2020版高考数学一轮复习第八篇平面解析几何必修2选修1_1第3节直线圆的位置关系习题理含解析
2020版高考数学大一轮复习第八章平面解析几何1第1讲直线斜率与直线方程课件文

3.直线方程
名称 几何条件
方程
局限性
点斜式 过点(x0,y0),_y_-__y0_=_k_(_x-__x_0)____ 不包括__垂_直__于_x_轴_____
斜率为 k
的直线
斜截式 斜率为 k,纵 ____y_=_k_x_+_b______ 不包括__垂_直__于_x_轴_____
截距为 b
的直线
1.必明辨的 3 个易错点 (1)利用两点式计算斜率时易忽视 x1=x2 时斜率 k 不存在的情 况. (2)用直线的点斜式求方程时,注意分 k 存在与不存在讨论,否 则会造成失误. (3)直线的截距式中易忽视截距均不为 0 这一条件.
2.必会的 2 种方法 求直线方程的一般方法 (1)直接法:根据已知条件,选择适当的直线方程形式,直接写 出直线方程,选择时,应注意各种形式的方程的适用范围,必 要时要分类讨论. (2)待定系数法,具体步骤为: ①设所求直线方程的某种形式; ②由条件建立所求参数的方程(组); ③解这个方程(组)求出参数; ④把参数的值代入所设直线方程.
所以实数 m 的取值范围为-23≤m≤12. 【答案】 (1)α+45°或 α-135° (2)-23,12
(1)求倾斜角的取值范围的一般步骤 ①求出斜率 k=tan α 的取值范围. ②利用三角函数的单调性,借助图象,确定倾斜角 α 的取值范 围. 求倾斜角时要注意斜率是否存在.
(2)斜率的求法 ①定义法:若已知直线的倾斜角 α 或 α 的某种三角函数值,一 般根据 k=tan α 求斜率. ②公式法:若已知直线上两点 A(x1,y1),B(x2,y2),一般根据 斜率公式 k=xy22- -yx11(x1≠x2)求斜率.
2.直线的斜率 (1)定义:一条直线的倾斜角 α 的正切值叫做这条直线的斜率, 斜率常用小写字母 k 表示,即 k=tan α,倾斜角是 90°的直线 没有斜率. (2)过两点的直线的斜率公式 经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为 k= xy22- -yx11=xy11- -yx22.
2020版高考数学习题:第八篇 平面解析几何(必修2、选修1-1) 第3节 直线、圆的位置关系

第3节直线、圆的位置关系【选题明细表】基础巩固(时间:30分钟)1.若直线2x+y+a=0与圆x2+y2+2x-4y=0相切,则a的值为( B )(A)±(B)±5 (C)3 (D)±3解析:圆的方程可化为(x+1)2+(y-2)2=5,因为直线与圆相切,所以有=,即a=±5.故选B.2.(2018·长春模拟)过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( B )(A)2x+y-5=0 (B)2x+y-7=0(C)x-2y-5=0 (D)x-2y-7=0解析:因为过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,所以点(3,1)在圆(x-1)2+y2=r2上,因为圆心与切点连线的斜率k==,所以切线的斜率为-2,则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.故选B.3.(2018·福州模拟)过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB所在直线的方程为( B )(A)y=- (B)y=-(C)y=- (D)y=-解析:圆(x-1)2+y2=1的圆心为(1,0),半径为1,以|PC|==2为直径的圆的方程为(x-1)2+(y+1)2=1,将两圆的方程相减得AB所在直线的方程为2y+1=0,即y=-.故选B.4.已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a 的值是( B )(A)-2 (B)-4 (C)-6 (D)-8解析:将圆的方程化为标准方程为(x+1)2+(y-1)2=2-a,所以圆心为(-1,1),半径r=,圆心到直线x+y+2=0的距离d==,故r2-d2=4,即2-a-2=4,所以a=-4,故选B.5.(2016·山东卷)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2.则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( B ) (A)内切(B)相交(C)外切(D)相离解析:圆M:x2+y2-2ay=0的圆心M(0,a),半径为a.所以圆心M到直线x+y=0的距离为,由直线y+x=0被圆M截得弦长为2知a2-=2,故a=2.即M(0,2),且圆M半径为2.又圆N的圆心N(1,1),且半径为1,由|MN|=,且2-1<<2+1.故两圆相交.故选B.6.(2018·全国名校第四次大联考)已知直线ax+2y-2=0与圆(x-1)2+(y+1)2=6相交于A,B两点,且A,B关于直线x+y=0对称,则a的值为( D )(A)1 (B)-1 (C)2 (D)-2解析:由几何关系可得直线x+y=0,经过圆(x-1)2+(y+1)2=6的圆心,且与直线ax+2y-2=0垂直,由直线垂直的充要条件有a×1+2×1=0,所以a=-2.选D.7.若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为.解析:设圆的方程为x2+y2=r2,将P的坐标代入圆的方程,得r2=5,故圆的方程为x2+y2=5.设该圆在点P处的切线上的任意一点为M(x,y),则=(x-1,y-2).由⊥(O为坐标原点),得·=0,即1×(x-1)+2×(y-2)=0,即x+2y-5=0.答案:x+2y-5=08.(2018·湖南郴州质监)过点M(,1)的直线l与圆C:(x-1)2+y2=4交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程为.解析:由题意得,当CM⊥AB时,∠ACB最小,k CM=-2,所以k AB=,从而直线方程为y-1=(x-),即2x-4y+3=0.答案:2x-4y+3=09.(2017·深圳一模)直线ax-y+3=0与圆(x-2)2+(y-a)2=4相交于M,N 两点,若|MN|≥2,则实数a的取值范围是.解析:设圆心到直线的距离为d,则d==,由r2=d2+()2知()2=4-≥3,解得a≤-.