串联型直流稳压电源设计

合集下载

串联型稳压电路

串联型稳压电路

2021/8/7
8
2021/8/7
输出正5V的集成稳压电路
9
LM7805
2021/8/7
LM7812
10
三端可调集成稳压器有正电压可调稳压器W117系列和输出 负电压的W137系列等。
可调输出的三端集成稳压器 W317(正输出)、W337(负 输出)是近几年较新的产品,其最大输入、输出电压差极 限为 40V,输出电压 1.2~35V(或者负1.2V~负35V)连 续可调,输出电流0.5~1.5A,最小负载电流为5mA,输出 端与调整端之间基准电压为1.25V,调整端静态电流为 50μA。
2021/8/7
2
串联型直流稳压电源电路
(1)取样电路:由电阻R4,RW,R3组成分压器,它取出部
分输出电压接至比较放大器的反相输入端。
(2)基准电压:稳压管Dz提供,接至比较放大管VT2的发射 极,R1为限流电阻。
(3)比较放大器:VT2为比较放大管,它将采样电压UB2与 基准电压UZ的差值放大,其输出送至调整管的基极。
三端固定式稳压器是一种串联调整式稳压器。它将取样电阻、补偿电容、保护 电路等都做在同一芯片上,只有三个引出端。缺点是输出电压保持恒定不能进 行调节。典型产品有78xx系列三端固定正压集成稳压器和79xx系列三端固定负 压集成稳压器。
2021/8/7
三端稳压器内部结构
7
CW78××系列是三端固定正电压输出的集成稳压器。其输出电压有5V、6V 、9V、12V、15V、18V和24V共7个档次。它们型号中后两位数字就表示输出 电压值,比如CW7805表示输出电压为5V,依次类推。这个系列产品的最大输 出电流Iomax=1.5A。
(4)调整管:在比较放大器的输出电压的控制下,改变其

基于Protel99SE的0~5V串联型直流稳压电源设计

基于Protel99SE的0~5V串联型直流稳压电源设计
宋 星张 ,腾 ,蒙 卫 ,超郑 辉 宋 刚
( 陕西理工学 院 物理与电信工程学 院, 陕西 汉中 7 30 ) 2 0 1
摘要 : 压直流电源在 办公 、 低 学习和 日常生活方面应用极为广泛。设计一种 由0 V起 调的低压直流 电源能给 工作 、 学习和 日常生活带来极 大的便利 。用L 1 担 负输 出电压的稳 定及调整作 用, 出负电压 的辅助 电源为 L 1 提供补偿 , M3 7 输 M3 7 由此
fo 0 cn b igge t o v ne c o r ,td n i . eDC e uae o rsp l o tu : —5 i eis a e r m V a r ra n e in ef r n c wo k s ya dl e Th u f rg ltd p we u py( up t 0 V)n sr nb ec
1O V串联型 直流 稳压 电源的构ห้องสมุดไป่ตู้成 一5
0 V串联型直流稳压电源 的构成如图 1 5 所示 。降压 变压器及整流滤波电路为 电路提供  ̄ 5 1V直流 电源。主稳压器 电路担负输 出 电压的稳定及调整作用 , 辅助 电源 1 为过流保 护电路供 电, 输出 电流取样 将输 出电流转换成 电压 , 过流保护 电路能在输出电流过 载时切断输 出回路 , 护主稳压器不致损坏。 由于该 电源 电路输 出电压 由0 保 v起调 , 所以构成部分 必须有负 电源提供补偿 , 辅助 电
组 成 0~5 v的 串联 型 直 流稳 压 电 源 , 用 Poe 9E辅 助 可 快速 完成 电路 的设 计 。 利 rt9 S 1 关键 词 : 补偿 ; 载保 护 ; 真 ; 态 特 性分 析 过 仿 瞬
中图分类号 : P 9 文献标识码 : 文章编号 :0 9 3 4 (0 22 — 1 6 0 T 31 A 10 — 042 1 )5 64 — 3

