中考数学复习图形的相似

合集下载

中考数学总复习之图形的相似(15大题)

中考数学总复习之图形的相似(15大题)

中考数学总复习之图形的相似(15大题)1.小明和小红学习了《利用相似三角形测高》一课后,对我国杰出数学家刘徽的著作《海岛算经》非常感兴趣,也想利用相同的方法测量广场上路灯的高度.如图所示,他们在广场上竖立两根长均为1.5米的标杆BC 和DE .测得标杆BC 在路灯AH 下的影长BF 为1米,标杆BF 在路灯AH 下的影长DG 为3米,两根标杆BC 和DE 之间的距离BD 为10.8米.已知AH ⊥HG ,CB ⊥BF ,ED ⊥DG ,点H 、B 、F 、D 、G 五点在同一直线上,求路灯的高AH .2.如图,点D 、E 、F 分别是三角形ABC 的边BC 、CA 、AB 上的点,DE ∥BA ,DF ∥CA . (1)求证:∠FDE =∠A .(2)若BD :DC =1:4,S △CDE =16,求S △ABC .3.(2023•镇海区校级一模)如图,在△ABC 中,BC AC=23,D ,M ,N 分别在直线AB ,直线AC ,直线BC 上.(1)若D 是AB 中点,∠MDN =∠A +∠B ,求MD ND ;(2)若点D ,M ,N 分别在AB ,CA ,CB 的延长线上,且ABBD=34,∠MDN =∠ACB ,求MD ND.4.(2023•工业园区校级模拟)如图,已知BF 是⊙O 的直径,A 为⊙O 上(异于B 、F )一点,过点A 的直线MA 与FB 的延长线交于点M ,G 为BF 上一点,AG 的延长线交⊙O 于点E ,连接BE ,∠MAE +∠AFM =90°. (1)求证:AM ∥EF ;(2)MA =6√2,BE =2,记△AMF 的面积为S 1,记△AEF 的面积为S 2,记△EFG 的面积为S 3,若S 1•S 3=35S 22,求⊙O 的半径.5.(2023•舟山一模)如图,在Rt △ABC 中,∠BAC =90°,∠ABC 的平分线交AC 于点E ,以A 为圆心,AE 为半径作⊙A 交BE 于点F ,直线AB 交⊙A 于G 、H 两点,AF 的延长线交BC 于点D ,作EK ⊥BC ,垂足为点K . (1)求证:AD ⊥BC ; (2)求证:BF BE=AD AC;(3)当BF •BE =BG •BH 且AH =BD 时,求证:BFBG=AC BE.6.(2023春•桐城市月考)如图,平面直角坐标系中点A (﹣3,3),B (﹣5,1),C (﹣2,0),P (a 、b )是△ABC 的边AC 上的任意一点.(1)以点M (﹣1,2)为位似中心,在M 点的右侧把△ABC 按2:1放大得△A 1B 1C 1,画出△A 1B 1C 1;直接写出△A 1B 1C 1的边A 1C 1上与点P (a 、b )的对应点P 1的坐标. (2)将△ABC 绕N (﹣1,﹣2)逆时针旋转90°得△A 2B 2C 2,画出△A 2B 2C 2,求旋转过程中线段BC在平面上扫过部分的面积.(用π表示)7.(2022秋•兴县期末)数学社团的同学们想用边长为20cm的正方形铝板,设计小组会徽下面是“兴趣小组”和“智慧小组”的设计方案,请认真阅读,并解决问题;“兴趣小组”:我们小组设计的会微如图1所示,它是由四个全等的“黄金矩形”组成的正方形图案,在该图案中“矩形的宽与长的比等于矩形的长与正方形的边长之比”.“智慧小组”:我们小组设计的会徽如图2所示,它是由四个全等的直角三角形组成的“赵爽弦图”,其中小正方形的面积为16cm2.解决问题:(1)“兴趣小组”设计的方案中,小正方形的边长约等于cm(精确到0.1 cm).(2)请你求出“智慧小组”设计的方案中,小直角三角形的两条直角边分别是多少cm?8.(2023•蜀山区校级模拟)如图,已知△ABC ,在已知的直角坐标系网格内画出下面图形: (1)画出△ABC 的位似图形△A 1B 1C ,其中点C 为位似中心,且A 1B 1AB=2.(2)画出△ABC 经过平移后得到的△A 2B 2C 2,其中△ABC 的一边上的点K (x ,y ),平移后的对应点为K 2(x +4,y ﹣4).9.(2023春•南岸区校级月考)如图,已知在直角△ABC 中,∠ABC =90°,E 为AC 边上一点,连接BE ,过E 作ED ⊥AC ,交BC 边于点D .(1)如图1,连接AD ,若CE =2,BD =3√2,∠C =45°,求△ADE 的面积; (2)如图2,作∠ABC 的角平分线交AC 于点F ,连接DF ,若∠BDE =∠CDF ,求证:AE +DE =√2BE ;(3)如图3,若∠C =30°,将△BCE 沿BE 折叠,得到△BEF ,且BF 与AC 交于点G ,连接AD ,DF ,点E 在AC 边上运动的过程中,当BF ⊥AC 时,直接写出DF DA的值.10.(2023春•西湖区校级期中)在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,过点D 作DE ⊥AC ,过点F 作DF ⊥BC ,其中AD =185,BC =8. (1)求证:AC 3BC 3=AE BF;(2)求BD 的值.11.(2023•普陀区一模)已知:如图,在四边形ABCD 中,E 为BC 上一点,AB •DE =AE •EC ,∠ABE =∠AED . (1)求证:△ABE ∽△ECD ;(2)如果F 、G 、H 分别是AE 、DE 、AD 的中点,联结BF 、HF 、HG 、CG .求证:BF •HF =CG •HG .12.(2022秋•辽宁期末)如图,在Rt △ABC 中,∠ABC =90°,点D ,E 分别在边BC ,AC 上,联结AD ,BE 交于点G ,且AD =CD . (1)如果BE =AB ,求证:BE •AG =BC •EG ;(2)如果射线CG 交AB 于点P ,且AD •AE =BD •CE ,求证:点P 是AB 中点.13.(2023•大连模拟)如图,在△ABC中,AB=BC,AD⊥BC于点D,AD=3cm,BD=4DC,点P是AB边上一动点(点P不与点A,B重合),过点P作PQ⊥BC于点Q,点M在射线QC上,且QM=BQ.设BQ=xcm,△PQM与△ABD重叠部分的面积为Scm2.(1)求AB的长;(2)求S关于x的函数解析式,并直接写出自变量x的取值范围.14.(2022秋•河西区校级期末)如图,D,E,F是Rt△ABC三边上的点,且四边形CDEF 为矩形,BC=6,∠A=30°.(1)求AB的长;(2)设AE=x,则DE=,EF=(用含x的表达式表示);(3)求矩形CDEF的面积的最大值.15.(2023•宝山区一模)已知:如图,四边形ABCD、ACED都是平行四边形,M是边CD 的中点,联结BM并延长,分别交AC、DE于点F、G.(1)求证:BF2=FM•BG;(2)联结CG,如果AB=√2CG,求证:∠BGC=∠BAC.。