答案:(-∞,-]能力提升(时间:15分钟)10.已知AC,BD为圆O:x2+y2=4的两条互相垂直的弦,且垂足为M(1,),则四边形ABCD面积的最大值为( A )(A)5 (B)10 (C)15 (D)20解析:如图,作OP⊥AC于点P,OQ⊥BD于点Q,则OP2+OQ2=OM2=3,于是AC2+BD2=4(4-OP2)+4(4-OQ2)=20.又AC2+BD2≥2AC·BD,则AC·BD≤10,所以S四边形ABCD=AC·BD≤×10=5,当且仅当AC=BD=时等号成立.故四边形ABCD面积的最大值为5.故选A.11.若曲线x2+y2-6x=0(y>0)与直线y=k(x+2)有公共点,则k的取值范围是( C )(A)[-,0) (B)(0,)(C)(0,] (D)[-,]解析:因为x2+y2-6x=0(y>0)可化为(x-3)2+y2=9(y>0),所以曲线表示圆心为(3,0),半径为3的上半圆,它与直线y=k(x+2)有公共点的充要条件是:圆心(3,0)到直线y=k(x+2)的距离d≤3,且k>0,所以≤3,且k>0,解得0<k≤.故选C.12.过点(1,)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k= .解析:因为(1-2)2+()2=3<4,所以点(1,)在圆(x-2)2+y2=4的内部,当劣弧所对的圆心角最小时,即直线l交圆的弦长最短,此时圆心(2,0)与点(1,)的连线垂直于直线l.因为=-,所以所求直线l的斜率k=.答案:13.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且|AB|=2时,求直线l的方程. 解:将圆C的方程x2+y2-8y+12=0配方,得标准方程为x2+(y-4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l与圆C相切,则有=2,解得a=-.(2)过圆心C作CD⊥AB,则根据题意和圆的性质,得解得a=-7或a=-1.故所求直线方程为7x-y+14=0或x-y+2=0.14.(2018·广东汕头期末节选)在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程.解:圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心在直线x=6上,可设N(6,y0),因为N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1,因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d==.因为BC=OA==2,而MC2=d2+()2,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.。
2020版高考数学总复习第八篇平面解析几何(必修2、选修2_1)第3节椭圆课件理

等于常数2a(2a>|F1F2|)的点的轨
焦点
,两焦点间的距离叫做椭圆
2.椭圆的标准方程及其简单几何性质
标准 方程
焦点在 x 轴上 x2 + y 2 =1(a>b>0) a2 b2
图形
范围 对称性
|x|≤a;|y|≤b
曲线关于 x轴、 y轴、原点 对称
焦点在 y 轴上 y 2 + x2 =1(a>b>0) a2 b2
答案:④⑤
考点专项突破
在讲练中理解知识
考点一 椭圆的定义及其应用
【例1】 (1)已知△ABC的周长为26且点A,B的坐标分别是(-6,0),(6,0),则点
C的轨迹方程为
.
解析:(1)因为△ABC 的周长为 26,顶点 A(-6,0),B(6,0),所以|AB|=12,|AC|+|BC|=2612=14,且 14>12,点 C 到两个定点的距离之和等于定值,所以点 C 的轨迹是椭圆,因为
【跟踪训练 3】
(1)过椭圆 x2 a2
+ y2 b2
=1(a>b>0)的左焦点 F1 作 x 轴的垂线交椭圆于点 P,F2
为椭圆的右焦点,若∠F1PF2=60°,则椭圆的离心率为( )
(A) 2 (B) 3 (C) 1
5 55 以 b2≥1,所以 a2-c2≥1,4-c2≥1,解得 0<c≤ 3 ,所以 0< c ≤ 3 ,所以椭圆的离心率
a2 的取值范围为(0, 3 ).故选 A.
2
反思归纳 (1)求椭圆离心率的方法 ①直接求出a,c的值,利用离心率公式直接求解. ②列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e 的方程(或不等式)求解. (2)利用椭圆几何性质求值或范围的思路 求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、 焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.
直线与圆、圆与圆的位置关系课件-2025届高三数学一轮复习

(-4-0)2+(0-2)2=2 5,即公共弦长为 2 5.
规律方法
圆与圆的位置关系的求解策略 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离 与两圆半径之间的关系,一般不采用代数法. 2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差 消去x2,y2项得到.
对点练2.(1)圆x2-4x+y2=0与圆x2+y2+4x+3=0的公切线共有
4.(用结论)过点(2,2)作圆(x-1)2+y2=5的切线,则切线方程为
A.x-2y+2=0
B.3x+2y-10=0
√C.x+2y-6=0
D.x=2或x+2y-6=0
显然点(2,2)在圆上,由结论1可得切线方程为(2-1)·(x-1)+(2-0)y=5, 即x+2y-6=0.故选C.
5 . ( 用 结 论 ) 圆 x2 + y2 - 4 = 0 与 圆 x2 + y2 - 4x + 4y - 12 = 0 的 公 共 弦 长 为 _2__2_____.
(2)过两圆x2+y2-2y-4=0与x2+y2-4x+2y=0的交点,且圆心在直线l: 2x+4y-1=0上的圆的方程为__x_2+__y_2_-__3_x_+__y_-__1_=__0___.
设所求圆的方程为x2+y2-4x+2y+λ(x2+y2-2y-4)=0(λ≠-1),则(1 +λ)x2-4x+(1+λ)y2+(2-2λ)y-4λ=0,把圆心坐标 1+2 λ,λ1-+1λ 代入 直线l,可得λ= 1 ,故所求圆的方程为x2+y2-3x+y-1=0.
