液压系统的设计

合集下载

液压系统设计计算

液压系统设计计算

液压系统设计计算液压系统设计是指在机械设计中,通过使用液压技术来传递动力和控制目标的设计过程。

液压系统设计需要考虑多个因素,包括流体力学原理、液压元件的选择和配置、系统的工作参数等。

下面将介绍液压系统设计的一些基本计算。

首先,液压系统设计需要确定系统的工作参数,包括工作压力、流量和工作温度等。

工作压力是指系统中液体传递动力时所施加的压力,一般以帕斯卡为单位。

流量是指单位时间内通过液压系统的液体体积,一般以升/分钟为单位。

工作温度是指系统正常工作时液体的温度,一般以摄氏度为单位。

确定了工作参数后,液压系统设计还需要选择适当的液压元件。

液压元件包括液压泵、液压马达、液压阀等。

液压泵负责将机械能转换成液压能,并提供系统的流量和压力。

常用的液压泵有齿轮泵、柱塞泵和螺杆泵等。

液压马达则将液压能转换成机械能,常用的液压马达有齿轮马达、柱塞马达和液压缸等。

液压阀则用于控制液压系统的流量、压力和方向等。

常用的液压阀有溢流阀、换向阀和节流阀等。

功率(千瓦)=流量(升/分钟)x压力(帕)/600液压泵的选型还需要根据系统的工作压力和流量来确定。

一般来说,液压泵的压力和流量应该略大于系统的工作压力和流量,以确保系统正常工作。

液压泵的选择要考虑到工作环境的温度、液体的粘度和成本等因素。

液压缸的选择也需要进行一些计算。

输出力(牛顿)=压力(帕)x断面积(平方米)液压缸的选择要根据所需的输出力和工作压力来确定。

液压缸的密封性能和机械结构等因素也需要考虑。

另外,液压系统设计中还需要考虑管道的设计和安装。

管道的设计要根据系统的工作温度、压力和流量来确定。

管道的材料和尺寸选择要满足系统的需要,并保持良好的连接和密封性能。

综上所述,液压系统设计涉及到多个方面的计算和选择。

通过合理的设计和计算,可以确保液压系统的性能和可靠性。

因此,在液压系统的设计过程中,需要充分考虑各个因素,并进行适当的计算和分析。

液压控制系统设计

液压控制系统设计

液压控制系统设计
液压控制系统主要由液压源、执行器、控制装置和工作介质等主要部
分组成。

其中,液压源负责产生和控制液压能;执行器通过接受液压能来
完成机械运动;控制装置负责监测和调控液压系统的工作;工作介质则是
液压系统中传递和储存能量的媒介。

在液压控制系统设计中,需要考虑以下几个方面:
1.系统的功能要求:根据具体的应用需求,确定系统所需的功能,例
如控制的精度、速度要求、运动方式等等。

2.工作量及工作环境要求:根据实际工况,确定液压控制系统的工作
量大小和工作环境特点,例如温度、湿度、振动等。

3.液压元件的选择:根据系统的功能和工作环境要求,选择适合的液
压元件,例如液压泵、液压缸、液压阀等。

4.阀门的设计与选型:根据系统的控制要求,选择适合的液压阀门,
并设计合理的布置和组合,以实现所需的控制功能。

5.控制回路的设计:根据系统的功能要求,确定液压控制系统的基本
回路结构,包括传感器、信号处理器、控制阀等。

6.液压系统的安全性设计:考虑系统的安全性要求,采取相应的措施,如设置安全阀、溢流阀等,以确保系统不会发生意外事故。

7.系统性能的测试与调试:在系统设计完成后,需要进行系统性能的
测试与调试,以验证系统是否满足设计需求,并进行相应的调整和优化。

总之,液压控制系统设计需要综合考虑系统的功能需求、工作环境要求、液压元件的选择、阀门的设计与选型、控制回路的设计、系统的安全
性设计等因素,以实现高效、精确、可靠的控制效果。

