第1课 数与式的运算(1)
数与式的运算

解法一:原式=
解法二:原式=
你能评价一下解法一、二的差异吗?
第一讲 习题 A 组 1.二次根式 a 2 a 成立的条件是( ) A. a 0 B. a 0 D. a 是任意实数 2.若 x 3 ,则 9 6 x x 2 | x 6 | 的值是( A.-3 D.9 3.计算: (1) ( x 3 y 4 z ) 2 (2a 1 b) 2 (a b)(a 2b) B.3 ) C.-9 C. a 0
a a( a b) a a( a b) 1 a b 1 a b
( a b) ( a b) ( a b )( a b )
2 a ab
试对本例的解题技巧做一评价: 【例6】设 x
2 3 2 3 ,y 2 3 2 3
,求 x3 y 3 的值.
思考:此题中让你眼前一亮的技巧是?
3abc 3 abc
引申:同学可以探求并证明: a 3 b 3 c 3 3abc (a b c)(a 2 b 2 c 2 ab bc ca) 二、根式 式子 a (a 0) 叫做二次根式,其性质如下: 第一讲
2 (1) ( a ) a (a 0)
原式= a
bc ac ab b c bc ac ab
①
a ( a ) b(b) c(c) a2 b2 c2 bc ac ab abc
a 3 b 3 (a b)[(a b) 2 3ab] c(c 2 3ab) c 3 3abc a 3 b 3 c 3 3abc ②,把②代入①得原式=
(2)
(3) (a b)(a 2 ab b 2 ) (a b)3
§1.1 数与式的运算(1.2.3)

大良总校:0757-2222 2203 大良北区:0757-2809 9568 大良新桂:0757-2226 7223 大良嘉信:0757-2232 3900 容桂分校:0757-2327 9177 容桂体育:0757-2361 0393 容桂文华:0757-2692 8831 龙江分校:0757-2338 6968 北滘分校:0757-2239 5188 乐从分校:0757-2886 6441 勒流分校:0757-2566 8686 伦教分校:0757-2879 9900 均安分校:0757-2550 6122 南海桂城:0757-8633 8928 南海黄岐:0757-8599 0018 金色家园:0757-8630 6193 禅城玫瑰:0757-8290 0090 南海大沥:0757-8118 0218 南海丽雅:0757-8626 3368 佛山高明:0757-8828 2262 中山小榄:0760-2225 9911 石岐北区:0760-8885 2255 石岐东区:0760-8888 0277 §1.1 数与式的运算(1. 绝对值、2.二次根式、3.乘法公式)【要点回顾】 1.绝对值[1]绝对值的代数意义:1. __________________.2. ___________________.3. ___________________.即⎪⎩⎪⎨⎧=) (___) (___)(___||a[2]绝对值的几何意义:_________________________________________________________的距离. [3]两个数的差的绝对值的几何意义: a b -表示__________________________的距离.[4]两个绝对值不等式:(1)||(0)x a a <>⇔;(2)||(0)x a a >>⇔.[5]两个负数比较大小: 。
初中数学基础知识2第1章《数与式第1节》

方、负整数指数幂、算术平方根、零指数幂、特殊角的三角函数值
第3页
实数的相关概念
1.(2019 山西)-3 的绝对值是
A.-3 B.3
C.-1
3
2.(2016 山西)-1的相反数是
6
A.1 B.-6 C.6
6
3.(2011 山西)|-6|的值是
A.-6
B.-1 C.1
6
6
D.1
3
D.-1
6
D.6
第一章
( C)
A.6.06×104 立方米/时
B.3.136×106 立方米/时
C.3.636×106 立方米/时
D.36.36×105 立方米/时
答案
第5页
第一章
第一节
5.(2017 西)2017年5月18日,我国宣布在南海神狐海域成功试采可 燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计, 仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国 陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为 ( C)
a.186×108吨
b.18.6×109吨
c.1.86×1010 吨
d.0.186×1011 吨
答案
第6页
第一章
第一节
6.(2014 西)pm2.5是指大气中直径小于或等于2.5 μm(1 μm=0.000001 m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质, 对人体健康和大气环境质量有很大危害.2.5 μm用科学记数法可表示 为( C )
A.3830×104千瓦
B.383×105千瓦
C.0.383×108千瓦
D.3.83×107千瓦
答案
第 29 页
初高衔接第一课时数与式的运算