(2)直线kx-y+2-k=0与圆x2+y2-2x-8=0的位置关系为
A.相交、相切或相离
B.相交或相切
√C.相交
D.相切
法一:直线kx-y+2-k=0的方程可化为k(x-1)-(y-2)=0,该直线恒
2020高考文科数学第8章-平面解析几何

高考数学第八章平面解析几何第一节直线的倾斜角与斜率、直线的方程[基础知识深耕]一、直线的倾斜角与斜率1.直线的倾斜角(1)定义:x轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角.当直线与x轴平行或重合时,规定它的倾斜角为0°.(2)倾斜角的范围为[0°,180°).2.直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k=tan_α,倾斜角是90°的直线没有斜率.(2)过两点的直线的斜率公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1=y 1-y 2x 1-x 2.【拓展延伸】 斜率与倾斜角的关系 1.求斜率可用k =tan α⎝ ⎛⎭⎪⎫α≠π2,其中α为倾斜角,斜率k是一个实数,每条直线都存在唯一的倾斜角,但并不是每条直线都存在斜率.倾斜角为π2的直线不存在斜率.如图(1),α∈⎣⎢⎡⎭⎪⎫0,π2时,随α增大k 单调递增且k ≥0;当α∈⎝ ⎛⎭⎪⎫π2,π时,随α增大k 单调递增且k <0.(1) (2)8-1-1如图(2),k2>k1>0>k4>k3(斜率为k1,k2,k3,k4的直线对应的倾斜角为α1,α2,α3,α4),π>α4>α3>π2>α2>α1>0.2.在平面直角坐标系中,直线越陡,|k|越大.二、直线方程【易错提醒】使用直线方程应注意的问题使用直线方程时,一定要注意限制条件,以免解题过程中丢解,如点斜式的使用条件是直线必须有斜率.截距式的使用条件是截距存在且不为零等.【方法技巧】巧用斜率公式求最值对于求形如k=y2-y1x2-x1的分式、y=c+dxa+bx的最值问题,可利用定点与动点的相对位置,转化为求直线斜率的范围,数形结合进行求解.[基础能力提升]1.给出下列命题①根据直线的倾斜角的大小不能确定直线的位置;②坐标平面内的任何一条直线均有倾斜角与斜率;③直线的倾斜角越大,其斜率就越大;④直线的斜率为tan α,则其倾斜角为α; ⑤斜率相等的两直线的倾斜角不一定相等. 其中正确的是( )A .①③④B .②③C .①D .①④⑤ 【解析】 由确定直线的几何要素和直线的斜率与倾斜角的关系可知①正确,②③④⑤均错误.【答案】 C2.直线x -3y +a =0(a 为常数)的倾斜角α为( ) A.π6B .π3 C.23π D.56π【解析】 由题意可知tan α=33,∴α=π6. 【答案】 A3.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或4【解析】 由题意可知4-m=1,∴m=1.m+2【答案】 A4.过点(-1,2)且倾斜角为150°的直线方程为()A.3x-3y+6+3=0 B.3x-3y-6+3=0C.3x+3y+6+3=0D.3x+3y-6+3=0【解析】由点斜式得,y-2=tan 150°(x+1),即3x +3y-6+3=0.【答案】 D1.一条规律——斜率与倾斜角的关系斜率k是一个实数,当倾斜角α≠90°时,k=tan α.直线都有倾斜角,但并不是每条直线都存在斜率,倾斜角为90°的直线无斜率.2.两种方法——求直线方程的方法(1)直接法:根据已知条件选择恰当的直线方程形式,直接求出直线方程.(2)待定系数法:先根据已知条件设出直线方程,再根据已知条件构造关于待定系数的方程(组).求出待定系数,从而求出直线方程.3.三个注意点(1)求直线的倾斜角时要注意其范围.(2)应用“点斜式”和“斜截式”方程时,要注意讨论斜率是否存在.(3)应用截距式方程时要注意讨论直线是否过原点.第二节两条直线的位置关系[基础知识深耕]一、两条直线的位置关系1.两直线的平行与垂直(1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2.2.两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.【拓展延伸】 常见的直线系方程1.设定点P (x 0,y 0)的直线系:A (x -x 0)+B (y -y 0)=0(A2+B 2≠0),还可以表示为y -y 0=k (x -x 0)(斜率不存在时可设为x =x 0).2.平行于直线Ax +By +C =0的直线系方程:Ax +By +λ=0(λ≠C ).3.垂直于直线Ax +By +C =0的直线系方程:Bx -Ay +λ=0.4.过两条已知直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(其中不包括直线A 2x +B 2y +C 2=0).二、三种距离1.两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.2.点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B2. 3.两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.[基础能力提升]1.下列说法正确的是()①若直线l1与l2的斜率相等,则l1∥l2;②若直线l1∥l2,则两直线的斜率相等;③若直线l1,l2的斜率均不存在,则l1∥l2;④若两直线的斜率不相等,则两直线不平行.A.①③B.②④C.①③④D.④【解析】①③中直线l1,l2有可能重合,②中直线l1,l2有可能斜率均不存在,只有④正确.【答案】 D2.直线l1的斜率为2,l1∥l2,直线l2过点(-1,1)且与y 轴交于点P,则点P的坐标为()A.(3,0) B.(-3,0)C.(0,-3) D.(0,3)【解析】由题意,设P(0,y),则y-1=2,∴y=3,选D.0+13.若直线ax +y +5=0与x -2y +7=0垂直,则a 的值为( )A .2B .12C .-2D .-12【解析】 由a ×1+1×(-2)=0得a =2. 【答案】 A4.已知直线l 1:3x -4y +4=0与l 2:6x -8y -12=0,则直线l 1与l 2之间的距离是( )A.85 B .2C.45D.25【解析】 l 2可化为:3x -4y -6=0,故l 1,l 2之间的距离d =|4+6|5=2.三个注意点:(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.两条直线都有斜率,可根据判定定理判断,若直线无斜率时,要单独考虑.(2)求点到直线的距离时,若给出的直线不是一般式,则应化为一般式.(3)求两平行线之间的距离时,应先将方程化为一般式,且x,y的系数对应相同.第三节 圆的方程 [基础知识深耕]一、圆的定义及方程 1.圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆. 确定一个圆最基本的要素是圆心和半径. 2.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径长.特别地,当圆心在原点时,圆的方程为x 2+y 2=r 2(r >0). 3.圆的一般方程对于方程x 2+y 2+Dx +Ey +F =0, (1)当D 2+E 2-4F >0时,表示圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径长为12 D 2+E 2-4F 的圆;(2)当D 2+E 2-4F =0时,表示一个点⎝ ⎛⎭⎪⎫-D 2,-E 2;(3)当D 2+E 2-4F <0时,它不表示任何图形. 