设计过程中需要注重系统的可维护性和可扩展性,以方便后续的维护和升级。

同时,也需要注意系统的节能性能,采取相应的节能措施,以减少能源的消耗。

液压系统的性能分析与优化设计

液压系统的性能分析与优化设计

液压系统的性能分析与优化设计第一章:引言液压系统是一种广泛应用于各种工程领域的动力传动系统,其性能的稳定与优化设计对于工程设备的高效运行起着至关重要的作用。

本章将介绍液压系统的基本概念和组成部分,并对液压系统性能分析与优化设计的重要性进行探讨。

第二章:液压系统性能分析2.1 压力性能分析液压系统的压力性能是指系统中流体的压力表现以及对外部负载的响应能力。

通过对液压系统的压力波动、系统稳态压力、压力传输损失等参数进行测试和监测,可以评估系统的压力性能,并对不足之处进行分析。

2.2 流量性能分析液压系统的流量性能是指系统中流体的流动能力和流量均衡能力。

通过测量系统的流量波动、系统流量损失、阀门开启时间等参数,可以分析系统的流量性能,判断是否需要进行优化设计。

2.3 效率性能分析液压系统的效率性能是指系统中能量的转换效率和功率输出的能力。

通过测量系统的泄漏流量、能量损失、功率输出等参数,并进行能量平衡计算,可以分析系统的效率性能,并提出优化设计的建议。

第三章:液压系统优化设计3.1 结构设计优化液压系统的结构设计是指通过调整液压元件的布置和连接方式,以及优化管道系统和液压容器的设计,来提高系统的稳定性和可靠性。

根据系统的工作特点和要求,采用合适的液压元件和元件组合,优化系统结构,可有效降低系统的能量损失和压力波动。

3.2 控制策略优化液压系统的控制策略是指通过调整液压阀门和控制元件的参数,以及优化控制算法和系统的反馈机制,来提高系统的响应速度和控制精度。

采用先进的控制技术,如模糊控制、PID控制等,可以实现对液压系统的精确控制,提高系统的性能和效率。

3.3 液压流体优化液压系统的流体是其正常运行所必需的介质,其性能直接影响着系统的稳定性和性能。

通过优化选用合适的液压油和添加剂,调整油的黏度和温度,可以提高液压系统的润滑效果和密封性能,延长系统的使用寿命。

第四章:案例分析本章将介绍一个实际的液压系统案例,通过对该系统的性能分析和优化设计,展示了如何提高液压系统的效率和性能,实现高效运行和节能减排的目标。

液压系统的设计计算举例

液压系统的设计计算举例

作缸的小腔,即从泵的出口到缸小腔之间的压力损失 Δp = 5.5×105 MPa ,于是小泵出
口压力 pp1 = 21.56×105 MPa (小泵的总效率 η 1 = 0.5 ),大泵出口压力 pp2 =
23.06×105 MPa (大泵的总效率 η 2 = 0.5 )。故电机功率为
P pp1q1 pp2q2 21.56 105 0.167 103 W 23.06 105 0.267 103 W 1 951.5 W
= 0.5 ,大泵出口压力 pp2 = 15.18×105 MPa (大泵的总效率 η 2 = 0.5 )。故电机功率

P1
pp1q1 1
pp 2 q2 2
13.68 105 0.167 103 0.5
W 15.18 105 0.267 103 0.5
W
1 267.5 W
(2)工进
小泵的出口压力 pp1 = p1 +Δp1 = 32.19×105 MPa ,大泵卸载,卸载压力取 pp2 =
液压传动
液压系统的设计计算举例
1.1 分析工况及主机工作要求,拟定液压系统方案 1.2 参数设计 1.3 选择元件 1.4 液压系统性能验算
液压系统的设计计算举例
1.1 液分析工况及主机工作要求,拟定液压系统方案
(一) 确定执行元件类型
(二) 确定执行元件的负载、速度变化范围
Fw 18 000 N
1
2
0.5
0.5
综合比较,快退时所需功率最大。据此查产品样本选用Y112M—6型异步电机,
电机功率2.2 kW,额定转速为940 r/min。
(三) 选择液压阀
根据液压阀在系统中的最高工作压力与通过该阀的最大流量,可选出这些元件的 型号及规格。选定的元件列于表中。