中考数学知识点总结图形的相似

中考数学知识点总结图形的相似

中考数学知识点总结图形的相似在中考数学中,图形的相似是一个重要的知识点。

它不仅在几何题目中频繁出现,也是解决实际问题的有力工具。

下面就让我们一起来详细了解一下图形相似的相关知识。

一、相似图形的概念相似图形是指形状相同,但大小不一定相同的图形。

比如说,两个正方形,它们的边长可能不同,但形状是一样的,这就是相似图形。

相似多边形对应角相等,对应边的比相等。

如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形就是相似多边形。

二、相似三角形1、相似三角形的判定(1)两角分别相等的两个三角形相似。

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(2)两边成比例且夹角相等的两个三角形相似。

如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

(3)三边成比例的两个三角形相似。

如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

(1)相似三角形对应边的比等于相似比。

(2)相似三角形对应角相等。

(3)相似三角形周长的比等于相似比。

(4)相似三角形面积的比等于相似比的平方。

三、相似三角形的应用1、测量高度在实际生活中,我们常常需要测量一些物体的高度,比如旗杆、建筑物等。

这时就可以利用相似三角形的知识来解决。

通过测量一些已知长度的线段和对应的角度,构建相似三角形,从而求出物体的高度。

2、测量距离相似三角形还可以用于测量距离。

比如,在河的一岸要测量到对岸某一点的距离,可以在这一岸选取两个点,构建相似三角形,通过测量已知边的长度和角度,来计算出河的宽度。

四、位似图形1、位似图形的概念如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。

(1)位似图形上任意一对对应点到位似中心的距离之比等于位似比。

(2)位似图形的对应边互相平行或在同一条直线上。

3、位似图形的作图在位似图形的作图中,要先确定位似中心,然后根据位似比确定对应点的位置,最后连接各点得到位似图形。

中考数学专题复习全攻略第五讲 图形的相似

中考数学专题复习全攻略第五讲  图形的相似

5第五讲 图形的相似知识点一:比例线段 1.比例线段在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.2比例的基本性质 (1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0) (2)合比性质:a c b d =⇔a b b ±=c dd±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn =k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)变式练习1:若35a b=,则a b b +=85. 解:设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 3.平行线分线段成比例定理 (1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=.的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例. 即如图所示,若AB ∥CD ,则OA OBOD OC. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.要使DE ∥AB ,那么BC :CD 应等于53.变式练习2:如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若ABBC =12,则DEEF=( B ) A .13 B .12 C .23D .1 ,变式练习3:如图,AB ∥CD ∥EF ,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,那么BC CE 的值等于___35___.,第3题图)4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果AC AB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.变式练习:把长为10cm 的线段进行黄金分割,那么较长线段长为. 5.证四条线段成比例的技巧:(1).巧作平行线证相似:变式练习:在∆ABC 中,AD 为BC 边上的中线,F 为AD 上任意一点, 直线CF 交AB 于E 。

中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)相似模型相似模型一:A字型特征:DE∥BC模型结论:根据A字型相似模型,可以得出以下结论:C∠B=∠XXXAC²=AD×AB相似模型二:X型特征:AC∥BD模型结论:根据X型相似模型,可以得出以下结论:AO×OB=OC×ODBOC∽△DOACAOC∽△DOB相似模型三:旋转相似特征:成比例线,段共端点模型结论:根据旋转相似模型,可以得出以下结论:BEF∽△BCDDEF∽△DABAEB∽△DEC相似模型四:三平行模型特征:AB∥EF∥CD模型结论:根据三平行模型,可以得出以下结论:ABE∽△CDF相似模型五:半角模型特征:90度,45度;120度,60度模型结论:根据半角模型,可以得出以下结论:ABN∽△MAN∽△MCAABD∽△CAE∽△CBA相似模型六:三角形内接矩形模型特征:矩形EFGH或正方形EFGH内接与三角形模型结论:根据三角形内接矩形模型,可以得出以下结论:ABC∽△EFH相似模型七:十字模型特征:正方形HDGB模型结论:根据十字模型,可以得出以下结论:若AF=BE,则AF⊥BE,且为长方形若AF⊥BE,则AF=BEBDBC平行四边形,且△GME∽△HNF,△MED≌△BFA。

下面给出几个几何问题。

1.在△ABC中,AB=AC,且有以下七个结论:①D为AC中点;②AE⊥BD;③BE:EC=2:1;④∠ADB=∠CDE;⑤∠AEB=∠CED;⑥∠BMC=135°;⑦BM:MC=2:1.求AC和CD的比值。

2.在平行四边形ABCD中,AB∥CD,线段BC,AD相交于点F,点E是线段AF上一点且满足∠BEF=∠C,其中AF=6,DF=3,CF=2,求AE的长度。

3.在Rt△ABD中,过点D作CD⊥BD,垂足为D,连接XXX于点E,过点E作EF⊥BD于点F,若AB=15,CD=10,求4.在□ABCD中,E为BC的中点,连接AE,AC,分别交BD于M,N,求5.在平行四边形ABCD中,AB∥CD,AD,BC相交于点E,过E作EF∥AB交BD于点F。

中考数学复习《图形的相似》

中考数学复习《图形的相似》

(3)设 EG=KD=x,则 AK=80-x. EF AK EF 80-x 3 ∵△AEF∽△ABC,∴BC=AD,即120= 80 ,∴EF=120-2x, 3 32 3 ∴矩形面积 S=x(120-2x)=-2x +120x=-2(x-40)2+2 400, 故当 x=40 时,此时矩形的面积最大,最大面积为 2 400 mm2
(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?
【解析】(1)根据正方形的对边平行得到 BC∥EF,利用“平行于三角形的 一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似” EF 判定即可;(2)设 EG=EF=x,用 x 表示 AK,根据△AEF∽△ABC 列比例式BC AK =AD可计算正方形边长; (3)设 EG=KD=x, 根据△AEF∽△ABC 用 x 表示 EF, 根据矩形面积公式可以写出矩形面积关于 x 的二次函数,根据二次函数求出矩 形的最大值.
【解析】根据题意可知一块 10 cm×5 cm 的长方形版面要付广告费 180 元, 18 因此每平方厘米的广告费为:180÷50= 5 元,然后根据相似三角形的性质, 由该版面的边长都扩大为原来的 3 倍, 18 广告费为:3×10×3×5× 5 =1620 元.故选 C.
3.(2017· 杭州)如图,在锐角三角形 ABC 中,点 D,E 分别在边 AC, AB 上,AG⊥BC 于点 G,AF⊥DE 于点 F,∠EAF=∠GAC. (1)求证:△ADE∽△ABC; AF (2)若 AD=3,AB=5,求AG的值. 证明:(1)∵AF⊥DE,AG⊥BC,
EA OD 3 (2)两个矩形不可能全等.当EG= DE =2时,两个矩形相似, 3 3 3 EA=2EG,设 EG=x,则 EA=2x,∴OB=2+2x,FB=3-x, 3 3 5 ∴F(2+2x,3-x),∴(2+2x)(3-x)=6,解得 x1=0(舍去),x2=3, 5 5 EG 3 5 ∴EG=3,∴矩形 AEGF 与矩形 DOHE 的相似比为DE=2=6

中考数学专题13 图形的相似(第01期)-2019年中考真题数学试题分项汇编(解析版)

中考数学专题13 图形的相似(第01期)-2019年中考真题数学试题分项汇编(解析版)