【拓展延伸】 二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件当A =C ≠0,B =0且D 2+E 2-4AF >0时,二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示以⎝ ⎛⎭⎪⎫-D 2A ,-E 2A 为圆心,D 2+E 2-4AF2|A |为半径的圆. 【方法技巧】 求圆的方程的一般步骤:(1)根据题意选择方程的形式——标准方程或一般方程; (2)根据条件列出关于a ,b ,r 或D ,E ,F 的方程组; (3)解出a ,b ,r 或D ,E ,F ,代入标准方程或一般方程. 二、点A (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2(r >0)的位置关系1.几何法(1)|AC |<r ⇔点A 在圆内;(2)|AC |=r ⇔点A 在圆上; (3)|AC |>r ⇔点A 在圆外. 2.代数法(1)(x 0-a )2+(y 0-b )2<r 2⇔点A 在圆内; (2)(x 0-a )2+(y 0-b )2=r 2⇔点A 在圆上; (3)(x 0-a )2+(y 0-b )2>r 2⇔点A 在圆外.[基础能力提升]1.给出下列命题:①方程(x -a )2+(y -b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆;②方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆心为⎝ ⎛⎭⎪⎫-a 2,-a ,半径为12-3a 2-4a +4的圆;③若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.其中正确的是( )A .①②B .②③C .①D .③【解析】①错误,如当t=0时,该方程表示一个点,②错误,如a=1时,该方程不表示任何图形;③正确.故选D.【答案】 D2.将圆x2+y2-2x-4y+1=0平分的直线是()A.x+y-1=0 B.x+y+3=0C.x-y+1=0 D.x-y+3=0【解析】圆的圆心坐标为(1,2),代入四个选项可知C 符合,选C.【答案】 C3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a 的取值范围是()A.-1<a<1B.0<a<1C.a>1或a<-1 D.a=±1【解析】因为点(1,1)在圆的内部,∴(1-a)2+(1+a)2<4,∴-1<a<1.【答案】 A4.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则C的方程为________.【解析】设圆心坐标为(a,0),易知(a-5)2+(-1)2=(a-1)2+(-3)2,解得a=2,∴圆心为(2,0),半径为10,∴圆C的方程为(x-2)2+y2=10.【答案】(x-2)2+y2=101.一个条件——二元二次方程与圆的关系二元二次方程x2+y2+Dx+Ey+F=0表示圆的充要条件为D2+E2-4F>0.2.两种方法——圆及圆心的确定(1)确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法:是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.(2)求圆的方程时,要注意应用圆的几何性质简化运算.①圆心在过切点且与切线垂直的直线上.②圆心在任一弦的中垂线上.③两圆内切或外切时,切点与两圆圆心三点共线.第四节直线与圆、圆与圆的位置关系[基础知识深耕]一、直线与圆的位置关系与判断方法【拓展延伸】圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x +y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.二、圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).【拓展延伸】圆系方程设两圆C1:x2+y2+D1x+E1y+F1=0(D21+E21-4F1>0)和C2:x2+y2+D2x+E2y+F2=0(D22+E22-4F2>0),则圆系方程:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1),①若令λ=-1,则(D1-D2)x+(E1-E2)y+F1-F2=0,②其中:(1)若C1和C2相交,则①式表示过两圆交点的圆,但不包括C2;②表示两圆的公共弦所在的直线方程.(2)若两圆相切,则②式表示内公切线方程.(3)若两圆相离,则②式表示两圆连心线C1C2的垂线的方程.[基础能力提升]1.给出下列命题:①如果直线与圆组成的方程组只有一个实数解,则直线与圆相切;②直线y=kx+1可能与圆x2+y2=1相离;③从圆外一点P(x0,y0)引圆的切线,则切线必有两条.其中正确的有()A.①②③B.①③C.①②D.②③【解析】∵直线y=kx+1恒过定点(0,1),故直线与圆必有公共点,所以②错误,①③均正确.【答案】 B2.过原点且倾斜角为60°的直线被圆x2+y2-4y=0截得的弦长为()A. 3 B.2 C. 6 D.2 3【解析】由题意可知,该直线方程为3x-y=0.又圆x2+y2-4y=0的圆心为(0,2),半径r=2.所以圆心到直线的距离d=22=1.弦长为24-1=2 3.【答案】 D3.过坐标原点且与圆x2-4x+y2+2=0相切的直线方程为()A.x+y=0 B.x-y=0C.x+y=0或x-y=0 D.x+3y=0或x-3y=0【解析】设所求直线为y=kx,由题意可知|2k|1+k2=2,∴k=±1.故所求直线方程为x+y=0或x-y=0.【答案】 C4.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程是()A.(x-4)2+(y-6)2=6 B.(x±4)2+(y-6)2=6C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36【解析】圆x2+(y-3)2=1的圆心为(0,3),半径r=1.设所求圆的方程为(x -a )2+(y -b )2=36,由题意得⎩⎪⎨⎪⎧a 2+(b -3)2=6-1,b =6,解得⎩⎪⎨⎪⎧a =±4,b =6,故所求圆的方程为(x ±4)2+(y -6)2=36. 【答案】 D1.两种方法计算直线被圆截得的弦长的常用方法:(1)几何方法:运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数方法:运用根与系数关系及弦长公式 |AB |=1+k 2|x A -x B | =(1+k 2)[(x A +x B )2-4x A x B ].2.三个性质解决直线与圆的问题时常用到的圆的三个性质:(1)圆心在过切点且与切线垂直的直线上;(2)圆心在任一弦的中垂线上;(3)两圆内切或外切时,切点与两圆圆心三点共线.第五节椭圆[基础知识深耕]一、椭圆的定义及标准方程1.定义把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若2a>|F1F2|,则集合P为椭圆;(2)若2a=|F1F2|,则集合P为线段;(3)若2a <|F 1F 2|,则集合P 为空集. 2.标准方程中心在坐标原点,焦点在x 轴上的椭圆的标准方程为:x2a 2+y2b 2=1(a >b >0);中心在坐标原点,焦点在y 轴上的椭圆的标准方程为:y 2a 2+x2b 2=1(a >b >0).【拓展延伸】 焦点三角形椭圆上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理.以椭圆x 2a 2+y2b 2=1(a >b >0)上一点P (x 0,y 0)(y 0≠0)和焦点F 1(-c,0),F 2(c,0)为顶点的△PF 1F 2中,若∠F 1PF 2=θ,注意以下公式的灵活运用:(1)|PF 1|+|PF 2|=2a ;(2)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ;(3)S△PF1F2=12|PF1||PF2|·sin θ=b2tanθ2.