液压驱动系统设计与控制

液压驱动系统设计与控制

液压驱动系统设计与控制引言液压驱动系统是一种广泛应用于各个领域的动力传动装置,它可实现高扭矩、高功率输出以及精确的位置控制。

本文将探讨液压驱动系统设计与控制的原理和方法,讨论其在工程实践中的应用和挑战。

一、液压驱动系统设计1. 动力源选择液压系统的动力源通常为液压泵,其类型包括齿轮泵、叶片泵和柱塞泵等。

根据应用场景和性能要求,设计人员需综合考虑工作压力、流量要求以及能源消耗等因素选择合适的液压泵。

同时还需要注意泵的噪音、振动和寿命等方面的要求。

2. 液压元件选择液压驱动系统的核心是液压元件,如液压缸、液压阀和液压马达等。

设计人员需要根据系统工作需求选择合适的液压元件,并考虑到其额定工作压力、流量和驱动力等参数。

同时还需要充分考虑元件的可靠性、使用寿命和维修保养等因素。

3. 管路设计管路设计是液压系统设计中重要的一环,它直接关系到流体传递的可靠性和效率。

在设计管路时,需要注意管道的截面尺寸、长度、弯曲和连接方式等,以保证系统的正常运行和流体的稳定流动。

此外,还需注意避免管路中的漏油、渗漏和压力损失等问题。

二、液压驱动系统控制1. 控制方式选择液压驱动系统的控制方式通常分为手动控制和自动控制。

手动控制适用于简单的操作任务,如手动控制阀门或压力开关。

而自动控制则通过传感器和控制器等设备实现对液压系统的精确控制,包括位置、速度和压力等参数。

2. 控制策略液压驱动系统的控制策略包括开环控制和闭环控制。

开环控制基于预设条件进行操作,适用于一些简单的工作。

闭环控制通过传感器反馈信号不断调整输出信号,实现对系统参数的精确控制。

选择合适的控制策略可以提高系统的控制精度和性能。

3. 控制器设计液压驱动系统的控制器通常由传感器、执行器、计算机等装置组成。

控制器的设计需要考虑到控制算法的选择、信号采集和处理等方面。

合理选择控制器的参数和配置,优化控制器的动态响应特性,可以提高液压驱动系统的控制性能。

三、液压驱动系统应用与挑战1. 工程应用液压驱动系统广泛应用于各个领域,如工业生产线、建筑机械、航空航天等。

液压系统的设计

液压系统的设计

液压系统的设计液压系统设计是液压主机设计的重要组成部分,也是对前面各章内容的概括总结和综合应用。

本章主要阐述液压系统设计的一般步骤,设计内容和设计计算方法,并通过实例来说明液压系统的设计过程。

9.1 液压系统的设计步骤液压系统设计与主机的设计是紧密联系的,两者往往同时进行,互相协调。

设计液压系统时应首先明确主机对液压系统在动作、性能、工作环境等方面的要求,如执行元件的运动方式、行程、调速范围、负载条件、运行平稳性和精度、工作循环及周期、工作环境、安装空间大小、结构简单、工作安全可靠、效率高、使命寿命长、经济性好、使用维修方便等设计原则。

液压系统设计步骤大体上可按图9-1所示的内容和流程进行。

这里除了最后一项(8)外,均属性能设计范围。

这些步骤是相互关联,相互影响的,必须经反复修改才能完成。

设计步骤及方法介绍如下。

9.1.1 明确系统的设计要求设计液压系统时,首先要对液压主机的工况进行分析,明确主机对液压系统的要求,具体包括:1)主机的用途、主体布局、对液压装置的位置和空间尺寸的限制。

2)主机的工作循环,液压系统应完成的动作、动作顺序或互锁要求,以及自动化程度的要求。

3)液压执行元件的负载和运动速速的大小及其变化范围,运动平稳性、定位精度及转化精度等的要求。

4)液压系统的工作环境和工作条件。

5)工作效率、安全性、可靠性及经济性等要求。

9.1.2 分析系统工况,确定主要参数1.工况分析工况分析,就是分析主机在工作过程中各执行元件的运动速度和负载的变化规律。

它是拟定液压系统方案,选择或设计液压元件的依据。

工况分析包括动力参数分析和运动参数分析两个部分,即:1)动力参数分析就是通过计算液压执行元件的载荷大小和方向,并分析各执行元件在工作过程中可能产生的冲击、振动及过载等。