串联式稳压电源

串联式稳压电源
压进行比较
当输出电压降低时,调 整管基极上的电压减小, 调整管的电流增加,输
出电压升高
这样,通过负反馈的作 用,串联式稳压电源能
够保持输出电压的稳定
特点
串联式稳压电源具有以下特点
特点
稳压范围宽
由于负反馈的作 用,串联式稳压 电源的输出电压 能够稳定地适应 负载的变化和输 入电压的变化
线性调整率好
20XX
串联式稳压电 源
1 工作原理 3 性能指标 5 总结
-
2 特点 4 应用场景
串联式稳压电源
串联式稳压电源是一种电子设备,它通过调整 串联在电路中的调整管基极上的电压,改变其
放大倍数,从而保持输出电压的稳定
这种稳压电源通常被用于各种电子设备中,如 计算机、通信设备、工业控制系统等
工作原理
可靠性高和体积小等特点,被 广泛应用于各种电子设备中
总结
串联式稳压电源是一种常见的 电子设备,它通过调整串联在 电路中的调整管基极上的电压, 改变其放大倍数,从而保持输 出电压的稳定
了解串联式稳压电源的工作原 理、特点和应用场景,对于电 子设备的设计和维护具有重要 的意义
-
XXX
谢谢观看
汇报人:xxxx
应用场景
1
串联式稳压电源被广泛应用于各种电子设备中,如计算机中的ATX 电源、通信设备中的开关电源、工业控制系统中的线性稳压电源等
在这些应用场景中,串联式稳压电源能够提供稳定的输出电压,保 障设备的正常运行
2
3
同时,由于其具有较高的可靠性和较小的体积,因此也适合于小型 电子设备中用
这种稳压电源具有稳压范围宽、 线性调整率好、电路结构简单、
起源
它由调整管、取样电 阻、比较放大器等组