二、椭圆的几何性质【拓展延伸】 1.点P(x0,y0)和椭圆的关系(1)点P(x0,y0)在椭圆内⇔x20a2+y20b2<1;(2)点P(x0,y0)在椭圆上⇔x20a2+y20b2=1;(3)点P(x0,y0)在椭圆外⇔x20a2+y20b2>1.2.一些特殊结论(1)|PF1|的范围为[a-c,a+c];(2)通径(过焦点垂直于焦点所在对称轴的直线被圆锥曲线截得的弦叫通径)长度为2b2 a.[基础能力提升]1.给出下列命题:①动点P到两定点A(0,-2),B(0,2)的距离之和为4,则点P的轨迹是椭圆;②椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距);③方程Ax 2+By 2=1(A >0,B >0)表示椭圆方程; ④P 是椭圆上的任意一点,F 1,F 2为其两个焦点,则|PF 1|·|PF 2|≤a 2.其中正确的是( )A .①②③④B .②③C .①②D .②④ 【解析】 ①错误,因为|AB |=4;②正确,因为|PF 1|+|PF 2|=2a ,|F 1F 2|=2c ;③错误,如A =B =1,其表示圆;④正确,因为|PF 1|+|PF 2|=2a ,∴|PF 1||PF 2|≤⎝ ⎛⎭⎪⎫2a 22=a 2.【答案】 D2.一椭圆的焦点坐标为(-5,0)和(5,0),椭圆上一点与两焦点的距离和是26,则该椭圆的方程为( )A.x 2169+y2144=1 B .x 2144+y2169=1 C.x 2169+y225=1D.x 2144+y225=1【解析】由题意可知c=5,2a=26,即a=13. ∴b2=a2-c2=144.又椭圆的焦点在x轴上,所以椭圆方程为x2169+y2144=1.故选A.【答案】 A3.已知椭圆的焦点在y轴上,若椭圆x22+y2m=1的离心率为12,则m的值是()A.23B.43C.53 D.83【解析】由题意可知a2=m,b2=2,e=ca=1-b2a2=12,即1-2m=12,∴m=83.【答案】 D4.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45 B .35 C.25D.15【解析】 由题意可知,2a,2b,2c 成等差数列. 即2b =a +c ,又c 2=a 2-b 2,所以3a 2-2ac -5c 2=0, 解得3a =5c ,即e =c a =35. 【答案】 B1.两种方法——求椭圆标准方程的方法(1)定义法:根据椭圆定义,确定a 2,b 2的值,再结合焦点位置,直接写出椭圆方程.(2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a,b,c的方程组,解出a2,b2,从而写出椭圆的标准方程.2.三种技巧——与椭圆性质、方程相关的三种技巧(1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a +c,最小距离为a-c.(2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1).(3)求椭圆方程时,常用待定系数法.但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴.第六节双曲线[基础知识深耕]一、双曲线的定义及标准方程1.双曲线定义平面内动点P与两个定点F1,F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a(2a<2c) ,则点P的轨迹叫做双曲线.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c 为常数且a>0,c>0.(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a>|F1F2|时,P点不存在.2.双曲线的标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2a2-y2b2=1(a>0,b>0);(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为y2a2-x2b2=1(a>0,b>0).【拓展延伸】 1.焦点三角形的面积利用定义、余弦定理可推出焦点三角形的面积S△PF1F2=b2 tan θ2(其中点P为双曲线上异于顶点的任意一点,∠F1PF2=θ).2.方程Ax2+By2=1(AB<0)表示的曲线特征方程Ax2+By2=1(AB<0)包含双曲线的焦点在x轴上或y轴上两种情况,方程可变形为x21A+y21B=1,当1A<0时,表示焦点在y轴上的双曲线;当1B<0时,表示焦点在x轴上的双曲线.二、双曲线的几何性质【拓展延伸】 1.点P(x0,y0)和双曲线x2a2-y2b2=1(a>0,b>0)的关系(1)P在双曲线内⇔x20a2-y20b2>1(含焦点);(2)P在双曲线上⇔x20a2-y20b2=1;(3)P在双曲线外⇔x20a2-y20b2<1.2.一些特殊的结论(1)|PF1|的取值范围为[c-a,+∞);(2)通径长为2b2 a;(3)焦点到渐近线的距离为b.[基础能力提升]1.给出下列命题:①平面内到点F1(0,4),F2(0,-4)距离之差等于6的点的轨迹是双曲线;②平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线;③方程x 2m -y2n =1(mn >0)表示焦点在x 轴上的双曲线. 其中正确的个数有( )A .0个B .1个C .2个D .3个 【解析】 ①错误,由题意可知|PF 1|-|PF 2|=6,故点P 的轨迹是双曲线的下支.②错误,∵|F 1F 2|=8,∴点P 的轨迹是两条射线. ③错误,如m <0,n <0,则其表示焦点在y 轴上的双曲线.【答案】 A2.设P 是双曲线x 216-y220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17D .以上答案均不对【解析】 由双曲线定义||PF 1|-|PF 2||=8, 又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17. 【答案】 B3.若双曲线x 2a 2-y2b 2=1的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±2xC .y =±12x D .y =±22x【解析】 ∵e =3,∴ca =3,即a 2+b 2a 2=3, ∴b 2=2a 2,∴双曲线方程为x 2a 2-y22a 2=1,∴渐近线方程为y =±2x . 【答案】 B4.若点P (2,0)到双曲线x 2a 2-y2b 2=1的一条渐近线的距离为2,则双曲线的离心率为( ) A. 2B . 3C .2 2D .2 3【解析】双曲线的渐近线方程为bx±ay=0,点P(2,0)到渐近线的距离为|2b|a2+b2=2,所以a2=b2,所以双曲线的离心率为2,故选A.【答案】 A1.一个规律——等轴双曲线的离心率及渐近线的关系双曲线为等轴双曲线⇔双曲线的离心率e=2⇔双曲线的两条渐近线互相垂直(位置关系).2.二种方法——求双曲线标准方程的两种方法(1)定义法根据题目的条件,若满足定义,求出相应的a ,b 的值即可求得方程.(2)待定系数法①待定系数法的步骤定位:确定焦点位置定值:根据条件确定相关参数设方程:由焦点位置设方程②待定系数法求双曲线方程的常用方法a .与双曲线x 2a 2-y 2b 2=1共渐近线的可设为x 2a 2-y2b 2=λ(λ≠0);b .若渐近线方程为y =±ba x ,则可设为x 2a 2-y 2b 2=λ(λ≠0);c .