Hale Waihona Puke 典例题例4.1 简化:1 4 24 − 6 54 + 3 96 − 2 150;
2
30 ×
3
2
2
3
2 ÷ −2 2
1
2
.
解:
1 4 24 − 6 54 + 3 96 − 2 150 = 8 6 − 18 6 + 12 6 − 10 6 = −8 6.
2
30 ×
8
3
3
2
2
5
2
2
3
÷ −2
30 × × = −
所以 −
+
2 2 − 2.
=
+ − 2
+ − 2 −2+ −2
+ −
= 2 + 1.
= 2 − 2 + −2 = 2 + 1 − 2 + 2 − 1 =
初高衔接
行,运算中要运用公式 = ≥ 0, ≥ 0 .而对于二次根式的除法,
通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法
与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式。
2 二次根式 2 的意义:
, ≥ 0
2
= =
−, < 0
初高衔接
2 完全平方 ± 2 = 2 ± 2 + 2 .
通过证明得到的乘法公式:
1 立方和公式 + 2 − + 2 = 3 + 3 ;
2 立方差公式 − 2 + + 2 = 3 − 3 ;
3 三数和平方公式 + + 2 = 2 + 2 + ��2 + 2 + + ;
初三升高一数学暑假班衔接课:01—数与式的运算-教师版