串联型直流稳压电源工作原理

串联型直流稳压电源工作原理

串联型直流稳压电源工作原理串联型直流稳压电源是一种常见的电源类型,用于为电子设备提供稳定的直流电源。

其工作原理主要分为三个方面:整流、滤波和稳压。

首先,整流是通过将交流电转换为直流电的过程。

通常采用整流桥电路来完成,整流桥电路由四个二极管组成,可以将交流电的正、负半波分别变换为直流电的正、负半波。

交流电经过整流后变为含有较大的纹波的直流电。

接下来是滤波,主要是对经过整流后的直流电进行滤波处理,去除或减小其中的纹波。

一般采用电容滤波器来实现。

电容滤波器利用电容的充放电特性,对纹波进行平滑滤波。

在电容滤波器中,电容充电时可以吸收纹波电压,而充电电流间歇供应到输入负载上;而电容放电则通过输出负载的从电容电阻式滤波电路中获得电流。

最后是稳压,稳压主要是通过反馈控制的方式,对滤波后的直流电进行稳定输出。

其中最常见的稳压控制方式是采用反馈电路,以及一些稳压元件,如稳压二极管、稳压器等。

当负载发生变化时,反馈电路可以感知到输出电压的变化,并通过电子元件将变化传递到稳压器中,使稳压器对输出电压进行调整,以保持输出电压稳定不变。

整流、滤波和稳压是串联型直流稳压电源工作的三个关键环节,它们相互配合,共同实现了对交流电的转换、纹波的滤波和输出电压的稳定。

在整个过程中,稳压器起到了至关重要的作用,它通过不断调整输出电压的方式,实现了对电子设备需要的稳定输出。

然而,串联型直流稳压电源并非没有缺点。

首先,由于采用了整流和滤波技术,稳压电源的成本相对较高。

其次,滤波器的电容具有容量限制,当输出电流较大时,可能无法满足对纹波的完全滤波。

此外,稳压电源对输入电源的稳定程度要求较高,对功率因数的要求也较高。

总的来说,串联型直流稳压电源是一种常用的电源类型,可以为电子设备提供稳定的直流电源。

其工作原理主要包括整流、滤波和稳压三个步骤。

尽管存在一些缺点,但串联型直流稳压电源在广泛的电子设备中得到了广泛应用。

串联型直流稳压电源.课件

串联型直流稳压电源.课件
输出电压不稳定
输出电压不稳定可能是由于电源内部稳压电路故障、输出电容容量减小 或漏电等原因。应检查电源的稳压电路和输出电容,排除故障。
03
过热
电源过热可能是由于散热不良、负载过大或电源内部电路故障等原因。
应加强散热措施、减小负载或检查电源的内部电路,排除故障。
维护与保养
定期清洁
定期清洁电源外壳表面,保持清洁卫生。
高稳定性
随着电子设备在各个领域的广泛应用,对电源的稳定性要求也越来越高。串联型直流稳压 电源的高稳定性能够保证电子设备的稳定运行,提高设备的使用寿命和可靠性。
高可靠性
在许多关键领域,如医疗、航空航天、军事等,设备的可靠性至关重要。串联型直流稳压 电源的高可靠性能够保证在这些领域中设备的正常运行,避免因电源故障而引起的安全事 故。
检查保险丝
定期检查并更换电源的保险丝,确保电源的正常运行。
定期维护
定期对电源进行全面维护,包括清洁内部灰尘、检查连接线是否松 动或破坏、检查元件是否老化或破坏等。
串联型直流稳压电源的发展
06
趋势与展望
高效率、高稳定性、高可靠性
高效率
随着能源危机的加剧,节能减排成为全球共同关注的问题。串联型直流稳压电源的高效率 能够减少能源浪费,降低碳排放,符合绿色环保的发展趋势。
分类与用途
分类
根据输出电压的调节方式,串联型直流稳压电源可分为模拟式和开关式两类。模拟式稳压电源 通过连续改变调整管的导通程度来稳定输出电压,而开关式稳压电源则是通过改变调整管的开 关状态来调节输出电压。
用途
串联型直流稳压电源广泛应用于各种电子设备和仪器中,如通讯设备、测量仪器、计算机、医 疗器械等,为这些设备提供稳定的直流电源,保证其正常工作。

直流稳压电源─ 串联型晶体管稳压电源

直流稳压电源─ 串联型晶体管稳压电源

附件2:参考资料参考资料1、实验十八直流稳压电源─串联型晶体管稳压电源一、实验目的1、研究单相桥式整流、电容滤波电路的特性。

2、掌握串联型晶体管稳压电源主要技术指标的测试方法。

二、实验原理电子设备一般都需要直流电源供电。

这些直流电除了少数直接利用干电池和直流发电机外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

图18-1 直流稳压电源框图直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图18-1 所示。

电网供给的交流电压u1(220V,50Hz) 经电源变压器降压后,得到符合电路需要的交流电压u2,然后由整流电路变换成方向不变、大小随时间变化的脉动电压u3,再用滤波器滤去其交流分量,就可得到比较平直的直流电压uI。

但这样的直流输出电压,还会随交流电网电压的波动或负载的变动而变化。

在对直流供电要求较高的场合,还需要使用稳压电路,以保证输出直流电压更加稳定。

图18-2 是由分立元件组成的串联型稳压电源的电路图。

其整流部分为单相桥式整流、电容滤波电路。

稳压部分为串联型稳压电路,它由调整元件(晶体管T1);比较放大器T2、R7;取样电路R1、R2、RW,基准电压DW、R3和过流保护电路T3管及电阻R4、R5、R6等组成。

整个稳压电路是一个具有电压串联负反馈的闭环系统,其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经T2放大后送至调整管T1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。

图18-2 串联型稳压电源实验电路由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。

当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏,所以需要对调整管加以保护。

在图18-2 电路中,晶体管T 3、R 4、R 5、R 6组成减流型保护电路。

串联型直流稳压电源

串联型直流稳压电源

串联型直流稳压电源一、设计任务与要求要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。

指标:1、输出电压6V、9V两档,正负极性输出;2、输出电流:额定电流为150mA,最大电流为500mA;3、纹波电压峰值▲V op-p≤5mv,稳压系数Sr≤5%,电网电压波动正负10%。

任务:1、了解带有放大环节串联型稳压电路的组成和工作原理;2、识图放大环节串联型稳压电路的电路图;3、仿真电路并选取元件;4、安装调试带有放大环节串联型稳压电路;5、用仪器仪表对电路调试和测量相关参数;6、撰写设计报告、调试二、电路原理分析与方案设计采用变压器、二极管、集成运放,电阻、稳压管、三极管等元器件。

220V 的交流电经变压器变压后变成电压值较小的交流,再经桥式整流电路和滤波电路形成直流,稳压部分采用串联型稳压电路。

比例运算电路的输入电压为稳定电压,且比例系数可调,所以其输出电压也可以调节;同时,为了扩大输出大电流,集成运放输出端加晶体管,并保持射极输出形式,就构成了具有放大环节的串联型稳压电路。

1、方案比较方案一:用晶体管和集成运放组成的基本串联型直流稳压电源方案二:用晶体管和集成运放组成的具有保护环节的串联型直流稳压电源方案三:用晶体管和集成运放组成的实用串联型直流稳压电源可行性分析:上面三种方案中,方案一最简单,但功能也最少,没有保护电路和比较放大电路,因而不够实用,故抛弃方案一;方案三功能最强大,但是由于实验室条件和经济成本的限制,我们也抛弃方案三,因为它是牺牲了成本来换取方便。