若过两个已知点则设为x 2m +y2n =1(mn <0).第七节 抛物线 [基础知识深耕]一、抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.二、抛物线的标准方程与几何性质【拓展延伸】 1.抛物线的焦半径抛物线上任意一点P(x0,y0)到焦点F的距离称为焦半径.有以下结论(p>0):(1)对于抛物线y 2=2px ,|PF |=p 2+x 0; (2)对于抛物线y 2=-2px ,|PF |=p 2-x 0; (3)对于抛物线x 2=2py ,|PF |=p 2+y 0; (4)对于抛物线x 2=-2py ,|PF |=p 2-y 0. 2.焦点弦:线段AB 为抛物线y 2=2px (p >0)的焦点弦,A (x 1,y 1),B (x 2,y 2).(1)x 1x 2=p 24;(2)y 1y 2=-p 2;(3)弦长l =x 1+x 2+p =2p sin 2θ(θ为AB 的倾斜角),x 1+x 2≥2x 1x 2=p ,当且仅当x 1=x 2时,弦长最短为2p ,此时的弦又叫通径;图8-7-1(4)S △AOB =p 22sin θ;(5)1|AF |+1|BF |=2p ;(6)A ,O ,B ′三点共线,A ′,O ,B 三点共线;(7)∠A ′FB ′=90°;(8)以AB 为直径的圆与准线相切.3.过抛物线y 2=2px 的顶点O 任意作两条互相垂直的弦OA ,OB ,则直线AB 恒过定点(2p,0).[基础能力提升]1.给出下列命题:①平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线;②方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a 4;③抛物线既是中心对称图形,又是轴对称图形;④AB 为抛物线y 2=2px (p >0)的过焦点F ⎝ ⎛⎭⎪⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .其中不正确的命题为( )A .①②B .①②③C .②③D .①③④【解析】 ①错误,点F 不在定直线l 上时,满足题设的轨迹为抛物线;②错误,由x 2=1a y 可知焦点为⎝ ⎛⎭⎪⎫0,14a ,准线为y =-14a ;③错误,该图形不是中心对称图形;④正确.故选B.【答案】 B2.若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A.1716B .1516 C.78 D .0【解析】M到准线的距离等于M到焦点的距离,又准线方程为y=-116,设M(x,y),则y+116=1,∴y=1516.【答案】 B3.设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是()A.y2=-8x B.y2=8xC.y2=-4x D.y2=4x【解析】因为抛物线的准线方程为x=-2,所以p2=2,所以p=4,所以抛物线的方程是y2=8x.【答案】 B4.设抛物线y2=8x上一点P到y轴的距离是4,则点P 到该抛物线焦点的距离是()A.4 B.6C.8 D.12【解析】如图所示,抛物线的准线l的方程为x=-2,F是抛物线的焦点,过点P作P A⊥y轴,垂足是A,延长P A 交直线l于点B,则|AB|=2,由于点P到y轴的距离为4,则点P到准线l的距离|PB|=4+2=6,所以点P到焦点的距离|PF|=|PB|=6.【答案】 B1.一种转化——转化思想在定义的中应用抛物线上点到焦点距离常用定义转化为点到准线的距离.2.两个易误点——对抛物线的定义及标准方程的释疑(1)抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.(2)抛物线标准方程中参数p易忽视只有p>0,才能证明其几何意义是焦点F到准线l的距离,否则无几何意义.3.熟知焦点弦的有关结论(详见本节知识延伸).第八节直线与圆锥曲线的位置关系[基础知识深耕]一、直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).1.当a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.2.当a=0,b≠0时,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.二、圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=1+k2|x2-x1|=1+1 k2|y2-y1|.【拓展延伸】中点弦的几个常见结论(1)AB是椭圆x2a2+y2b2=1(a>b>0)的一条弦,弦中点M的坐标为(x0,y0),则AB的斜率为-b2x0a2y0.运用点差法求AB的斜率,设A(x1,y1),B(x2,y2).∵A,B都在椭圆上.∴⎩⎪⎨⎪⎧ x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式相减得x 21-x 22a 2+y 21-y 22b 2=0, ∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0, 即y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=-b 2x 0a 2y 0.故k AB =-b 2x 0a 2y 0. (2)运用类比的方法可以推出:已知AB 是双曲线x 2a 2-y 2b 2=1的弦,弦中点M (x 0,y 0),则k AB =b 2x 0a 2y 0. (3)已知抛物线y 2=2px (p >0)的弦AB 的中点M (x 0,y 0),则k AB =p y 0. [基础能力提升]1.给出下列命题:①直线l 与椭圆C 相切的充要条件是:直线l 与椭圆C 只有一个公共点;②直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点;③直线l与抛物线C相切的充要条件是:直线l与抛物线C只有一个公共点;④如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=1+t2|y1-y2|;⑤若抛物线C上存在关于直线l对称的两点,则需满足直线l与抛物线C的方程联立消元得到的一元二次方程的判别式Δ>0.其中正确的是()A.①②B.②③C.①④D.①④⑤【解析】②不正确,当直线l与双曲线C的渐近线平行时不成立,③⑤不正确,如l为抛物线C的对称轴.【答案】 C2.若直线y=kx与双曲线x29-y24=1相交,则k的取值范围是()A.⎝ ⎛⎭⎪⎫0,23 B .⎝ ⎛⎭⎪⎫-23,0 C.⎝ ⎛⎭⎪⎫-23,23D.⎝ ⎛⎭⎪⎫-∞,-23∪⎝ ⎛⎭⎪⎫23,+∞ 【解析】 双曲线x 29-y 24=1的渐近线方程为y =±23x , 若直线与双曲线相交,数形结合,得k ∈⎝ ⎛⎭⎪⎫-23,23. 【答案】 C3.斜率为3的直线l 过抛物线y 2=4x 的焦点且与该抛物线交于A ,B 两点,是|AB |=________.【解析】 如图,分别过A ,B 作AA 1,BB 1垂直准线x =-1于A 1,B 1,抛物线y 2=4x 的焦点为F (1,0),过F 作FM ⊥AA 1于M ,直线l 的倾斜角为60°,所以|AF |=|AA 1|=|A 1M |+|AM |=2+|AF |cos 60°,所以|AF |=4,同理得|BF |=43,故|AB |=|AF |+|BF |=163.。
2023版高考数学一轮总复习第八章平面解析几何8.4直线与圆圆与圆的位置关系课件

是
()
A. 相切
B. 相交
C. 相离
D. 不确定
解:因为 M(a,b)在圆 O:x2+y2=1 外,所以 a2+b2>1,而圆心 O 到直线 ax+by=1 的距离 d=|a·0a+2+b·b02-1|= a21+b2<1,所以直线与圆相交. 故选 B.