专题13 图形的相似1.(2019•常州)若△ABC~△A′B'C′,相似比为1∶2,则△ABC与△A'B′C'的周长的比为A.2∶1 B.1∶2 C.4∶1 D.1∶4【答案】B【解析】∵△ABC~△A′B'C′,相似比为1∶2,∴△ABC与△A'B′C'的周长的比为1∶2.故选B.2.(2019•兰州)已知△ABC∽△A'B'C',AB=8,A'B'=6,则BCB'C'=A.2 B.43C.3 D.169【答案】B【解析】∵△ABC∽△A'B'C',∴8463BC ABB C A B''''=--.故选B.3.(2019•安徽)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为A.3.6 B.4 C.4.8 D.5【答案】B【解析】如图,作DH∥EG交AB于点H,则△AEG∽△ADH,∴AE EGAD DH=,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴AE EFAD CD=,∴EG EFDH CD=,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12-x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴DH BDAC BC=,即12612x x-=,解得,x=4,∴CD=4,故选B.4.(2019•杭州)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则A.AD ANAN AE=B.BD MNMN CE=C.DN NEBM MC=D.DN NEMC BM=【答案】C【解析】∵DN∥BM,∴△ADN∽△ABM,∴DN AN BM AM=,∵NE∥MC,∴△ANE∽△AMC,∴NE ANMC AM=,∴DN NEBM MC=.故选C.5.(2019•连云港)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似A.①处B.②处C.③处D.④处【答案】B【解析】帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2、,“车”、“炮”之间的距离为1,12==,∴马应该落在②的位置,故选B.6.(2019•重庆)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是A.2 B.3 C.4 D.5 【答案】C【解析】∵△ABO∽△CDO,∴BO ABDO DC=,∵BO=6,DO=3,CD=2,∴632AB=,解得AB=4.故选C.7.(2019•赤峰)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是A.1 B.2 C.3 D.4【答案】C【解析】∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴AD AEAC AB=,即246AE=,解得AE=3,故选C.8.(2019•凉山州)如图,在△ABC中,D在AC边上,AD∶DC=1∶2,O是BD的中点,连接AO并延长交BC于E,则BE∶EC=A.1∶2 B.1∶3 C.1∶4 D.2∶3【答案】B【解析】如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD∶DC=1∶2,∴AD=DG=GC,∴AG∶GC=2∶1,AO∶OE=2∶1,∴S△AOB:S△BOE=2,设S △BOE =S ,S △AOB =2S ,又BO =OD ,∴S △AOD =2S ,S △ABD =4S ,∵AD ∶DC =1∶2,∴S △BDC =2S △ABD =8S ,S四边形CDOE=7S ,∴S △AEC =9S ,S △ABE =3S ,∴3193ABE AEC S BE S EC S S ===△△,故选B . 9.(2019•常德)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是A .20B .22C .24D .26【答案】D【解析】如图,根据题意得△AFH ∽△ADE ,∴2239()()416AFH ADE S FH S DE ===△△,设S △AFH =9x ,则S △ADE =16x ,∴16x -9x =7,解得x =1,∴S △ADE =16, ∴四边形DBCE 的面积=42-16=26.故选D .10.(2019•玉林)如图,AB ∥EF ∥DC ,AD ∥BC ,EF 与AC 交于点G ,则是相似三角形共有A .3对B .5对C .6对D .8对【答案】C【解析】图中三角形有:△AEG ,△ADC ,CFG ,△CBA , ∵AB ∥EF ∥DC ,AD ∥BC ,∴△AEG ∽△ADC ∽CFG ∽△CBA ,共有6个组合分别为:∴△AEG ∽△ADC ,△AEG ∽CFG ,△AEG ∽△CBA ,△ADC ∽CFG ,△ADC ∽△CBA ,CFG ∽△CBA ,故选C .11.(2019•淄博)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B .若△ADC 的面积为a ,则△ABD 的面积为A .2aB .52a C .3aD .72a【答案】C【解析】∵∠CAD =∠B ,∠ACD =∠BCA ,∴△ACD ∽△BCA ,∴2()ACD BCA S AC S AB =△△,即14BCA a S =△, 解得,△BCA 的面积为4a ,∴△ABD 的面积为:4a -a =3a ,故选C .12.(2019•邵阳)如图,以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′,以下说法中错误的是A .△ABC ∽△A ′B ′C ′B .点C 、点O 、点C ′三点在同一直线上 C .AO ∶AA ′=1∶2D .AB ∥A ′B ′ 【答案】C【解析】∵以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′, ∴△ABC ∽△A ′B ′C ′,点C 、点O 、点C ′三点在同一直线上,AB ∥A ′B ′, AO ∶OA ′=1∶2,故选项C 错误,符合题意.故选C .13.(2019•淮安)如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F .若AB =3,DE =2,BC =6,则EF =__________.【答案】4【解析】∵l 1∥l 2∥l 3,∴AB DEBC EF=,又AB =3,DE =2,BC =6,∴EF =4,故答案为:4.14.(2019•河池)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则ABCD=__________.【答案】2 5【解析】∵以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,∴22235 OA ABOC CD===+.故答案为:25.15.(2019•宜宾)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=__________.【答案】16 5【解析】在Rt△ABC中,AB,由射影定理得,AC2=AD·AB,∴AD=2ACAB=165,故答案为:165.16.(2019•本溪)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相似比为12,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为__________.【答案】(2,1)或(-2,-1)【解析】以点O为位似中心,相似比为12,把△ABO缩小,点A的坐标是A(4,2),则点A的对应点A1的坐标为(4×12,2×12)或(-4×12,-2×12),即(2,1)或(-2,-1),故答案为:(2,1)或(-2,-1).17.(2019•烟台)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(-2,-1),B(-2,-3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,-1),B1(1,-5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为__________.【答案】(-5,-1)【解析】如图,P点坐标为(-5,-1).故答案为:(-5,-1).18.(2019•南京)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠AC B.若AD=2,BD=3,则AC的长__________.【解析】∵BC的垂直平分线MN交AB于点D,∴CD=BD=3,∴∠B=∠DCB,AB=AD+BD=5,∵CD平分∠ACB,∴∠ACD=∠DCB=∠B,∵∠A =∠A ,∴△ACD ∽△ABC ,∴AC ADAB AC=,∴AC 2=AD ×AB =2×5=10,∴AC19.(2019•吉林)在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时同地测得一栋楼的影长为90 m ,则这栋楼的高度为__________m . 【答案】54【解析】设这栋楼的高度为h m ,∵在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时测得一栋楼的影长为60 m , ∴1.8390h=,解得h =54(m ).故答案为:54. 20.(2019•福建)已知△ABC 和点A ',如图.(1)以点A '为一个顶点作△A 'B 'C ',使△A 'B 'C '∽△ABC ,且△A 'B 'C '的面积等于△ABC 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D '、E '、F '分别是你所作的△A 'B 'C '三边A 'B '、B 'C '、C 'A '的中点,求证:△DEF ∽△D 'E 'F '.【解析】(1)作线段A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC ,得△A 'B 'C '即可所求.∵A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC , ∴△ABC ∽△A ′B ′C ′,∴2()4A B C'ABC ''S A B''S AB==△△.(2)如图,∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴111222DE BC DF AC EF AB ===,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.21.(2019•凉山州)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.【解析】(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD,∴AD BD BD CD=,∴BD2=AD·CD.(2)∵BM∥CD,∴∠MBD=∠BDC,∴∠ADB=∠MBD,且∠ABD=90°,∴BM=MD,∠MAB=∠MBA,∴BM=MD=AM=4,∵BD2=AD·CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2-CD2=12,∴MC2=MB2+BC2=28,∴MC=∵BM ∥CD ,∴△MNB ∽△CND ,∴23BM MN CD CN ==,且MC =,∴MN =5. 22.(2019•巴中)△ABC 在边长为1的正方形网格中如图所示.①以点C 为位似中心,作出△ABC 的位似图形△A 1B 1C ,使其位似比为1∶2.且△A 1B 1C 位于点C 的异侧,并表示出A 1的坐标.②作出△ABC 绕点C 顺时针旋转90°后的图形△A 2B 2C . ③在②的条件下求出点B 经过的路径长.【解析】①如图,△A 1B 1C 为所作,点A 1的坐标为(3,-3). ②如图,△A 2B 2C 为所作.③OB =点B 经过的路径长=90ππ1802⋅=.23.(2019•荆门)如图,为了测量一栋楼的高度OE ,小明同学先在操场上A 处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E ;再将镜子放到C 处,然后后退到D 处,恰好再次在镜子中看到楼的顶部E (O ,A ,B ,C ,D 在同一条直线上),测得AC =2 m ,BD =2.1 m ,如果小明眼睛距地面髙度BF ,DG 为1.6 m ,试确定楼的高度OE .【解析】如图,设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF 并延长交OE于点H,∵GF∥AC,∴△MAC∽△MFG,∴AC MA MO FG MF MH==,即:AC OE OE OEBD MH MO OH OE BF ===++,∴21.62.1OEOE=+,∴OE=32,答:楼的高度OE为32米.24.(2019•安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2·h3.【解析】(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC,又∠APB =135°,∴∠PAB +∠PBA =45°, ∴∠PBC =∠PAB , 又∵∠APB =∠BPC =135°, ∴△PAB ∽△PBC .(2)∵△PAB ∽△PBC ,∴PA PB ABPB PC BC ==,在Rt △ABC 中,AB =AC ,∴ABBC=∴PB PA ==,,∴PA =2PC .(3)如图,过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E ,∴PF =h 1,PD =h 2,PE =h 3, ∵∠CPB +∠APB =135°+135°=270°, ∴∠APC =90°, ∴∠EAP +∠ACP =90°,又∵∠ACB =∠ACP +∠PCD =90°, ∴∠EAP =∠PCD , ∴Rt △AEP ∽Rt △CDP , ∴2PE APDP PC==,即322h h =,∴h 3=2h 2,∵△PAB ∽△PBC ,∴12h AB h BC==∴12h =,∴2212222322h h h h h h ==⋅=.即h 12=h 2·h 3.25.(2019•长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(__________命题) ②三个角分别相等的两个凸四边形相似;(__________命题) ③两个大小不同的正方形相似.(__________命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,1111AB BCA B B C =11CDC D .求证:四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD相似,求21S S 的值.【解析】(1)①四条边成比例的两个凸四边形相似,是假命题,角不一定相等. ②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例. ③两个大小不同的正方形相似.是真命题.故答案为:假,假,真. (2)如图1中,连接BD ,B 1D 1.∵∠BCD =∠B 1C 1D 1,且1111BC CDB C C D =, ∴△BCD ∽△B 1C 1D 1,∴∠CDB =∠C 1D 1B 1,∠C 1B 1D 1=∠CBD , ∵111111AB BC CD A B B C C D ==,∴1111BD ABB D A B =, ∵∠ABC =∠A 1B 1C 1, ∴∠ABD =∠A 1B 1D 1, ∴△ABD ∽△A 1B 1D 1, ∴1111AD ABA D AB =,∠A =∠A 1,∠ADB =∠A 1D 1B 1, ∴11111111AB BC CD ADA B B C C D A D ===,∠ADC =∠A 1D 1C 1,∠A =∠A 1,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1, ∴四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)∵四边形ABCD 与四边形EFCD 相似. ∴DE EFAE AB=, ∵EF =OE +OF ,∴DE OE OFAE AB+=, ∵EF ∥AB ∥CD , ∴DE OE DE OC OF AD AB AD AB AB =-=,,∴DE DE OE OF AD AD AB AB +=+,∴2DE DEAD AE =, ∵AD =DE +AE , ∴21DE AE AE=+,∴2AE =DE +AE , ∴AE =DE ,∴12S S =1.祝你考试成功!祝你考试成功!。

