2 C.3D.45题图6题图7题图8题图6.(13贵阳)如图,M是Rt△ABC的斜边BC上异于B、C 的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有()A.1条B.2条C.3条D.4条27.(15四川乐山)如图,∥∥,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知,则的值为(d )A.B.C.D.1.(15江苏泰州)如图,△中,D为BC 上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为_________.1题图2题图3题图5题图2.(14海南)如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4,AC=5,AD=4,则⊙O的直径AE= _________ .3.(13牡丹江)如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ABC∽△ACD.(只填一个即可)4.(15四川凉山州)在▱ABCD 中,M,N是AD边上的三等分点,连接BD,MC相交于O点,则S△MOD:S△COB..5.(13安顺)在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE= _________ .6题图7题图8题图6.(15吉林)如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm,则楼高CD为m.7.(15佛山)如图,在Rt△ABC中,AB=BC,∠B=90°,AC_2016年中考真题,,相似三角形。

人教版数学中考复习专题《图形的相似》精品教学课件ppt优秀课件

四条线段a,b,c,d成比例,记作a∶b=c∶d.
或 其中a,d为比例外项;b,c为比例内
项.d称为a,b,c的第四比例项. 特殊情况:若作为比例内项的两条线段相同 ,即a∶b=b∶c(或表示为b2=ac),则线段b叫 a,c的比例中项.
3.比例基本性质
比例的灵活变形可助你达到希望的颠峰: 横竖、上下都可比,惟有交叉只能乘.
l如图:如果DE∥BC,那么△ADE∽△ABC
A
A
E
D
D
E
B
C
A
B
CD
EB
C
l3.推论2 平行于三角形一边直线截其它两边(或 其延长线),所得的对应线段成比例.如果DE∥BC,
那么AD AE; 或 AD AE; 或DB EC; 或DB EC. DB EC AB AC AD AE AB AC
l4.定理 三边对应成比例的两个三角形相似.
和“X” 型相似三A 角形.
E
D
D
E
A
B
C
B
C
l若△ADE∽△ABC,则 l∠DAE=∠BAC,∠ADE=∠ABC,∠AED=∠ACB.
AD AE DE .
AB
AC
BC
三、三角形相似的判定方法
l1.定理 两角对应相等的两个三角形相似.
l2.推论1 平行于三角形一边直线截其它两边(或
其延长线),所截得的三角形与原三角形相似;
如果两个图形不仅相似而且每组对应顶点所在的直线都经过同一个点那么这样的两个图形叫做位似图形这个点叫做位似中心这时的相似2
图形的相似
人教版数学中考复习
图形的相似 ①了解比例的基本性质,了解线段的比1
成比例线段,通过建筑、艺术上的实例了解 黄金分割。