对于动作较复杂的机械设备,根据工艺要求,将各执行元件在各阶段所需克服的负载用图9-2a所示的负载-位移(F-L)曲线表示,称为负载图。

液压系统毕业论文

液压系统毕业论文液压系统毕业论文引言液压系统是一种广泛应用于工业领域的动力传输和控制系统。

它通过利用液体的压力来传递能量,并实现各种机械装置的运动控制。

液压系统具有承载能力强、传动效率高、响应速度快等优点,因此在许多行业中得到了广泛的应用。

本文旨在探讨液压系统的原理、设计和应用,为液压系统的发展提供一定的参考和指导。

一、液压系统的原理液压系统的基本原理是利用液体的压力传递能量。

液压系统的核心是液压泵、液压阀和液压缸。

液压泵通过转动产生的压力将液体推送到液压阀,液压阀根据控制信号来控制液体的流动方向和压力,进而驱动液压缸实现机械装置的运动。

液压系统的工作原理基于波义耳定律和帕斯卡定律,即液体在封闭容器中的压力是均匀的,并且可以在不同容器之间传递。

二、液压系统的设计液压系统的设计需要考虑多个因素,包括工作压力、流量需求、工作环境等。

首先,需要确定系统的工作压力,这取决于所需的承载能力和传动效率。

其次,需要计算系统的流量需求,以确保液压泵和液压阀能够提供足够的液体流量。

此外,还需要考虑工作环境的特点,如温度、湿度和震动等,以选择适合的液压元件和密封件。

三、液压系统的应用液压系统广泛应用于各个行业,包括工程机械、航空航天、冶金、石油化工等。

在工程机械领域,液压系统被用于挖掘机、装载机、推土机等设备,以实现各种动作控制和力传递。

在航空航天领域,液压系统被用于飞机的起落架、襟翼和刹车系统等,以确保飞机的安全起降和操纵。

在冶金和石油化工领域,液压系统被用于冶炼设备和管道系统,以实现高温高压下的液体传输和控制。

四、液压系统的发展趋势随着科技的进步和工业的发展,液压系统也在不断演进和改进。

一方面,液压系统的工作压力和流量需求越来越大,需要更高性能的液压元件和密封件来满足需求。

另一方面,液压系统的智能化和自动化程度也在提高,通过采用传感器、执行器和控制器等先进技术,实现液压系统的远程监控和自动调节。

此外,液压系统还面临着能源效率和环境友好性的挑战,需要研究和开发更节能环保的液压技术。

液压课程设计设计要求

液压课程设计设计要求一、课程目标知识目标:1. 学生能够理解液压系统的基本原理,掌握流体力学的基础知识。

2. 学生能够描述液压元件的结构、功能及其工作原理,并能够列举常见的液压元件。

3. 学生能够解释液压系统的压力、流量与功率之间的关系,并运用相关公式进行简单计算。

技能目标:1. 学生能够设计简单的液压系统,并进行模拟分析,验证其功能与性能。

2. 学生能够运用液压原理图识别和绘制简单的液压系统图,并进行液压元件的选型。

3. 学生能够运用相关工具和仪器对液压系统进行调试和故障诊断。

情感态度价值观目标:1. 培养学生热爱科学、勇于探究的精神,激发学生对液压技术的兴趣和热情。

2. 培养学生严谨、务实的工程意识,提高学生的团队合作能力和沟通表达能力。

3. 培养学生关注环境保护,了解液压技术在节能减排方面的应用和重要性。