【中考复习】苏教版2023学年中考数学专题复习 图形的相似

【中考复习】苏教版2023学年中考数学专题复习  图形的相似

图形的相似一.选择题(共10小题)1.如图, 以点O为位似中心, 将△OAB放大后得到△OCD, OA=2, AC=3, 则的值为()A.B.C.D.2.已知线段a、b、c、d, 如果ab=cd, 那么下列式子中一定正确的是()A.B.C.D.3.已知=, 那么的值是()A.B.﹣C.5D.﹣54.在平面直角坐标系xOy中, 以原点O为位似中心, 把△ABO缩小为原来的, 得到△CDO, 则点A(﹣4, 2)的对应点C的坐标是()A.(﹣2, 1)B.(﹣2, 1)或(2, ﹣1)C.(﹣8, 4)D.(﹣8, 4)或(8, ﹣4)5.如图, AD∥BE∥FC, 它们依次交直线l1、l2于点A、B、C和点D、E、F, 如果AB=4, AC =9, 那么的值是()A.B.C.D.6.如图, 在△ABC中, AB=AC=6, D在BC边上, ∠ADE=∠B, CD=4, 若△ABD的面积等于9, 则△CDE的面积为()A.4B.2C.3D.67.点C为线段AB的黄金分割点(AC>BC), 且AB=2, 则AC的长为()A.2B.﹣2C.﹣1D.3﹣8.若3x=2y(y≠0), 则下列比例式成立的是()A.B.C.D.9.线段a, b, c, d是成比例线段, 已知a=2, b=, 则d=()A.B.C.D.10.若△ABC∽△A'B'C', 且相似比为2:3, 则△ABC与△A'B'C'的面积比为()A.2:3B.3:2C.4:9D.9:4二.填空题(共5小题)11.已知=, 那么=.12.如图, 在矩形ABCD中, E是CD边的中点, 且BE⊥AC于点F, 连接DF, 则下列结论:①;②;③AD=DF;④AD2=BE•BF.其中正确的是(把正确结论的序号都填上).13.非零实数x, y满足2x=3y, 则=.14.已知, 则=.15.如图, AB∥CD∥EF, 直线l1、l2分别与这三条平行线交于点A、C、E和点B、D、F.已知AC=3, CE=5, DF=4, 则BD的长为.三.解答题(共6小题)16.如图, 已知正方形ABCD, 点在边BC上, 连接AE.(1)利用尺规在AE上求作一点F, 使得△ABE∽△DF A.(不写作法, 保留作图痕迹)(2)若AE=4, AB=3, 求DF的长.17.如图, 点F是平行四边形ABCD的边AD上的一点, 直线CF交线段BA的延长线于点E.(1)求证:△AEF∽△DCF;(2)若AF:DF=1:2, AE=, S△AEF=.①求AB的长;②求△EBC的面积.18.如图, 在矩形ABCD中, E为CD边上一点, 把△ADE沿AE翻折, 使点D恰好落在BC 边上的点F处.(1)求证:△ABF∽△FCE;(2)若, 求EC的长.19.如图1, 在△ABC中, 已知AB=6, AC=8, BC=10.点D是边BC上一动点, 过点D作DE⊥BC交射线CA于点E, 把△CDE沿DE翻折, 点C落在点G处, AD和GE相交于点F.(1)若点G和点B重合, 请在图2中画出相应的图形, 并求CE的长.(2)在(1)的条件下, 求证:△AFB∽△EFD.(3)是否存在这样的点D, 使得△ABG是等腰三角形?若存在, 请直接写出这时∠CAD 的正切值;若不存在, 请说明理由.20.定义:一般地, 如果两个相似多边形任意一组对应顶点P, P'所在的直线都经过同一点O, 且有OP'=k⋅OP(k≠0), 那么这样的两个多边形叫做位似多边形, 点O叫做位似中心,(1)如图, 在△ABC中, ∠ACB=90°, ∠A=30°, AB=6cm.点P在AB上, 点Q在AC上, 以PQ为边作菱形PQMN, 点N在线段PB上且∠APQ=120°, 在△ABC及其内部, 以点A为位似中心, 请画出菱形PQMN的位似菱形P'Q'M'N', 且使菱形P'Q'M'N'的面积最大(不要求尺规作图);(2)求(1)中作出的菱形P'Q'M'N'的面积;(3)如图, 四边形ABCD、AEFG是全等的两个菱形, CD、EF相交于点M, 连接BG、CF.请用定义证明:△ABG与△MCF位似.21.如图, l1∥l2∥l3, AB=7, DE=6, EF=12, 求AC的长.2023年中考数学专题复习--图形的相似参考答案与试题解析一.选择题(共10小题)1.如图, 以点O为位似中心, 将△OAB放大后得到△OCD, OA=2, AC=3, 则的值为()A.B.C.D.【分析】直接利用位似图形的性质, 进而得出=, 求出答案即可.【解答】解:∵以点O为位似中心, 将△OAB放大后得到△OCD,∴△BOA∽△DOC,∴=,∵OA=2, AC=3,∴=.故选:D.【点评】此题主要考查了位似变换, 正确得出相似三角形是解题关键.2.已知线段a、b、c、d, 如果ab=cd, 那么下列式子中一定正确的是()A.B.C.D.【分析】根据内项之积等于外项之积即可判断.【解答】解:∵ab=cd,∴=,故选:C.【点评】本题考查比例线段, 解题的关键是灵活运用内项之积等于外项之积解决问题, 属于中考基础题.3.已知=, 那么的值是()A.B.﹣C.5D.﹣5【分析】根据已知条件得出a=5b, 再代入要求的式子进行计算, 即可得出答案.【解答】解:∵=,∴3a﹣3b=2a+2b,∴a=5b,∴==5.故选:C.【点评】此题考查了比例的性质, 熟练掌握两内项之积等于两外项之积.4.在平面直角坐标系xOy中, 以原点O为位似中心, 把△ABO缩小为原来的, 得到△CDO, 则点A(﹣4, 2)的对应点C的坐标是()A.(﹣2, 1)B.(﹣2, 1)或(2, ﹣1)C.(﹣8, 4)D.(﹣8, 4)或(8, ﹣4)【分析】根据位似变换的性质计算, 即可解答.【解答】解:以原点O为位似中心, 把这个三角形缩小为原来的得到△CDO, 点A的坐标为(﹣4, 2),则点A的对应点C的坐标为(﹣4×, 2×)或(4×, ﹣2×), 即(﹣2, 1)或(2, ﹣1),故选:B.【点评】本题考查的是位似变换的概念和性质, 解题关键是在平面直角坐标系中, 如果位似变换是以原点为位似中心, 相似比为k, 那么位似图形对应点的坐标的比等于k或﹣k.5.如图, AD∥BE∥FC, 它们依次交直线l1、l2于点A、B、C和点D、E、F, 如果AB=4, AC =9, 那么的值是()A.B.C.D.【分析】根据平行线分线段成比例定理列出比例式, 把已知数据代入计算即可.【解答】解:∵AD∥BE∥FC, AB=4, AC=9,∴===,故选:C.【点评】本题考查的是平行线分线段成比例定理, 灵活运用定理、准对应关系是解题的关键.6.如图, 在△ABC中, AB=AC=6, D在BC边上, ∠ADE=∠B, CD=4, 若△ABD的面积等于9, 则△CDE的面积为()A.4B.2C.3D.6【分析】过点D作DM⊥AB于M, 过点E作EN⊥BC于N, 根据等腰三角形的性质推出∠B=∠C, 再由三角形的外角定理推出∠DAB=∠EDC, 从而得出△ABD∽△DCE, 根据相似三角形的性质求出EN, 即可求解.【解答】解:过点D作DM⊥AB于M, 过点E作EN⊥BC于N,∵AB=AC=6,∴∠B=∠C,∵∠ADE=∠B, ∠ADC=∠B+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE.∴,∵△ABD的面积等于9,∴AB•DM=×6×DM=9,∴DM=3,∴,∴EN=2.∴△CDE的面积为CD•EN=×4×2=4,故选:A.【点评】本题考查等腰三角形的性质, 相似三角形的判定和性质, 利用等腰三角的性质及相似三角形的判定和性质求解是解题的关键.7.点C为线段AB的黄金分割点(AC>BC), 且AB=2, 则AC的长为()A.2B.﹣2C.﹣1D.3﹣【分析】根据黄金分割的定义可得到AC=AB, 然后把AB=2代入计算即可.【解答】解:根据题意得AC=AB=×2=﹣1.