(2) 圆 x2 + y2 - 2x + 4y = 0 与 直 线 2tx - y - 2 - 2t = 0(t∈R) 的 位 置 关 系 为
命题角度 2 已知位置关系求参数值(范围)
【多选题】若圆 C:x2+y2-2x+4y-20=0 上有四个不同的点到直线 l:4x+
3y+c=0 的距离为 2,则 c 的取值可能是
()
A. -13
B. 13
C. 15
D. 18
解:圆 C:x2+y2-2x+4y-20=0 化为(x-1)2+(y+2)2=25,则圆心为 C(1,-2), 半径为 r=5, 若圆 C:x2+y2-2x+4y-20=0 上有四个不同的点到直线 l:4x+3y+c=0 的距离为 2,则圆心 C(1,-2)到直线 l 的距离 d<3, 如图,即|4×1+3×5(-2)+c|=|c-5 2|<3, 所以-13<c<17. 故选 BC.
解:由题意,C1,C2 到直线 y=kx+b 的距离都等于半径,即
|b| =
k2+12
|4kk2++b1|2=1,
所以|b|=|4k+b|,解得 k=0(舍去)或 b=-2k,解得 k=
33,b=-2
3
3 .
故填
33;-23 3.
考点一 直线与圆的位置关系
命题角度 1 位置关系判断
(1)已知点 M(a,b)在圆 O:x2+y2=1 外,则直线 ax+by=1 与圆 O 的位置关系
高考数学一轮复习 第八章 平面解析几何 84 直线与圆、圆与圆的位置关系课件 理

B.[- 3, 3]
C.-
33,
33
D.-
33,
33
解析 数形结合可知,直线 l 的斜率存在,设直线 l 的方程为 y=
k(x-3),则圆心(1,0)到直线 y=k(x-3)的距离应小于等于半径 1,即
|2k| 1+k2
≤1,解得- 33≤k≤ 33。故选 D。 答案 D
2021/12/11
第十九页,共四十三页。
Байду номын сангаас
解析:数形结合可知,直线 l 的斜率存在,设为 k,当 k=1 时,直线 l 的方程为 x-y-3=0,圆心(1,0)到直线 l 的距离为 |112-+0--31|2= 2>1,
直线与圆相离,故排除 A,B;当 k= 33时,直线 l 的方程为 x- 3y-3= 0,圆心(1,0)到直线 l 的距离为|1-12+3×-0-332|=1,直线与圆相切,排除 C。 故选 D。
答案 x=3 或 4x+3y-15=0
2021/12/11
第十六页,共四十三页。
7.若直线过点 P-3,-32且被圆 x2+y2=25 截得的弦长是 8,则该直 线的方程为______________。
解析 当直线的斜率不存在时,该直线的方程为 x=-3,代入圆的方
程得 y=±4,故该直线被圆截得的弦长为 8,满足题意。当直线的斜率存在
答案 B
2021/12/11
第二十五页,共四十三页。
有关弦长问题通常有两种方法:(1)几何法;(2)代数法。对于几何法通 常要构造直角三角形,但要注意斜率不存在这种特殊情况。
2021/12/11
第二十六页,共四十三页。
方向 2:有关最值问题 【例 3】 (2019·南宁、柳州联考)过点( 2,0)作直线 l 与曲线 y= 1-x2 相交于 A,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线 l 的 斜率等于________。
高考数学一轮复习第八章平面解析几何8.4直线与圆、圆与圆的位置关系课件文

答案 d>r1 + r2 无解 d= r1 + r2 一组实数解 |r1 - r2|<d<r1 + r2 0≤d<|r1 -
两组不同的实数解 r2|(r1≠r2) 无解
d =|r1 -r2|(r1≠r2)
一组实数解
4.(2016· 山东卷)已知圆 M:x2+y2-2ay=0(a>0)截直线 x+y =0 所得线段的长度是 2 2.则圆 M 与圆 N:(x-1)2+(y-1)2=1 的 位置关系是( A.内切 C.外切 ) B.相交 D.相离
【答案】 D
知识点二 圆与圆的位置关系
2 设圆 O1:(x-a1)2+(y-b1)2=r1 (r1>0), 2 圆 O2:(x-a2)2+(y-b2)2=r2 (r2>0).
方法 位置关系 相离 相外切 相交 相内切 内含
几何法:圆心距 d 代数法:两圆方程联立 与 r1,r2 的关系 __________ __________ __________ __________ __________ 组成方程组的解的情况 ______ __________ ________________ __________ ______
(2)若直线 y=x+b 与曲线 x= 1-y2恰有一个公共点, 则b的 取值范围是( ) B.b=- 2 D.b∈(-1,1]或 b=- 2
A.b∈(-1,1] C.b=± 2
【解析】 =
(1)方法 1:由题意知,圆心(0,1)到直线 l 的距离 d
|m| <1< 5,故直线 l 与圆相交. 2 m +1 方法 2:直线 l:mx-y+1-m=0 过定点(1,1),因为点(1,1)在
x2+y2-4=0, 解析:由 2 2 x +y -4x+4y-12=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3节直线、圆的位置关系
基础巩固(时间:30分钟)
1.若直线2x+y+a=0与圆x2+y2+2x-4y=0相切,则a的值为( B )
(A)±(B)±5 (C)3 (D)±3
解析:圆的方程可化为(x+1)2+(y-2)2=5,因为直线与圆相切,所以有=,即a=±5.故选B.