课程性质:本课程为理论与实践相结合的课程,注重培养学生的实际操作能力和解决实际问题的能力。

学生特点:学生具备一定的物理基础,对液压技术有一定了解,但对液压系统的设计与应用尚处于起步阶段。

教学要求:教师应结合课本内容,注重理论与实践相结合,通过案例分析、实验操作等教学手段,帮助学生达到课程目标。

同时,关注学生的个体差异,鼓励学生积极参与,培养学生的自主学习能力。

在教学过程中,将课程目标分解为具体的学习成果,以便进行有效的教学设计和评估。

二、教学内容1. 液压系统原理:流体力学基础,液压系统工作原理,液压油性质与选用。

教材章节:第一章 液压系统概述2. 液压元件:液压泵、液压马达、液压缸、控制阀等元件的结构、功能及工作原理。

教材章节:第二章 液压元件3. 液压系统设计:液压系统设计步骤,系统压力、流量计算,液压元件选型。

教材章节:第三章 液压系统设计4. 液压系统模拟与仿真:运用专业软件进行液压系统模拟分析,验证系统性能。

教材章节:第四章 液压系统模拟与仿真5. 液压系统调试与故障诊断:液压系统调试方法,常见故障现象、原因及排除方法。

液压系统设计

液压系统设计液压系统设计是指根据特定的需求和要求,规划和构建一个能够利用液体流体力学原理来传输能量和控制机械运动的系统。

液压系统设计通常包括液压传动装置的选择、液压元件的布置和连接、液压液的选用和系统控制的设计等方面。

以下将针对液压系统设计中的一些重要要素进行解释。

1. 液压传动装置的选择:在液压系统设计中,首先要根据需求选择合适的液压传动装置。

液压传动装置通常包括液压泵、液压马达和液压缸等。

液压泵负责将机械能转化为液压能,并将液压液推送到液压元件中;液压马达则将液压能转化为机械能,实现机械运动;液压缸则通过液压力推动活塞运动。

在选择液压传动装置时,需要考虑工作压力、流量需求、工作环境、可靠性和经济性等因素。

2. 液压元件的布置和连接:液压元件的布置和连接是液压系统设计中的重要环节。

液压元件包括液压阀、液压油箱、液压管路和液压过滤器等。

液压阀用于控制液压系统的流量、压力和方向等参数,以实现机械运动的控制。

液压油箱用于存储液压液,并通过液压泵将液压液送回液压系统。

液压管路则负责将液压液从液压泵传送到液压元件,并通过回路将液压液送回液压油箱。

液压过滤器则用于过滤液压液中的杂质和污染物,保持液压系统的正常运行。

3. 液压液的选用:在液压系统设计中,选择合适的液压液对系统的性能和可靠性至关重要。

液压液应具备良好的润滑性能、热稳定性、抗氧化性和抗腐蚀性,以确保液压元件的正常运行,并延长系统的使用寿命。

常见的液压液包括矿物油、合成液压油和生物液压油等。

选择液压液时,需要考虑工作温度、压力要求、环境因素和液压元件的材质等因素。

4. 系统控制的设计:液压系统的控制是液压系统设计中的另一个重要方面。

系统控制可以通过手动控制、自动控制和比例控制等方式实现。

手动控制包括使用手柄、脚踏板或开关等来控制液压系统的运行;自动控制可以通过传感器和控制器等设备来实现液压系统的自动化操作;比例控制则是根据输入信号的大小来控制液压系统的输出参数,以实现精确的控制。