故选:C.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC), 且使AC 是AB和BC的比例中项(即AB:AC=AC:BC), 叫做把线段AB黄金分割, 点C叫做线段AB的黄金分割点.其中AC=≈0.618AB, 并且线段AB的黄金分割点有两个.8.若3x=2y(y≠0), 则下列比例式成立的是()A.B.C.D.【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:A、由=得, xy=6, 故本选项比例式不成立;B、由=得, 3x=2y, 故本选项比例式成立;C、由=得, 2x=3y, 故本选项比例式不成立;D、由=得, xy=6, 故本选项比例式不成立.故选:B.【点评】本题考查了比例的性质, 主要利用了两内项之积等于两外项之积, 熟记性质是解题的关键.9.线段a, b, c, d是成比例线段, 已知a=2, b=, 则d=()A.B.C.D.【分析】根据成比例线段的概念, 可得a:b=c:d, 再根据比例的基本性质, 即可求得d 的值.【解答】解:∵a:b=c:d,∴ad=bc,∵a=2, b=, c=2,∴2d=×2,∴d=.故选:D.【点评】此题考查了成比例线段, 解题时一定要严格按照顺序写出比例式, 再根据比例的基本性质进行求解.10.若△ABC∽△A'B'C', 且相似比为2:3, 则△ABC与△A'B'C'的面积比为()A.2:3B.3:2C.4:9D.9:4【分析】根据相似三角形的性质:面积的比等于相似比的平方, 解答即可.【解答】解:∵△ADE∽△ABC, 相似比为2:3,∴△ADE与△ABC的面积比为(2:3)2=4:9.故选:C.【点评】本题主要考查了相似三角形的性质, 相似三角形面积的比等于相似比的平方.二.填空题(共5小题)11.已知=, 那么=﹣.【分析】根据已知条件得出=, 再把化成1﹣, 然后进行计算即可.【解答】解:∵=,∴=,∴=1﹣=1﹣=﹣.故答案为:﹣.【点评】此题考查了比例的性质.题目比较简单, 解题的关键是掌握比例的性质与比例变形.12.如图, 在矩形ABCD中, E是CD边的中点, 且BE⊥AC于点F, 连接DF, 则下列结论:①;②;③AD=DF;④AD2=BE•BF.其中正确的是①③④(把正确结论的序号都填上).【分析】根据E是CD边的中点, 得到CE:AB=1:2, 根据矩形的性质得到CE∥AB, 推出△CEF∽△ABF, 求得=()2=, 故选①选项正确;根据相似三角形的性质得到=, 设CE=a, AD=b, 则CD=2a, 于是得到=, 故②选项错误;如图, 过D作DM∥BE交AC于N, 交AB于M, 根据平行四边形的判定定理得到四边形BMDE是平行四边形, 求得BM=DE=DC, 得到DM垂直平分AF, 根据线段垂直平分线的性质得到AD=DF, 故③选项正确;根据射影定理和矩形的性质得到AD2=BE•BF.故④正确.【解答】解:∵E是CD边的中点,∴CE:AB=1:2,∵四边形ABCD是矩形,∴CE∥AB,∴△CEF∽△ABF,∴=()2=, 故选①选项正确;∵四边形ABCD是矩形,∴AD∥BC, ∠ADC=∠BCD=90°,∴∠CAD=∠BCF,∵BE⊥AC,∴∠CFB=90°,∴∠ADC=∠CFB,∴△ADC∽△CFB,∴=,设CE=a, AD=b, 则CD=2a,∴=,即b=a,∴=,∴=, 故②选项错误;如图, 过D作DM∥BE交AC于N, 交AB于M,∵DE∥BM, BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=DC,∴BM=AM,∴AN=NF,∵BE⊥AC于点F, DM∥BE,∴DN⊥AF,∴DM垂直平分AF,∴AD=DF, 故③选项正确;∵∠BCE=90°, BE⊥AC,∴BC2=BF•BE,∵AD=BC,∴AD2=BE•BF.故④正确;故答案为:①③④.【点评】本题考查了相似三角形的判定和性质, 矩形的性质, 射影定理, 正确地作出辅助线是解题的关键.13.非零实数x, y满足2x=3y, 则=.【分析】根据比例的性质解决此题.【解答】解:∵2x=3y,∴.故答案为:.【点评】本题主要考查比例的性质, 熟练掌握比例的性质是解决本题的关键.14.已知, 则=.【分析】根据比例的性质, 由, 得5x=2(x+y), 即3x=2y, 即可求出答案.【解答】解:∵,∴5x=2(x+y),∴3x=2y,∴=.故答案为:.【点评】本题考查了比例的性质, 熟记两内项之积等于两外项之积是解题的关键.15.如图, AB∥CD∥EF, 直线l1、l2分别与这三条平行线交于点A、C、E和点B、D、F.已知AC=3, CE=5, DF=4, 则BD的长为.【分析】先根据平行线分线段成比例定理得到=, 然后利用比例性质得到BD的长.【解答】解:∵AB∥CD∥EF,∴=, 即=,解得BD=.故答案为:.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线, 所得的对应线段成比例.三.解答题(共6小题)16.如图, 已知正方形ABCD, 点在边BC上, 连接AE.(1)利用尺规在AE上求作一点F, 使得△ABE∽△DF A.(不写作法, 保留作图痕迹)(2)若AE=4, AB=3, 求DF的长.【分析】(1)过点D作DF⊥AE于点F, 点F即为所求;(2)利用勾股定理全等三角形的性质求解.【解答】解:(1)如图, 点F即为所求.(2)∵四边形ABCD是正方形,∴AD=AB=3,∵△ABE∽△DF A,∴=,∴=,∴DF=.【点评】本题考查作图﹣相似变换, 正方形的性质等知识, 解题的关键是灵活运用所学知识解决问题, 属于中考常考题型.17.如图, 点F是平行四边形ABCD的边AD上的一点, 直线CF交线段BA的延长线于点E.(1)求证:△AEF∽△DCF;(2)若AF:DF=1:2, AE=, S△AEF=.①求AB的长;②求△EBC的面积.【分析】(1)根据平行四边形的性质, 可以得到BA∥CD, 然后即可得到∠E=∠FCD, ∠EAF=∠CDF, 从而可以得到结论成立;(2)①根据相似三角形的性质和题目中的数据, 平行四边形的性质, 可以计算出AB的长;②根据相似三角形面积比等于相似比的平方, 可以计算出△EBC的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠E=∠FCD, ∠EAF=∠CDF,∴△AEF∽△DCF;(2)解:①由(1)知△AEF∽△DCF,∴,∵AF:DF=1:2, AE=,∴,∴DC=2,∵四边形ABCD是平行四边形,∴AB=DC,∴AB=2;②∵四边形ABCD是平行四边形,∴AD∥BC,∴△EAF∽△EBC,∴=()2,∵S△AEF=, AB=2, AE=,∴EB=EA+AB=3,∴==,∴,解得S△EBC=6,即△EBC的面积是6.【点评】本题考查相似三角形的判定与性质、平行四边形的性质, 解答本题的关键是明确题意, 利用数形结合的思想解答.18.如图, 在矩形ABCD中, E为CD边上一点, 把△ADE沿AE翻折, 使点D恰好落在BC 边上的点F处.(1)求证:△ABF∽△FCE;(2)若, 求EC的长.【分析】(1)利用同角的余角相等, 先说明∠BAF=∠EFC, 再利用相似三角形的判定得结论;(2)先利用勾股定理求出BF, 再利用相似三角形的性质得方程, 求解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°.∵△ADE沿AE翻折得到△AFE,∴∠D=∠AFE=90°.∵∠BAF+∠AFB=180°, ∠AFB+∠EFC=90°,∴∠BAF=∠EFC.又∵∠B=∠C,∴△ABF∽△FCE.(2)解:∵四边形ABCD是矩形,∴AB=CD=3.∵△ADE沿AE翻折得到△AFE,∴AD=AF=6, DE=EF.在Rt△ABF中,BF==3.