2.(2018·长春模拟)过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( B )
(A)2x+y-5=0 (B)2x+y-7=0
(C)x-2y-5=0 (D)x-2y-7=0
解析:因为过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,
所以点(3,1)在圆(x-1)2+y2=r2上,
因为圆心与切点连线的斜率k==,
所以切线的斜率为-2,
则圆的切线方程为y-1=-2(x-3),
即2x+y-7=0.故选B.
3.(2018·福州模拟)过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB所在直线的方程为( B )
(A)y=-(B)y=-
(C)y=-(D)y=-
解析:圆(x-1)2+y2=1的圆心为(1,0),半径为1,
以|PC|==2为直径的圆的方程为(x-1)2+(y+1)2=1,
将两圆的方程相减得AB所在直线的方程为2y+1=0,
即y=-.故选B.
4.已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( B )
(A)-2 (B)-4 (C)-6 (D)-8
解析:将圆的方程化为标准方程为(x+1)2+(y-1)2=2-a,所以圆心为(-1,1),半径r=,圆心
到直线x+y+2=0的距离d==,故r2-d2=4,即2-a-2=4,所以a=-4,故选B.
5.(2016·山东卷)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2.则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( B )
(A)内切 (B)相交 (C)外切 (D)相离
解析:圆M:x2+y2-2ay=0的圆心M(0,a),半径为a.所以圆心M到直线x+y=0的距离为,由直线
y+x=0被圆M截得弦长为2知a2-=2,故a=2.即M(0,2),且圆M半径为2.又圆N的圆心
N(1,1),且半径为1,由|MN|=,且2-1<<2+1.故两圆相交.故选B.
6.(2018·全国名校第四次大联考)已知直线ax+2y-2=0与圆(x-1)2+(y+1)2=6相交于A,B两点,且A,B关于直线x+y=0对称,则a的值为( D )
(A)1 (B)-1 (C)2 (D)-2
解析:由几何关系可得直线x+y=0,
经过圆(x-1)2+(y+1)2=6的圆心,
且与直线ax+2y-2=0垂直,
由直线垂直的充要条件有a×1+2×1=0,
所以a=-2.选D.
7.若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为.
解析:设圆的方程为x2+y2=r2,将P的坐标代入圆的方程,得r2=5,故圆的方程为x2+y2=5.
设该圆在点P处的切线上的任意一点为M(x,y),则=(x-1,y-2).由⊥(O为坐标原点),
得·=0,即1×(x-1)+2×(y-2)=0,即x+2y-5=0.
答案:x+2y-5=0
8.(2018·湖南郴州质监)过点M(,1)的直线l与圆C:(x-1)2+y2=4交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程为.
解析:由题意得,当CM⊥AB时,∠ACB最小,k CM=-2,所以k AB=,从而直线方程为y-1=(x-),即2x-4y+3=0.
答案:2x-4y+3=0
9.(2017·深圳一模)直线ax-y+3=0与圆(x-2)2+(y-a)2=4相交于M,N两点,若|MN|≥2,则实数a的取值范围是.
解析:设圆心到直线的距离为d,
则d==,
由r2=d2+()2知()2=4-≥3,
解得a≤-.
答案:(-∞,-]
能力提升(时间:15分钟)
10.已知AC,BD为圆O:x2+y2=4的两条互相垂直的弦,且垂足为M(1,),则四边形ABCD面积的最大值为( A )
(A)5 (B)10 (C)15 (D)20
解析:如图,作OP⊥AC于点P,OQ⊥BD于点Q,则OP2+OQ2=OM2=3,于是
AC2+BD2=4(4-OP2)+4(4-OQ2)=20.又AC2+BD2≥2AC·BD,则AC·BD≤10,所以S四边形ABCD=AC·BD≤
×10=5,当且仅当AC=BD=时等号成立.故四边形ABCD面积的最大值为5.故选A.
11.若曲线x2+y2-6x=0(y>0)与直线y=k(x+2)有公共点,则k的取值范围是( C )
(A)[-,0) (B)(0,)
(C)(0,] (D)[-,]
解析:因为x2+y2-6x=0(y>0)可化为(x-3)2+y2=9(y>0),所以曲线表示圆心为(3,0),半径为3的上半圆,它与直线y=k(x+2)有公共点的充要条件是:圆心(3,0)到直线y=k(x+2)的距离d≤3,且
k>0,所以≤3,且k>0,解得0<k≤.故选C.
12.过点(1,)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k= .
解析:因为(1-2)2+()2=3<4,
所以点(1,)在圆(x-2)2+y2=4的内部,
当劣弧所对的圆心角最小时,即直线l交圆的弦长最短,
此时圆心(2,0)与点(1,)的连线垂直于直线l.
因为=-,所以所求直线l的斜率k=.
答案:
13.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A,B两点,且|AB|=2时,求直线l的方程.
解:将圆C的方程x2+y2-8y+12=0配方,得标准方程为x2+(y-4)2=4,则此圆的圆心为(0,4),半径为2.
(1)若直线l与圆C相切,则有=2,
解得a=-.
(2)过圆心C作CD⊥AB,则根据题意和圆的性质,
得
解得a=-7或a=-1.
故所求直线方程为7x-y+14=0或x-y+2=0.
14.(2018·广东汕头期末节选)在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程.
解:圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.
(1)由圆心在直线x=6上,可设N(6,y0),
因为N与x轴相切,与圆M外切,所以0<y0<7,
于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1,
因此,圆N的标准方程为(x-6)2+(y-1)2=1.
(2)因为直线l∥OA,所以直线l的斜率为=2.
设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d==. 因为BC=OA==2,而MC2=d2+()2,
所以25=+5,
解得m=5或m=-15.
故直线l的方程为2x-y+5=0或2x-y-15=0.。