液压系统设计毕业设计

液压系统设计毕业设计1. 引言液压系统是一种通过液体传递力量和控制信号的技术,广泛应用于各个领域,包括机械工程、航空航天工程、能源工程等。

本文旨在设计一个满足特定需求的液压系统,以应用于某工程项目的毕业设计。

本文将详细介绍液压系统的设计过程和原理,包括工作原理、组成部分、性能指标和系统布局等方面。

2. 工作原理液压系统的工作原理基于两个基本定律:压力定律和帕斯卡定律。

液压系统通过液体在封闭系统中传递力量和信号。

当液体被加压时,会产生静压力,这个压力会被传递到液体中的每一个部分。

液压系统主要由以下几个组件组成:•液压泵:将电动机或发动机的动力转化为液压能量,提供液压流体的流动。

•液压缸或液压马达:通过液压系统的力量来完成工作。

•油箱:存储液压油,保持液压系统的温度和压力稳定。

•阀门:控制液体的流动,包括方向阀、流量控制阀和压力控制阀等。

•导管和连接件:连接液压系统的各个部件,传递液体。

3. 性能指标设计液压系统时,需要考虑以下性能指标:•动力输出:液压系统需要能够提供足够的动力来执行所需的工作任务。

•响应时间:液压系统的响应时间应该尽可能短,以确保工作的准确性和效率。

•系统效率:液压系统的效率应高,以减少能量损失和热量产生。

•系统可靠性:液压系统需要具备一定的可靠性,以确保长时间运行的稳定性。

•安全性:液压系统在设计上需要满足工作环境的安全要求,以防止意外事故的发生。

4. 系统布局设计在设计液压系统的布局时,需要考虑以下因素:•功能需求:根据所需的工作任务确定液压系统的功能需求,包括液压泵的选型、液压缸的布置等。

•空间约束:根据工作场地的限制,确定液压系统的尺寸和布局。

•连接方式:选择合适的连接方式和连接件,确保液压系统的连接可靠性。

•管道布置:设计合理的管道布置,避免过长或过短的管道对系统性能产生影响。

•安全设备:根据安全要求,选择合适的安全设备,如压力开关、液压阀等。

5. 结论通过本文的液压系统设计,我们能够满足特定需求的液压系统的毕业设计要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液压系统的设计计算液压系统设计计算是液压液压传动课程设计的主要内容包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。

现以一台卧式单面多轴钻孔组合机床动力滑台液压系统为例,介绍液压系统的设计计算方法。

1 设计要求工况分析设计要求要求设计的动力滑台实现的工作循环是:快进→工进→快退→停止。

主要性能参数与性能要求如下:切削阻力42000L F N =;运动部件所受重力7200G N =;快进、快退速度m s 13ν=ν=0.1/,工进速度m s -32ν=0.85⨯10/;快进行程1260mm L =,工进行程2130mm L =;往复运动的加速时间t 0.2s ∆=;动力滑台采用平导轨,静摩擦系数0.2s μ=,动摩擦系数0.1d μ=。

液压系统执行元件选为液压缸。

负载与运动分析(1)工作负载 工作负载即为切削阻力42000L F N =。

(2)摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 0.272001440fs s F G N =μ=⨯= 动摩擦阻力 0.17200720fd d F G N =μ=⨯= (3)惯性负载 72000.1360100.2i G F N N g t ∆ν==⨯=∆ (4)运动之间快进 311126010 2.60.1L t s s -⨯===ν工进 3223213010152.940.8510L t s s --⨯===ν⨯快退()3333260130103.90.1Lt s s-+⨯===ν设液压缸的机械效率0.9cmη=,得出液压缸在各工作阶段的负载和推力,如表1所列。

表1 液压缸各阶段的负载和推力根据液压缸在上述各阶段内的负载和运动时间,即可绘制出负载循环图F t-和速度循环图tν-,如图1所示。

2 确定液压系统主要参数初选液压缸工作压力所设计的动力滑台在工进时负载最大,在其它工况负载都不太高,参考表2和表3,初选液压缸工作压力14.5p MPa=。

计算液压缸主要尺寸鉴于动力滑台快进和快退速度相等,这里的液压缸可选用单活塞杆式差动液压缸(),快进时液压缸差动连接。

工进时为防止孔钻通时负载突然消失发生前冲现象,液压缸的回油腔应有背压,参考表4选此背压为21.0p MPa=。

表2 按负载选择工作压力表3 各种机械常用的系统工作压力表4 执行元件背压力表5 按工作压力选取d/D表6 按速比要求确定d/D注:1ν—无杆腔进油时活塞运动速度;2ν—有杆腔进油时活塞运动速度。

由式1122cmFp A p A η-=得242162142720119101.00.9 4.51022cm FA m m p p η-===⨯⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎝⎭⎝⎭则活塞直径 0.123123D m mm ====参考表5及表6,得0.7187d D mm ≈=,圆整后取标准数值得125D mm =,90d mm =。