高一数学暑假班(教师版)高一数学暑假课程数与式的运算(教师版)1 / 27在初中,我们已经学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式、分式、根式,它们具体细分又会包含单项式、多项式、绝对值、数幂等不同的小的类型,它们都具有实数的属性,可以进行运算.由于在高中学习中我们会经常遇到由代数式组成的各种混合运算,因此也需要较为复杂的公式结构和几何意义来进行辅助,比如:绝对值的几何意义、立方和差公式、杨辉三角公式、三种常见非负数形式等.一、绝对值1、绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍高一数学暑假课程数与式的运算(教师版)3 / 274 / 27高一数学暑假课程数与式的运算(教师版) 是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.3、两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.【例1】解不等式:13x x -+->4.【难度】★★【答案】0<x 或4>x【解析】解法一:由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3,∴x >4. 综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,5 / 27高一数学暑假课程数与式的运算(教师版)即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为 |P A |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4.【例2】(1)当x 取何值时,3-x 有最小值?这个最小值是多少?(2)当x 取何值时,25+-x 有最大值?这个最大值是多少?(3)求54-+-x x 的最小值.(4)求987-+-+-x x x 的最小值.【难度】★★【答案】(1)当x=3时,3-x =0为最小值;(2)当x=-2时,25+-x =5为最大值;(3)当54≤≤x 时取最小,则54-+-x x =1为最小值;(4)当x=8时取最小,则987-+-+-x x x =2为最小值.【例3】(1)阅读下面材料:点A 、B 在数轴上分别表示实数b a ,,A 、B 两点这间的距离表示为AB ,6 / 27高一数学暑假课程数与式的运算(教师版)当A 、B 两点中一点在原点时,不妨设点A 在原点,如图1,b a b OB AB -===;当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边b a a b a b OA OB AB -=-=-=-=; ②如图3,点A 、B 都在原点的左边()b a a b a b OA OB AB -=---=-=-=; ③如图4,点A 、B 在原点的两边()b a b a b a OB OA AB -=-+=+=+=.综上,数轴上A 、B 两点之间的距离b a AB -=.图1 图2 图3 图4 (2)回答下列问题:①数轴上表示2和5两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ;②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果2=AB ,那么x 为 ;③当代数式21-++x x 取最小值时,相应的x 的取值范围是 ;④求1997321-+⋅⋅⋅+-+-+-x x x x 的最小值.【难度】★★★【答案】①3,3,4;②|x+1|,1或-3;③21≤≤-x ;④找到1~1997的中间数999,当x=999时取得.B AO B (A)O B A O oA O o7 / 27高一数学暑假课程数与式的运算(教师版)【巩固训练】1.解绝对值方程:321-=---x x x . 【难度】★★ 【答案】4=x【解析】分类讨论:x <1,1≤x <2,x ≥2,根据绝对值的意义,可化简绝对值,根据解方程,可得答案.解:当x <1时,原方程等价于1﹣x ﹣(2﹣x )=x ﹣3.解得x=2(不符合范围,舍); 当1≤x <2时,原方程等价于x ﹣1﹣(2﹣x )=x ﹣3.解得x=0(不符合范围,舍); 当x ≥2时,原方程等价于x ﹣1﹣(x ﹣2)=x ﹣3.解得x=4, 综上所述:x=4.本题考查了含绝对值符号的一元一次方程,分类讨论是解题关键,此外也可以通过数形结合来解题.二、乘法公式(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+; (3)立方和公式 2233()()a b a ab b a b +-+=+; (4)立方差公式 2233()()a b a ab b a b -++=-;(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (6)两数和立方公式 33223()33a b a a b ab b +=+++;8 / 27高一数学暑假课程数与式的运算(教师版) (7)两数差立方公式 33223()33a b a a b ab b -=-+-.引申:n 次方差公式;()()()()()()???322344223322=-+++-=-++-=-+-=-n n b a b ab b a ab a b a b ab a b a b a b a b a b a根据以上规律,可以归纳出乘法公式:()()n n n n n n b a b ab b a a b a -=++++-----1221 (n 为非零自然数)将等号左右两边倒一下得:()()1221----++++-=-n n n n n n b ab b a a b a b a (n 为非零自然数)这个公式称为n 次方差公式; 由这个公式易得())(n n b a b a --;定理:若n 为正偶数,则())(n n b a b a --与())(n n b a b a -+同时成立;【例4】计算:(1)22(1)(1)(1)(1)x x x x x x +--+++;(2)22222))(2(y xy x y xy x +-++;(3)22312(+-x x ;(4)()()()()1111842++++a a a a .【难度】★★【答案】(1)解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦ =242(1)(1)x x x -++=61x -.9 / 27高一数学暑假课程数与式的运算(教师版)解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.(2)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=.(3)原式2231)2([+-+=x x222222111()()()2(22()333x x x x =++++⨯+⨯⨯4328139x x x =-++.(4)1116--=a a 原式.【例5】已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 【难度】★★【答案】2222()2()8a b c a b c ab bc ac ++=++-++=.【例6】分解因式:(1)2222(48)3(48)2x x x x x x ++++++; (2)432673676x x x x +--+.【难度】★★【答案】(1)原式=22[(48)2][(48)]x x x x x x ++++++ =22(68)(58)x x x x ++++ =2(2)(4)(58)x x x x ++++10 / 27高一数学暑假课程数与式的运算(教师版)(2)原式=4226(1)7(1)36x x x x ++--=422226[(21)2]7(1)36x x x x x x -+++-- =22226(1)7(1)36x x x x -+-- =22[2(1)3][3(1)8]x x x x ---+ =22(232)(383)x x x x --+- =(21)(2)(31)(3)x x x x +--+.【巩固训练】1.已知335252-++=x ,求533-+x x 的值.【难度】★★ 【答案】1- 【解析】()()()()()1552525131353333531152,52,52,52332233333333-=-++-=-+++++=-+++++=-+++=-=⇒-=⇒+=-==+=-ab b ab a b a b a ab b a b a b a b a ab ab b a b a 原式即令2.已知96333=-+z y x ,4=xyz ,12222=++-++xz yz xy z y x ,求z y x -+的值.【难度】★★★ 【答案】911 / 27高一数学暑假课程数与式的运算(教师版)【解析】()()()()[]()()()()9123333310812963222222222233333333=-+∴=-++++-++++-+=-+-++++-+=+---+=+-+=+=+-+z y x xy yz xz z y x xy yz xz z y x z y x z y x xy z y x z y x z y x xyzxy y x z y x xyzz y x xyz z y x 解:3.分解因式:2(1)(2)(2)xy x y x y xy -++-+-. 【难度】★★【答案】令a x y =+,b xy =,则原式=2(1)(2)(2)b a a b -+-- =221222a b a b ab ++-+- =2(1)a b -- =2(1)x y xy +-- =2[(1)(1)]x y --- =22(1)(1)x y --三、二次根式1、分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分子的有理化因式,化去分子中的根号的过程.2a==,0,,0.a aa a≥⎧⎨-<⎩【例7】试比较下列各组数的大小:(1;(2和【难度】★★【答案】见解析【解析】(11===,===,>,.(2)∵===又4>22,∴6+4>6+22,<【例8】化简:(1(21)x<<.12 / 27高一数学暑假课程数与式的运算(教师版)13 / 27【难度】★★ 【答案】见解析【解析】(1)原式===2=2=.(2)原式1x x=-, ∵01x <<,∴11x x>>, 所以,原式=1x x-.【例9】化简22)1(111+++n n ,所得的结果为( ) A .1111+++n nB .1111++-n nC .1111+-+n n D .1111+--n n 【难度】★★ 【答案】C【解析】方法一:通过通分,然后整理配平方来解题1111)()1(2222+-+=+++=n n n n n n数与式的运算(教师版)方法二:可利用特值法将A、B、D一一排除。
高一数学单元知识点专题讲解1---数与式的运算