设CE的长为x, 则DE=EF=3﹣x.∵△ABF∽△FCE,∴=.∴CE•AF=BF•EF,即x×6=3×(3﹣x).∴x=, 即EC=.【点评】本题主要考查了矩形的性质、折叠的性质、相似三角形的判定和性质, 掌握“矩形的四个角都是直角、矩形的对边相等”、“折叠前后的两个图形全等”、“两角对应相等的两个三角形相似”及“相似三角形的对应边的比相等”是解决本题的关键.19.如图1, 在△ABC中, 已知AB=6, AC=8, BC=10.点D是边BC上一动点, 过点D作DE⊥BC交射线CA于点E, 把△CDE沿DE翻折, 点C落在点G处, AD和GE相交于点F.(1)若点G和点B重合, 请在图2中画出相应的图形, 并求CE的长.(2)在(1)的条件下, 求证:△AFB∽△EFD.(3)是否存在这样的点D, 使得△ABG是等腰三角形?若存在, 请直接写出这时∠CAD 的正切值;若不存在, 请说明理由.【分析】(1)先由勾股定理的逆定理证明△ABC是直角三角形, 且∠BAC=90°, 再证明△CDE∽△CAB, 得=, 则CE==;(2)由DE垂直平分BC, 得BE=CE, 则∠DEF=∠DEC, 由△CDE∽△CAB, 得∠DEC =∠ABC, 由AD=BD=BC, 得∠ABC=∠BAF, 则∠BAF=∠DEF, 而∠AFB=∠EFD, 即可证明△AFB∽△EFD;(3)作DI⊥AC于点I, 先由△DIC∽△BAC, 求得ID:IC:DC=3:4:5, 再分四种情况分别求出DC的长, 并且求出相应的ID和AI的长, 即可由tan∠CAD=, 求出∠CAD的正切值, 一是△ABG是等腰三角形, 且AG=AB=6, 作AH⊥BC于点H, 由×10AH=×6×8=S△ABC, 求得AH=, 再由勾股定理求得GH=BH=, 则CD=;二是△ABG是等腰三角形, 且BG=AB=6, 则CD=×(10﹣6)=2;三是△ABG 是等腰三角形, 且BG=AG, 则CG=AG=BG=BC=5, 所以CD=CG=;四是△ABG是等腰三角形, 点G在CB的延长线上, 且BG=AB=6, DC=×(10+6)=8.【解答】(1)解:∵AB=6, AC=8, BC=10,∴AB2+AC2=BC2=100,∴△ABC是直角三角形, 且∠BAC=90°,由翻折得DG=DC,∵DE⊥BC,∴∠GDE=∠CDE=∠BDE=90°,∴点G在射线CB上,如图2, 点G和点B重合, 则DB=DC=BC=5,∵∠CDE=∠CAB=90°, ∠C=∠C,∴△CDE∽△CAB,∴=,∴CE===,∴CE的长是.(2)证明:如图2,∵DE垂直平分BC,∴BE=CE,∴∠DEF=∠DEC,∵△CDE∽△CAB,∴∠DEC=∠ABC,∴AD=BD=BC,∴∠ABC=∠BAF,∴∠BAF=∠ABC=∠DEC=∠DEF,∵∠AFB=∠EFD,∴△AFB∽△EFD.(3)解:存在,作DI⊥AC于点I, 则∠DIC=∠AID=∠BAC=90°, ∵∠C=∠C,∴△DIC∽△BAC,∴==,∴===, ===,∴ID:IC:DC=3:4:5,如图3, △ABG是等腰三角形, 且AG=AB=6,作AH⊥BC于点H, 则∠AHB=90°,∵×10AH=×6×8=S△ABC,∴AH=,∴GH=BH==,∴DC=CG=×(10﹣2×)=,∴ID=DC=×=, IC=DC=×=,∴AI=8﹣=,∴tan∠CAD===;如图4, △ABG是等腰三角形, 且BG=AB=6,∴CD=×(10﹣6)=2,∴ID=×2=, IC=×2=,∴AI=8﹣=,∴tan∠CAD===;如图5, △ABG是等腰三角形, 且BG=AG, 则∠GAB=∠B, ∵∠GAC+∠GAB=90°, ∠C+∠B=90°,∴∠GAC=∠C,∴CG=AG=BG=BC=5,∴CD=CG=,∴ID=×=, IC=×=2,∴AI=8﹣2=6,∴tan∠CAD===;如图6, △ABG是等腰三角形, 点G在CB的延长线上, 且BG=AB=6, ∴DC=×(10+6)=8,∴ID=×8=, IC=×8=,∴AI=8﹣=,∴tan∠CAD===3,综上所述, ∠CAD的正切值为或或或3.【点评】此题重点考查勾股定理及其逆定理的应用、轴对称的性质、相似三角形的判定与性质、等腰三角形的性质、等角的余角相等、线段的垂直平分线的性质、根据面积等式求线段的长度、数形结合与分类讨论数学思想的运用等知识与方法, 此题综合性强, 难度较大, 正确地作出所需要的辅助线是解题的关键.20.定义:一般地, 如果两个相似多边形任意一组对应顶点P, P'所在的直线都经过同一点O, 且有OP'=k⋅OP(k≠0), 那么这样的两个多边形叫做位似多边形, 点O叫做位似中心,(1)如图, 在△ABC中, ∠ACB=90°, ∠A=30°, AB=6cm.点P在AB上, 点Q在AC上, 以PQ为边作菱形PQMN, 点N在线段PB上且∠APQ=120°, 在△ABC及其内部, 以点A为位似中心, 请画出菱形PQMN的位似菱形P'Q'M'N', 且使菱形P'Q'M'N'的面积最大(不要求尺规作图);(2)求(1)中作出的菱形P'Q'M'N'的面积;(3)如图, 四边形ABCD、AEFG是全等的两个菱形, CD、EF相交于点M, 连接BG、CF.请用定义证明:△ABG与△MCF位似.【分析】(1)根据定义画出图形即可;(2)当M'点在BC上时, 菱形P'Q'M'N'的面积最大, 判定出△M'BN'是等边三角形, 在Rt △CM'Q'中求出BM'的长, 再求菱形的面积即可;(3)延长GF、BC交于O点, 连接AO, 先求出OF=OC, OG=BO, 连接OM, 通过证明△MOF≌△MOC(SAS), 得∠FOM=∠COM, △AGO≌△ABO(SAS), 得∠FOA=∠BOA, 证明出A、M、O三点共线, 即GF、BC、AM的延长线交于一点O, 再由平行线的性质得到==, 即可证明△ABG与△MCF位似.【解答】解:(1)如图:(2)∵四边形P'Q'M'N'在△ABC内,∴当M'点在BC上时, 菱形P'Q'M'N'的面积最大,∵四边形PQMN是菱形, 四边形P'Q'M'N'是菱形,∴Q'M'∥AB, M'N'∥PQ,∵∠APQ=120°,∴∠QPB=∠M'N'B=60°,∵∠CAB=30°, ∠ACB=90°,∴∠B=60°,∴△BM'N'是等边三角形,∴M'B=M'N'=Q'M',∵AB=6cm,∴BC=3cm,∴CM'=3﹣BM',在Rt△CM'Q'中, ∠CQ'M'=30°,∴Q'M'=2CM',∴BM'=2(3﹣BM'),解得BM'=2,在△BM'N'中, 过点M'作M'E⊥BN'交于点E, ∵BM'=2, ∠B=60°,∴M'E=,∴菱形P'Q'M'N'的面积=2;(3)延长GF、BC交于O点, 连接AO,∵四边形ABCD、AEFG是全等的两个菱形, ∴AG=AB, ∠AGF=∠ABC,∴∠OGB=∠OBG,∴OG=BO,∵GF=BC,∴OF=OC,∴=,连接OM,∵∠GFE=∠BCD,∴∠MFO=∠MCO,∵∠OFC=∠FCO,∴∠MCF=∠FCM,∴CM=FM,∴△MOF≌△MOC(SAS),∴∠FOM=∠COM,∵AG=AB, ∠AGO=∠ABO, GO=BO,∴△AGO≌△ABO(SAS),∴∠FOA=∠BOA,∴MO与AO重合,∴A、M、O三点共线,∴GF、BC、AM的延长线交于一点O,∴MF∥AG,∴=,∵CM∥AB,∴=,∴==,∴△ABG与△MCF位似.【点评】本题考查相似的综合应用, 掌握位似图形的定义, 平行线的定义, 菱形的性质, 直角三角形的性质, 等边三角形的性质是解题的关键.21.如图, l1∥l2∥l3, AB=7, DE=6, EF=12, 求AC的长.【分析】根据平行线分线段成比例定理得到比例式, 把已知数据代入比例式计算即可.【解答】解:∵l1∥l2∥l3,∴,即,∴BC=14,∴AC=AB+BC=7+14=21.【点评】本题考查的是平行线分线段成比例定理, 灵活运用定理、找准对应关系是解题的关键.。