由此求得液压缸两腔的实际有效面积为2224210.1251231044D A m m ππ-⨯===⨯()()222224220.1250.0959.11044A D d m m ππ-=-=⨯-=⨯根据计算出的液压缸的尺寸,可估计出液压缸在工作循环中各个阶段的压力、流量和功率,如表7所列,由此绘制的液压缸工况如图2所示。

表7 液压缸在各个阶段的压力、流量和功率值注:1.p ∆为液压缸差动连接时,回油口到进油口之间的压力损失,取p=0.5MPa ∆。

2.快退时,液压缸有杆腔进油,压力为1p ,无杆腔回油,压力为2p 。

3 拟定液压系统原理图选择基本回路(1)选择调速回路 由图2可知,这台机床液压系统功率较小,滑台运动速度低,工作负载为阻力负载且工作中变化小,故可选用进口节流调速回路。

为防止孔钻通时负载突然消失引起运动部件前冲,在回油路上加背压阀。

由于系统选用节流调速方式,系统必须为开式循环系统。

(2)选择油源形式 从工况图可以清楚看出,在工作循环内,液压缸要求油源提供快进、快退行程的低压大流量和工进行程的高压小流量的油液。

最大流量与最小流量之比()2max min q /0.64/1.051061q -=⨯≈;其相应的时间之比()t 2.6 3.9/152.940.043=+=132(+t )/t 。

这表明在一个工作循环中的大部分时间都处于高压小流量工作。

从提高系统效率、节省能量角度来看,选用单定量泵油源显然是不合理的,为此可选用限压式变量泵或双联叶片泵作为油源。

考虑到前者流量突变时液压冲击较大,工作平稳性差,且后者可双泵同时向液压缸供油实现快速运动,最后确定选用双联叶片泵方案,如图2a 所示。

(3)选择快速运动和幻换向回路 本系统已选定液压缸差动连接和双泵供油两种快速运动回路实现快速运动。

考虑到从工进转快退时回油路流量较大,故选用换向时间可调的电液换向阀式换向回路,以减小液压冲击。

由于要实现液压缸差动连接,所以选用三位五通电液换向阀,如图2b 所示。

(4)选择速度换接回路 由于本系统滑台由快进转为工进时,速度变化大(()312/0.1/0.8510118υυ-=⨯≈),为减少速度换接时的液压冲击,选用行程阀控制的换接回路,如图2c 所示。

(5)选择调压和卸荷回路 在双泵供油的油源形式确定后,调压和卸荷回路问题都已经基本解决。

即滑台工进时,高压小流量泵的出口压力由油源中的溢流阀调定,无需另设调压回路。

在滑台工进和停止时,低压大流量泵通过液控顺序阀卸荷,高压小流量泵在滑台停止时虽未卸荷,但功率损失较小,故可不需再设卸荷回路。

图2 选择的基本回路组成液压系统将上面选出的液压基本回路组合在一起,并经修改和完善,就可得到完整的液压系统工作原理图,如图3所示。

在图3中,为了解决滑台工进时进、回油路串通使系统压力无法建立的问题,增设了单向阀6。

为了避免机床停止工作时回路中的油液流回油箱,导致空气进入系统,影响滑台运动的平稳性,图中添置了一个单向阀13。

考虑到这台机床用于钻孔(通孔与不通孔)加工,对位置定位精度要求较高,图中增设了一个压力继电器14。

当滑台碰上死挡块后,系统压力升高,它发出快退信号,操纵电液换向阀换向。

图3 整理后的液压系统原理图4 计算和选择液压件确定液压泵的规格和电动机功率(1)计算液压泵的最大工作压力小流量泵在快进和工进时都向液压缸供油,由表7可知,液压缸在工进时工作压力最大,最大压力为1 3.95p MPa =,如在调速阀进口节流调速回路中,选取进油路上的总压力损失1.0p MPa ∑∆=,考虑到压力继电器的可靠动作要求压差0.5e p MPa ∆=,则小流量泵的最高工作压力估算为11(3.95 1.00.5) 5.45p e p p p p MPa MPa ≥+∑∆+∆=++=大流量泵只在快进和快退时向液压缸供油,由表7可见,快退时液压缸的工作压力为1 1.24p MPa =,比快进时大。