所以从简单、合理、可靠、经济从简单而且便于购买的前提出发,我们选择方案二为我们最终的设计方案。

2、整体电路框图3、单元电路设计及参数计算、元器件选择 交流电经过电源变压器、整流电路、滤波电路和稳压电路转换成稳定的直流 电,其方框图及各电路的输出波形如图所示,下面就个部分的作用加以介绍。

1)电源变压器直流电源的输入为220V 的电网电压,一般情况下,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电压处理。

串联型直流稳压电源设计

串联型直流稳压电源设计

U0

=0 . 9 U2.

2 4一
科学之友
F r i e n d o f S c i e n c e A m a t e u r s
2 0 1 3 年1 0 月
1 1 0 k V及 以上 电压等级 交联 电缆在线监测技术
设计并制作用晶体管 ,集成运算放大器电阻 ,电阻器 ,电 容等组成 的串联型直流稳 压电源设计 。
2 设计 要求
要求设计一个串联线性直 流稳压 电源 , 需要满足以下条件 : ①输入交流 电压 2 2 0 V( 5 0 Hz ) ,输出电压 Uo =5 ~1 2 v,最大 输 出电流 I ma x =1 A; ② 电网电压波动 ±1 0 %, 输 出电压相对变 化量 2 %。 稳压系数 S r <0 . 0 5 ; ③ 内阻 <0 . 1 ; ④工作温度 2 5 ~ 4 0℃ ;⑤有过流保护 电路 ,当负载电流超过 1 . 5 L时过流保护 电路工作 。
二级管在截 止时管子两端 承受 的最大反 向电压是在 u 的 正半周 时、D 2 、D5 、导通 ,D2 、D 6 载止 。此时 D 2 、D4 所承受 的最大反 向电压均为 U2 的最大值 ,即 : =√ 2 。 同理 ,在 U 2 负半周 ,D1 、D3 也承受 同样大小的反向电压 。 桥式整 流电路 的优点是输 出电压高 ,纹波 电压较小 ,管子 所承受的最大反 向电压较低 ,同时因电源变压器在正 负半周 内 都有电流给负载 ,电源变压器得到了充分 的利用 ,效率较高 。 4 . 3 输 出电压及调节范围 取采样 电阻总的阻值选定为 3 0 0 0欧 。 基准电压 UR E F 、 调整管 T和 A组成同相放大 电路 , 输 出电
压: …: 鱼
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子技术课程设计电气与电子工程系电气工程及其自动化专业题目:串联型直流稳压电源学生姓名:班号:学号:指导教师;时间:年月日~ 年月日指导教师评语:成绩:串联型直流稳压电源设计报告一、设计题目题目:串联型直流稳压电源二、设计任务:设计并制作用晶体管、集成运算放大器电阻、电阻器、电容组成的串联型直流稳压电源。

指标:1、输入电压:2、输出电压:3- 6V、6-9V、9-12V三档直流电压;3、输出电流:最大电流为1A;4、保护电路:过流保护、短路保护。

三、理电路和程序设计:一电路原理方框图:二原理说明:(1)单相桥式整流电路可以将单相交流电变换为直流电;(2)整流后的电压脉动较大,需要滤波后变为交流分量较小的直流电压用来供电;(3)滤波后的输出电压容易随电网电压和负载的变化波动不利于设备的稳定运行;(4)将输出电压经过稳压电路后输出电压不会随电网和负载的变化而变化从而提高设备的稳定性和可靠性,保障设备的正常使用;(5) 关于输出电压在不同档位之间的变换,可以将稳压电源的电压设置为标准电压再对其进行变换,电压在档位间的调节可以通过调节电位器来进行调节,从而实现对输出电压的调节。

四:方案选择一:变压、滤波电路方案一和方案二的变压电路和滤波电路相同,二者的差别主要体现在稳压电路部分。

图1 变压和滤波电路二:稳压电路方案一:此方案以稳压管D1的电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R 2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由E B BE U U U -=可知BE U 将减小(升高)导致基极电流和发射极电流的减小(增大),使得R 两端的电压降低(升高),从而达到稳压的效果。