中考数学总复习《图形的相似》专项提升训练(带有答案)

中考数学总复习《图形的相似》专项提升训练(带有答案)

中考数学总复习《图形的相似》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.两个相似三角形的相似比是1:2,则其对应中线之比是( )A .1:1B .1:2C .1:3D .1:42.如图,在ABC 中2AC =,BC=4,D 为BC 边上的一点,且CAD B ∠=∠.若ADC △的面积为2,则ABD △的面积为( )A .4B .5C .6D .73.若35a b =,则下列各式一定成立的是( )A .53a b =B .35a b =C .65a b a +=D .145a b += 4.如图,在ABC 中DE BC ∥,AD=1,BD=2,AC=6,则CE 的长为( )A .2B .3C .4D .55.如图,在等边ABC 中,点D ,E 分别是BC AC ,上的点72AB CD ==,,60ADE ∠=︒则AE 等于( )A .5B .397C .6D .4176.下列命题正确的是( )A .方程210x x --=没有实数根B .两边成比例及一角对应相等的两个三角形相似C .平分弦的直径垂直于弦D .反比函数的图像不会与坐标轴相交7.已知ABC DEF ∽△△,:1:2AB DE =且ABC 的周长为6,则DEF 的周长为( ) A .3 B .6 C .12 D .248.在平面直角坐标系xOy 中,已知点()()()0,0,1,2,0,3O A B .若OA B ''△与OAB 是原点O 为位似中心的位似图形,且点B 的对应点为()0,9B '-,则点A 的对应点A '坐标为( ) A .()3,6 B .()3,6-- C .()3,6- D .()3,6- 9.如图,D 是ABC 边AB 上一点,添加一个条件后,仍不能使ACD ABC △∽△的是( )A .ACDB ∠=∠ B .ADC ACB ∠=∠ C .AD CD AC BC = D .AC AB AD AC = 10.如图,已知ABC DAC △∽△,37B ∠=︒和116∠=︒D ,则BAD ∠的度数为( )A .37︒B .116︒C .153︒D .143︒二、填空题11.如图,在矩形ABCD 中,8AB =和4BC =,连接AC ,EF AC ⊥于点O ,分别与AB 、CD 交于点E 、F ,连接AF 、CE ,则AF CE +的最小值为 .12.如图,在ABC 中,点D 、E 分别为AB 、AC 的中点,点F 为DE 中点,连接BF 并延长交AC 于点G ,则:AG GE = .13.如图AC ,AD 和CE 是正五边形ABCDE 的对角线,AD 与CE 相交于点F .下列结论:(1)CA 平分BCF ∠;(2)2CF EF =;(3)四边形ABCF 是菱形;(4)2AB AD EF =⋅.其中正确的结论是 .(填写所有正确结论的序号)14.如图AC 、BD 交于点O ,连接AB 和CD ,若要使AOB COD ∽,可以添加条件 .(只需写出一个条件即可)15.如图,在ABC 中4AC AB ==和30C ∠=︒,D 为边BC 上一点,且3CD =,E 为AB 上一点,若30ADE ∠=︒,则BE 的长为 .16.在ABC 中,6810AC BC AB D ===,,,是AB 的中点,P 是CD 上的动点,若点P 到ABC 的一边的距离为2,则CP 的长为 .17.如图,M 是Rt ABC △斜边AB 上的中点,将Rt ABC △绕点B 旋转,使得点C 落在射线CM 上的点D 处,点A 落在点E 处,边ED 的延长线交边AC 于点F .如果3BC =.4AC =那么BE 的长为 ;CF 的长为 .18.如图,在ABC 中,D 是AC 的中点,点F 在BD 上,连接AF 并延长交BC 于点E ,若:3:1BF FD =,8BC =则CE 的长为 .三、解答题19.已知O 为ABCD 两对角线的交点,直线l 过顶点D ,且绕点D 顺时针旋转,过点A ,C 分别作直线l 的垂线,垂足为点E ,F .(1)如图1,若直线l 过点B ,求证:OE OF =;(2)如图2,若EFO FCA ∠=∠,2FC AE =求CFO ∠的度数;(3)如图3,若ABCD 为菱形4AE =,6AO =和8EO =直接写出CF 的长. 20.如图,在ABC 中2BAC C ∠=∠,利用尺规作图法在BC 上求作一点D ,使得ABDCBA .(不写作法,保留作图痕迹)21.如图,在Rt ABC △中90ACB ∠=︒,D 是AB 的中点,连接CD ,过点A 作AE CD ⊥于点E ,过点E 作EF CB ∥交BD 于点F .(1)求证:ACE BAC ∽△△;(2)若5AC =,5AB =求CE 及EF 的长.22.如图,在直角梯形OABC 中BC AO ∥,=90AOC ︒∠点A 、B 的坐标分别为()5,0、()2,6点D 为AB 上一点,且2BD AD =.双曲线()0k y x x=>经过点D ,交BC 于点E .求点E 的坐标.23.如图,点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线点F .求证:APE FPA △∽△.24.如图1,菱形AGBD 边长为3,延长DB 至点C ,使得5BC =.连接AB ,AB AD =点E ,F 分别在线段AD 和AB 上,且满足DE AF =,连接BE ,DF 交于点O ,过点B 作BM BE ⊥,交DF 延长线于点M ,连接CM .图1 图2(1)求OB 与BM 之间的数量关系;(2)当DMB DCM △∽△时,求DO 的长度;(3)如图2,过点M 作MN CD ⊥交CD 于N ,求MN MC的最大值. 1.B2.C3.A4.C5.B6.D7.C8.B9.C10.C11.1012.2:113.①①①14.A C ∠=∠(答案不唯一)15.9416.103或52或3512 17. 59418.16519.(2)60CFO ∠=︒(3)CF 的长为7 21.(2)1CE = 655EF =. 22.4,63⎛⎫ ⎪⎝⎭/11,63⎛⎫ ⎪⎝⎭ 24.(1)3BM OB =(2)1OD =(3)1014101911316206517MN CN ++=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.位似图形的性质:因为位似图形是特殊的相似图形,所有位似图形具有相似 图形的所有性质,并且:位似图形上任意一对对应点到位似中心的距离比等于 位似比 ;位似图形周长的比等于 位似比 ;面积比等于 位似 比的平方 .
3.利用位似图形的性质将一个图形放大或缩小,其步骤如下: (1)以位似中心为射线的端点画射线,并使各条射线分别经过原图形上的关键 点; (2)根据位似比确定原图形中的关键点关于位似中心的对应点; (3)顺次连接各对应点,则得到原图形的位似图形,由此即可把一个图形放大 或缩小.
bd
n
bd n
a
=② b .
(3)合比性质:如果 a = c ,那么 a b= c d .
bd
bd
4.黄金分割
若线段AB上一点C把线段AB分成两条线段AC和BC(AC>BC),如果 AC= BC,
AB AC
那么称线段③ AB 被点C黄金分割.点C叫做线段AB的④ 黄金分割
点,AC与AB的比叫做黄金比,其中 AC= 5 1≈⑤ 0.618 . AB 2
图1
图2
答案 (1)小路四周所围成的矩形A'B'C'D'和矩形ABCD不相似.
理由如下:
∵ A'B'= 30 2x = 15 x , A 'D' = 20 2x = 10 x ,且 15 x ≠ 10 x ,
AB 30 15 AD 20 10
15
10
∴ A'B'≠ A 'D' .
以选择题的形式,以裁剪三角形 为问题 情境,考查相似三角形的判定