考虑到快退时进油不通过调速阀,故其进油路压力损失比前者小,现取进油路上的总压力损失0.3p MPa ∑∆=,则大流量泵的最高工作压力估算为21(1.240.3) 1.54p p p p MPa MPa ≥+∑∆=+=(2)计算液压泵的流量由表7可知,油源向液压缸输入的最大流量为330.6410/m s -⨯,若取回路泄漏系数 1.1K =,则两个泵的总流量为33331 1.10.6410/0.70410/42.24/min p q Kq m s m s L --≥=⨯⨯=⨯=考虑到溢流阀的最小稳定流量为3/min L ,工进时的流量为531.0510/0.63/min m s L -⨯=,则小流量泵的流量最少应为3.63/min L 。

(3)确定液压泵的规格和电动机功率根据以上压力和流量数值查阅产品样本,并考虑液压泵存在容积损失,最后确定选取YB-6/40型双联叶片泵。

其小流量泵和大流量泵的排量分别为6/mL r 和40/mL r ,当液压泵的转速960/min p n r =时,其理论流量分别为5.76/min L 和38.4/min L ,若取液压泵容积效率0.9v η=,则液压泵的实际输出流量为()()1269600.9/1000409600.9/1000/min 5.1834.56/min 39.74/minp p p q q q L L L =+=⨯⨯+⨯⨯=+= 由于液压缸在快退时输入功率最大,若取液压泵总效率0.8P η=,这时液压泵的驱动电动机功率为6331.541042.2410 1.36600.810p ppp q P KW KW η-⨯⨯⨯≥==⨯⨯ 根据此数值查阅产品样本,选用规格相近的型电动机,其额定功率为KW ,额定转速为960/min r 。

确定其它元件及辅件(1)确定阀类元件及辅件根据系统的最高工作压力和通过各阀类元件及辅件的实际流量,查阅产品样本,选出的阀类元件和辅件规格如表8所列。

其中,溢流阀9按小流量泵的额定流量选取,调速阀4选用型,其最小稳定流量为/min L ,小于本系统工进时的流量/min L 。

表8 液压元件规格及型号r时的流量。

*注:此为电动机额定转速为960/min(2)确定油管在选定了液压泵后,液压缸在实际快进、工进和快退运动阶段的运动速度、时间以及进入和流出液压缸的流量,与原定数值不同,重新计算的结果如表9所列。

表9 各工况实际运动速度、时间和流量表10 允许流速推荐值由表9可以看出,液压缸在各阶段的实际运动速度符合设计要求。

根据表9数值,按表10推荐的管道内允许速度取/m s υ=,由式d =缸无杆腔和有杆腔相连的油管内径分别为d mm ===d mm ===为了统一规格,按产品样本选取所有管子均为内径、外径的号冷拔钢管。

(3)确定油箱油箱的容量按式pn V q α=估算,其中α为经验系数,低压系统,α=;中压系统,α=;高压系统,α=。

现取α=,得pn V q L L α===5 验算液压系统性能验算系统压力损失由于系统管路布置尚未确定,所以只能估算系统压力损失。

估算时,首先确定管道内液体的流动状态,然后计算各种工况下总的压力损失。

现取进、回油管道长为l m =,油液的运动粘度取2/v m s =,油液的密度取3/kg m ρ=。

(1) 判断流动的状态在快进、工进和快退三种工况下,进、回油管路中所通过的流量以快退回油流量2/min q L =为最大,此时,油液流动的雷诺数4e dqR vdvυπ==== 也为最大。

因为最大的雷诺数小于临界雷诺数(2000),故可推出:各种工况下的进、回油路中的油液的流动状态全为层流。

(2) 计算系统压力损失将层流流动状态沿程阻力系数75754e dv R qπλ== 和油液在管道内流速 24q dυπ= 同时代入沿程压力损失计算公式212l p d υλρ∆=,并将已知数据代入后,得 144752vl p q q q dρπ⨯∆=== 可见,沿程压力损失的大小与流量成正比,这是由层流流动所决定的。

相关文档
最新文档