负电源部分与正电源相对称,原理一样。

图2 方案一稳压部分电路方案二:该方案稳压电路部分如图2所示,稳压部分由调整管(Q1、Q2组成的复合管),比较电路(集成运放U2A ),基准电压电路(稳压管D1 BZV55-B3V0),采样电路组成(采样电路由R2、R3、R4、R5组成)。

当采样电路的输出端电压升高(降低)时采样电路将这一变化送到A 的反相输入端,然后与同相输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(升高);由于电路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。

U2A AD704JN321141R320kΩKey=A 50%R410kΩKey=A 50%R530kΩJ1R110kΩQ12N4922Q22N5039D1BZV55-B3V0R260kΩKey=A 50%Q32N3879R61kΩR71kΩR83ΩD2BZV60-B12R910kΩ图3 方案二稳压部分单元电路对以上两个方案进行比较,可以发发现第一个方案为线性稳压电源,具备基本的稳压效果,但是只是基本的调整管电路,输出电压不可调,而且输出电流不大,而第二个方案使用了集成运放和调整管作为稳压电路,输出电压可以通过开关J1在3-6V 、6-9V 、9-12V 之间调节,功率也较高,可以输出较大的电流。

稳定效果也比第一个方案要好,所以选择第二个方案作为本次课程设计的方案。

三:电路框图和电路图整体电路的框架如下图所示,先有变压器对其进行变压,变压后再对其进行整流,整流后是高低频的滤波电路,最后是由采样电路、比较放大电路和基准电路三个小的单元电路组成的稳压电路,稳压后为了进一步得到更加稳定的电压,在稳压电路后再对其进行,最后得到滤波稳压电源。

图4电路框图图5 串联直流稳压总电路图变压电路 全波整流正极滤波电路稳压 电路 比较放大采样电路基准电压输出滤波电路正极输出端共地端五 电路设计及元器件选择;(1)、变压器的设计和选择本次课程设计的要求是输出为3V-6V 、6V-9V 、9V-12V 的稳压电源,输出电压较低,而一般的调整管的饱和管压降在2-3伏左右,由Omin Imax CE U U U -=,CE U 为饱和管压降,而Im ax U =12V 为输出最大电压,Om in U =3V 为最小的输入电压,以饱和管压降CE U =3V 计算,为了使调整管工作在放大区,输入电压最小不能小于15V ,为保险起见,可以选择220V-15V 的变压器,再由P=UI 可知,变压器的功率应该为1A ×15V=15w ,所以变压器的功率绝对不能低于15w ,由于串联稳压电源工作时产生的热量较大,效率不高,所以变压器功率需要选择相对大些的变压器。

结合市场上常见的变压器的型号,可以选择常见的变压范围为220V-15V ,额定功率20W ,额定电流2A 的变压器。

(2)、整流电路的设计及整流二极管的选择由于输出电流最大只要求1A ,电流比较低,所以整流电路的设计可以选择常见的单相桥式整流电路,由4个串并联的二极管组成,具体电路如图3所示。

图6单相桥式整流电路二极管的选择:当忽略二极管的开启电压与导通压降,且当负载为纯阻性负载时,我们可以得到二极管的平均电压为)(AV o U :)(AV o U =)(sin 212t d t U ωωππ⎰•=π222U =2U其中2U 为变压器次级交流电压的有效值。

我们可以求得)(AV o U =17v 。

对于全波整流来说,如果两个次级线圈输出电压有效值为2U ,则处于截止状态的二极管承受的最大反向电压将是222U ,即为考虑电网波动(通常波动为10%,为保险起见取30%的波动)我们可以得到实际的)(AV o U 应该大于,最大反向电压应该大于。

在输出电流最大为1A 的情况下我们可以选择额定电流为2A ,反向耐压为1000V 的二极管IN4007.(3)、滤波电容的选择当滤波电容1C 偏小时,滤波器输出电压脉动系数大;而1C 偏大时,整流二极管导通角θ偏小,整流管峰值电流增大。

不仅对整流二极管参数要求高,另一方面,整流电流波形与正弦电压波形偏离大,谐波失真严重,功率因数低。

所以电容的取值应当有一个范围,由前面的计算我们已经得出变压器的次级线圈电压为15V ,当输出电流为1A 时,我们可以求得电路的负载为18Ω时,我们可以根据滤波电容的计算公式:C=(3~5)LR T2 来求滤波电容的取值范围,其中在电路频率为50HZ 的情况下, T 为20ms 则电容的取值范围为1667-2750uF ,保险起见我们可以取标准值为2200uF 额定电压为35V 的铝点解电容。