各种形的相似性质与判定方法

各种形的相似性质与判定方法各种形状的相似性质与判定方法相似性质是几何学中的重要概念,它用于描述不同形状之间的关系。

相似性质可以帮助我们理解几何图形以及它们的性质。

本文将介绍各种形状的相似性质,并提供相应的判定方法,以便更好地理解和应用这些概念。

一、线段的相似性质与判定方法线段是几何学中最基本的要素之一。

当两个线段的长度之比等于某个常数时,我们称它们为相似的线段。

具体而言,对于线段AB和线段CD来说,如果存在一个常数k,使得AB/CD=k,则称线段AB与线段CD相似。

判定两个线段是否相似的方法有两种:1.依据线段的比例关系:比较两个线段的长度之比,如果它们的比值相等,则可以判定它们相似。

2.利用三角形的相似性质:如果两个线段AC与BD是相似的,且它们所在的两个三角形ABC与BCD也相似,则可以推断线段AB与线段CD也相似。

二、角的相似性质与判定方法角是由两条射线共同初始点构成的几何图形。

当两个角的度数之比等于某个常数时,我们称它们为相似的角。

具体而言,对于角A和角B来说,如果存在一个常数k,使得m∠A/m∠B=k,则称角A与角B 相似。

判定两个角是否相似的方法有以下几种:1.角度的比较:比较两个角的度数之比,如果它们的比值相等,则可以判定它们相似。

2.利用三角形的相似性质:如果两个角∠A和∠B相似,且它们所在的两个三角形ABC和BCD也相似,则可以推断∠A和∠B所对应的弧AB和弧CD也相似。

三、三角形的相似性质与判定方法三角形是几何学中最常见的图形之一,它由三条边和三个角组成。

当两个三角形的对应边长之比和对应角度之比都相等时,我们称它们为相似的三角形。

具体而言,对于三角形ABC和三角形DEF来说,如果AB/DE=BC/EF=AC/DF,且∠A/∠D=∠B/∠E=∠C/∠F,则称三角形ABC与三角形DEF相似。

判定两个三角形是否相似的方法有以下几种:1.边长比较法:比较两个三角形的对应边长之比,如果它们的比值相等,则可以判定它们相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)两角对应相等,两三角形相似;
(3)两边对应成比例且夹角相等,两三角形相似; (4)三边对应成比例,两三角形相似;
(5)两个直角三角形的斜边和一条直角边对应成比例,两直角三
角形相似; (6)直角三角形中被斜边上的高分成的两个三角形都与原三角形 相似.
6.相似三角形性质 相似三角形的对应角相等,对应边成比例,对应高、对应中线 、对应角平分线的比都等于相似比,周长比等于相似比,面积比 等于相似比的平方.
数学
山西版
第七章 图形的变化
第30讲 图形的相似
课标解读 1.了解比例的基本性质:线段的比、成比例的线段;通过建 筑、艺术上的实例了解黄金分割.
2.通过具体实例认识图形的相似,了解相似多边形和相似比
. 3.掌握基本事实:两条直线被一组平行线所截,所得的对应
线段成比例.
4.了解相似三角形的判定定理:两角分别相等的两个三角形 相似;两边成比例且夹角相等的两个三角形相似;三边成比例的 两个三角形相似.了解相似三角形判定定理的证明.
查,或在几何图形的猜想证明问题和函数与几何动态探究题解题
时用到相似三角形的性质与判定.预计2016年中考,位似图形可 能会以选择或填空的形式考查,相似三角形的性质与判定会与其 他知识结合考查,难度较大.
1.比和比例的有关概念
比例式 ,简称比例. (1)表示两个比相等的式子叫做________
a c (2)第四比例项:若 = 或 a∶b=c∶d,那么 d 叫做 a,b,c b d
似中心;②确定原图形中的顶点关于位似中心的对应点;③描出 新图形.
1.两个注意 (1)求两条线段的比时, 对两条线段要采用同一长度单位. 如 果单位不同,那么必须先化成同一单位,且两条线段的比是一个 实数,没有单位. (2)四条线段成比例与它们的排列顺序有关,线段 a,b,c, a c b c d 成比例表示成 = ,而线段 b,a,c,d 成比例则表示成 = . b d a d
5.了解相似三角形的性质定理:相似三角形对应线段的比等 于相似比;面积比等于相似比的平方.
6.了解图形的位似,知道利用位似可以将一个图形放大或缩
小. 7.会利用图形的相似解决一些简单的实际问题.
年份
题号
题型
考查点 利用三角形中位线 性质得相似三角形 后求周长
考查内容 分值 总分
2015
4 选择题 相似三角 形的性质 3
15
填空题
以“公共自行车桩” 相似三角 为背景,结合勾股 形的判定 定理,相似三角形 与性质 的判定和性质求高 度
3
6
图形的相似近5年仅2015年考查过2次,题型为选择题和填空题, 分值为6分,题目难度适中.本节常考知识点有:相似三角形的判 定与性质;位似图形的性质.三角形的相似一般结合实际问题考
2.比例的基本性质及定理 a c (1) = ⇒ad=bc; b d a c a± b c± d (2) = ⇒ = ; b d b d a+c+„+m a a c m (3) = =„= (b+d+„+n≠0)⇒ = . b d n b+d+„+n b
3.平行线分线段成比例定理 比例 ; (1)三条平行线截两条直线,所得的对应线段成______ (2)平行于三角形一边截其他两边(或两边的延长线),所得的对 比例 ; 应线段成_______ (3)如果一条直线截三角形的两边(或两边的延长线),所得的对 比例 ,那么这条直线平行于三角形的第三边; 应线段成_______ (4)平行于三角形的一边,并且和其他两边(或两边的延长线)相 交的直线,所截得的三角形的三边与原三角形三边对应成比例.
2. “三点定形”法 证明比例式或等积式的方法主要有“三点定形”法:(1)横向定形: AB BC 欲证DE = EF ,横向观察,比例式中分子的两条线段是 AB 和 BC,三个 字母 A,B,C 恰为△ABC 的顶点;分母的两条线段是 DE 和 EF,三个 字母 D,E,F 恰为△DEF 的三个顶点.因此只需证△ABC∽△DEF; AB DE (2)纵向定形:欲证BC = EF ,纵向观察,比例式中左边的两条线段 AB 和 BC 中的三个字母 A,B,C 恰为△ABC 的顶点;右边的两条线段 DE 和 EF 中的三个字母 D,E,F 恰为△DEF 的三个顶点.因此只需证 △ABC∽△DEF;
8.射影定理:如图,△ABC中,∠ACB=90°,CD是斜边AB
上的高,则有下列结论.
(1)AC2=AD·AB; (2)BC2=BD·AB; (3)CD2=AD·BD; (4)AC2∶BC2=AD∶BD;
(5)AB·CD=AC·BC.
9.相似多边形的性质 相等 ,对应边__________ 成比例 . (1)相似多边形对应角_______ 相似比 ,面积之比等于 (2)相似多边形周长之比等于________ 相似比的平方 . ________________
4.相似三角形的定义:对应角相等、对应边成比例的三角形叫 相似三角形 . 做______________
相似比:相似三角形的对应边的比,叫做两个相似三角形的
相似比 . __________
5.相似三角形的判定 (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交 ,所截得的三角形与原三角形相似;
7.相似三角形的实际应用 (1)运用三角形相似的判定条件和性质解决实际问题的方法步骤: ①将实际问题转化为相似三角形的问题; ②找出一对相似三角形; ③根据相似三角形的性质,表示出相应的量;并求解. (2)运用相似三角形的有关性质解决现实生活中的实际问题. 如利用光的反射定律求物体的高度 , 利用影子计算建筑物的高 身高 建筑物的高度 度.同一时刻,物高与影长成正比例,有 = . 影长 建筑物的影长
10.位似图形 相似 ,而且对应顶点的连线相 (1)概念:如果两个多边形不仅______ 一点 ,这样的图形叫做位似图形.这个点叫做__________ 位似中心 交于______ . (2)性质:位似图形上任意一对对应点到位似中心的距离之比等 位似比 . 于_______
(3)利用位似图形将一个图形放大或缩小,其步骤为:①确定位
第四比例项 . 的____Байду номын сангаас_______
a b (3)比例中项:若 = 或 a∶b=b∶c,那么 b 叫做 a,c 的 b c
比例中项 . __________
(4)黄金分割:把一条线段(AB)分成两条线段,使其中较长线段 (AC)是原线段(AB)与较短线段(BC)的比例中项,就叫做把这条
黄金分割 . 即 AC2 = _________ AB· BC 线 段 _________ , AC = 5-1 两 个. 2 0.618 _______AB ≈______AB. 一条线段的黄金分割点有____
相关文档
最新文档