备考策略:相似三角形的性质与判定是平面几何中的重点内容,因此一直是我省中考的必考内容,但单独考查的题目较少,常与 图形变换、平行四边形等知识相结合进行综合考查,考查的内容以基础知识 为主,预计今后我省中考对本部分内容的考查不会有太大的变化.
易错二 计算面积时用错相似三角形与面积有关的性质 易错三 判断三角形相似时出现丢解的错误
河北考情探究
考点
年份
题号
分值
考查方式
相似三角形的性质与判 2018
25
10
以解答题的形式,在圆的综合性
题目中

以锐角三角函数为载体,考查线
段的比
的知识
2017
7
3
以选择题的形式考查相似三角
形的性

2016
15
2
基础知识梳理
考点一 比例线段
1.线段的比 线段的比是两条线段的长度之比.
2.成比例线段 四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a∶b=c∶d,那么这四条线 段a,b,c,d叫做成比例线段.
3.比例的性质
(1)基本性质: a = c ⇔① ad =bc(abcd≠0).
bd
(2)等比性质:如果 a = c =…= m(b·d·…·n≠0,且b+d+…+n≠0),那么a c m
题型三 考查相似多边形的性质
该题型主要考查相似多边形的性质,主要内容有:相似多边形的周长之比等于 相似比,相似多边形的面积之比等于相似比的平方,主要考查基础知识,题型 以选择题和填空题为主.
典例3 (2018沧州模拟)在AB=30 m,AD=20 m的矩形花坛四周修筑小路. (1)如果四周的小路的宽均相等,都是x m,如图1,那么小路四周所围成的矩形 A'B'C'D'和矩形ABCD相似吗?请说明理由; (2)如果相对着的两条小路的宽均相等,宽度分别为x m、y m,如图2,试问小路 的宽x与y的比值为多少时,能使得小路四周所围成的矩形A'B'C'D'和矩形 ABCD相似?请说明理由.
课题27 图形的相似
基础知识梳理
考点一 考点二 考点三 考点四
考点五
比例线段 相似三角形的性质及判定 相似多边形 位似图形
相似三角形的应用
中考题型突破 题型一 题型二 题型三 题型四 题型五
考查比例线段 考查相似三角形的性质与判定 考查相似多边形的性质 考查位似图形的性质 考查相似三角形的应用
易混易错突破 易错一 利用比例的性质时出现错误
应角相等且对应边成比例.
变式训练3 (2017河北沧州东光模拟)如图所示,在矩形ABCD中剪去一个以 AB为边长的正方形后,所剩下的矩形CDEF与原矩形ABCD相似,则原矩形的 长与宽的比是 ( D )
A. 5 1 2
B.3 C.3 5
2
2
D. 5 1 2
答案 D 设矩形的长AD=a,宽AB=b,则DE=CF=AD-AB=a-b. ∵矩形ABCD与矩形CDEF相似,
CD,AD,BC交于点O,则 AO = BO .
DO CO
请利用该结论解答下面的问题:如图2,在△ABC中,点D在线段BC上,∠BAD= 75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.
答案 过点C作CE∥AB交AD的延长线于E,如图所示.
则 BD = AD .
CD DE
又∵BD=2CD,AD=2,∴ 2CD = 2 ,解得DE=1.
变式训练1 如图,在△ABC中,点D为AC上一点,且 CD = 1 ,过点D作DE∥BC
AD 2
10
交AB于点E,连接CE,过点D作DF∥CE交AB于点F.若AB=15,则EF= 3 .
解析 ∵DE∥BC,∴ AD = AE .
AC AB
∵ CD = 1 ,
AD 2
∴ AD = 2 ,
AC 3
(1)⑨ 两角 对应相等,两三角形相似; (2)两边对应成比例且⑩ 夹角 相等,两三角形相似; (3)三边 对应成比例 ,两三角形相似; (4)两直角三角形的斜边和一条直角边对应成比例,两直角三角 形相似
3.判定两个三角形相似的思路
有平行截线 — —用平行线的性质找等角
有一对等角,找
典例2 (2018湖南株洲中考)如图,Rt△ABM和Rt△ADN的斜边分别为正方 形的边AB和AD,其中AM=AN. (1)求证:Rt△ABM≌Rt△ADN;
(2)线段MN与线段AD相交于T,若AT= 1 AD,求tan∠ABM的值.
4
答案 (1)证明:∵AB和AD均为正方形ABCD的边, ∴AD=AB, ∵AM=AN, ∴Rt△ABM≌Rt△ADN(HL). (2)由(1)得∠DAN=∠BAM,DN=BM. ∵∠BAM+∠DAM=90°,∠DAN+∠ADN=90°, ∴∠DAM=∠ADN. ∴ND∥AM. ∴△AMT∽△DNT.
CD DE
∵CE∥AB, ∴∠E=∠BAD=75°. 又∠CAD=30°,
∴∠ACE= 1 (180°-∠CAD)=75°.
2
∴AC=AE=3.
名师点拨 本题的求解关键有两点:①根据题意添加辅助线.由于题目中没有 平行线而无法运用平行线分线段成比例定理,因此通过作平行线构造满足该 定理的基本图形,这也是添加辅助线的常用方法;②注意线段的代换.分析求 证结果发现,难以找到AC与其他已知线段的联系,为此需要考虑线段的代换 或比的代换,为此需要证明△ACE为等腰三角形.
∴ BC = CD ,即 a = b ,
EF CF b a b
整理,得a2-ab-b2=0,
解得a1= 12 5 b,a2= 12 5 b(不符合题意,舍去). ∴ a = 5 1.
b2
题型四 考查位似图形的性质
该题型主要考查位似图形的性质,这类题目中,考查直角坐标系中位似图形的 顶点坐标的题目较多,题型以选择题和填空题为主,属于基础题和中档题.
AB AD
∴小路四周所围成的矩形A'B'C'D'和矩形ABCD不相似.
(2)∵在矩形A'B'C'D'和矩形ABCD中,
要使∠A=∠A'=∠B=∠B'=∠C=∠C'=∠D=∠D'=90°,
AB=CD,AD=BC,A'B'=C'D',A'D'=B'C',
∴要使矩形A'B'C'D'∽矩形ABCD,只需 A ' B ' = A ' D ' .
考点五 相似三角形的应用
相似三角形的性质在实际生活中有着广泛的应用,例如利用相似三角形对应 边成比例的性质可以测量某些不容易直接测量的物体的长度或高度.
中考题型突破
题型一 考查比例线段
该题型主要考查比例线段的内容,包括平行线分线段成比例定理,线段的比, 利用线段的比进行计算等.
典例1 (2018河北石家庄模拟)对于平行线,我们有这样的结论:如图1,AB∥
∴ AE
AB
= 23 ,
即 AE
15
= 23 ,解得AE=10.
∵DF∥CE,
∴ AF
AE
= AADC
,
即 AF= AD = 2 ,解得AF= 20 .
10 AC 3
3
∴EF=AE-AF=10- 20 = 10 .
33
答案 10
3
题型二 考查相似三角形的性质与判定
该题型主要考查相似三角形的性质与判定,主要内容有:相似三角形的判定定 理,相似三角形对应角相等、对应边成比例的性质,相似三角形对应边上的 高、中线、对应角的平分线对应成比例,相似三角形的面积之比等于相似比 的平方等.
变式训练2 (2017秦皇岛模拟)如图,在△ABC中,∠B=90°,AB=6 cm,BC=12 cm,点P从点A开始,沿AB边以1 cm/s的速度向点B运动;点Q从点B开始,沿BC 边以2 cm/s的速度向点C运动,当点P运动到点B时,运动停止,如果P、Q分别从 A、B两点同时出发. (1)问几秒后,△PBQ的面积等于8 cm2? (2)问几秒后,以P、B、Q为顶点的三角形与△ABC相似?
相关文档
最新文档