另外,由于实际电阻或电路中可能存在寄生电感和寄生电容等因素,电路中极有可能产生高频信号,所以需要一个小的陶瓷电容来滤去这些高频信号。

我们可以选择一个50uF 的陶瓷电容来作为高频滤波电容。

(4)、稳压电路的设计稳压电路组要由四部分构成:调整管,基准稳压电路,比较放大电路,采样电路。

当采样电路的输出端电压升高(降低)时采样电路将这一变化送到A 的反相输入端,然后与同相输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(高);由于电路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。

由于输出电流较大,达到1A ,为防止电流过大烧坏调整管,需要选择功率中等或者较大的三极管,调整管的击穿电流必须大于1A ,又由于三极管CE 间的承受的最大管压降应该大于15-6=9V ,考虑到30%的电网波动,我们的调整管所能承受的最大管压降应该大于13V ,最小功率应该达到)(min 01L U U 1.1I P -≥=。

我们可以选择适合这些参数最大功率为60W,最大电流超过6A ,所能承受的最大管压降为100V 。

基准电路由3V 的稳压管和10K Ω的保护电阻组成。

由于输出电压要求为3V-6V 、6V-9V 和9V-12V ,因此采样电路的采样电阻应该可调,则采样电路由一个电阻和三个可调电阻组成,根据公式:D U Dm ax R RU ∆=求出。

其中D R 为输入端的电阻,R ∆为输出端与共地端之间的电阻 ,D U 为稳压管的稳压值。

.所以根据此公式可求的电路的输出电压为3V-12V 。

可以输出3V-12V 的电压,运放选用工作电压在15V 左右前对电压稳定性要求不是很高的运放,由于AD704JN 的工作电压为正负12V-正负22V ,范围较大,可以用其作为运放,因为整流后的电压波动不是很大,所以运放的工作电源可以利用整流后的电压来对其进行供电。

为了使输出电压更稳定,输出纹波更小,需奥对输出端进行再次滤波,可在输出端接一个5uf电容,这样电源不容易受到负载的干扰。

使得电源的性质更好,电压更稳定,六画出系统的电路总图和元件列出清单图7 系统总电路图元件清单名称及标号型号及大小数量变压器220V-15V 2个电容200uF 4个50uF 1个电阻10k 2个30K 2个1k 2个3Ω1个可变电阻10k 1个20k1个 60k1个 集成运放 AD704JN2个 稳压管 BZV60-B151个 BZV60-B121个 BZV55-B3V01个 调整管2N50391个 2N49221个 桥式整流二极管 3N258 2个保护三极管2N3879 1个 七、电路的调试及仿真数据调节可变电阻R2、R3、R4,可以得到课程设计所要求输出的3V-6V 、6V-9V 、9V-12V 的电压,仿真数据如下理论值3V-6V 、6V-9V 、9V-12V ,而实际的测量、值是在、 ,造成的可调误差,原因是由于可调电阻的实际调节范围偏大,导致输出电压偏大图8不同档位最高和最低电压实测直流电压的输出波形如图8所示:在高压的12V输出时电压有的电压波动,基本上对输出的影响不大,可也不考虑其影响;在低压的3V时输出波形为一直线,基本无电压波动符合理论的要求。

图9 :3V、6V 、9 V、12 V 输出波形图八总结本课程设计运用了模拟电路的基本知识,通过变压,整流,滤波、稳压等步骤,输出理论可变范围为3V-6V、6V-9V、9V-12V,实际可调范围为、的直流稳压电源。

总结如下:优点:该电路设计简单。

输出电压稳定,纹波值小,而且使用的元件较少,经济实惠,输出功率大,调整管可承受的范围也很大。

缺点:电路电压档位的调整如果改用大胡子开关就可以实现对电源档位的数字控制;在调节不同档位时无外部指示,实用价值较低。

改进一:将开关J1用三个NPN MOS代替,用集成JK触发器构成T 触发器通过时钟脉冲实现输出Q高低电位的控制,以此来控制MOS管的通断来调节档位,还可以在MOS管和电位器的链接处链接不同颜色的二极管来指示不同的档位,从而方便了电压的调节也便于使用、维护和检修。

改进二:改进如下图所示(比较具有实用价值)心得体会:通过这次课程设计,我对于模电知识有了更深的了解,尤其是对串联直流稳压电源方面的知识有了进一步的研究。

相关文档
最新文档