【例 8】计算:
(1) ( a + b + 1)(1 − a + b ) − ( a + b )2
(2)
a
a
+
a − ab a + ab
解: 原式 (1) = (1 + b)2 − ( a )2 − (a + 2 ab + b) = −2a − 2 ab + 2 b + 1
【例 7】计算(没有特殊说明,本节中出现的字母均为正数):
3 (1)
2+ 3
11 (2) +
ab
(3) 2
x −
x3 +
8x
2
解: 原式 (1)
=
3(2 − 3)
3(2 − =
3) = 6 − 3 3
(2 + 3)(2 − 3) 22 − 3
原式 a + b a2b + ab2
(2) =
=
ab
ab
3/7
解:( )原式 1
= 43 + m3 = 64 + m3
( )原式 2
= (1 m)3 − (1 n)3 = 1 m3 − 1 n3
5
2 125 8
( )原式 3
= (a 2 − 4)(a 4 + 4a 2 + 42 ) = (a 2 )3 − 43 = a 6 − 64
( )原式 4
= (x + y)2 (x 2 − xy + y 2 )2 = [(x + y)(x 2 − xy + y 2 )]2
三、分式
4/7
初升高衔接课程 数与式的运算因式分解一元二次方程

第一讲数与式的运算第二讲因式分解知识篇数与式的运算1、实数;2、代数式;3、乘法公式;4、分式;5、二次根式因式分解1、提取公因式;2、运用公因式;3、分组分解法;4、十字相乘法;5、配方法笔记:归纳小结:数与式的运算1 、已知 的公式表示试写出用21121,,111R ,R R R R R R R ≠+=2、设X=,3232-+ Y=,3232+- 求33Y X +的值3、化简下列各式1)221-32-3)()(+ 2)22x -2x -1)()(+ (X ≥1)4、已知a+b+c=4,ab+bc+ac=4,求a2+b2+c2的值。
分解因式1、提公因式法,运用公因式法(1)3a3b-81b4(2)a7-ab62、分组分解法(3)2ax-10ay+5by-bx (4)ab(c2-d2)-(a2-b2)cd (5)x2-y2+ax+ay (6)2x2+4xy+2y2-8z23、十字相乘(7)x2-7x+6 (8)x2+13x+36(9)x2+xy-6y2(10)(x2+x)2-8(x2+x)+12 (11)12x2-5x-2 (12)5x2+6xy-8y24、配方法(13)x2+12x+16 (14)a4+a2b2+b45、其他方法添项、拆项法、分解因式(15)x 3-3x 2+4 (16)(x 2-5x+2)(x 2-5x+4)-8二、因式分解的应用 1、已知a+b=32,ab=2,求代数式 a 2b+2a 2b 2+ab 2的值2、计算12345678921234567890-123456789112345678902)(ab o作业篇一选择1、二次根式,a -=2a 成立的条件是 ( )A 、a >0,B 、a <0,C 、a ≤0,D 、a 是任意实数2、若x <3,则6x 6x -92--+x 的值是 ( ) A 、-3, B 、3, C 、-9, D 、93、数轴上有两点A ,B 分别表示实数a ,b ,则线段AB 的长度是 ( ) A 、a-b , B 、a+b , C 、b -a ,D 、b +a4、实数a ,b 在数轴上的位置如图所示,则下列结论正确的是 ( ) A 、a+b >a >b >a-b , B 、a >a+b >b >a-b C 、a-b >a >b >a+b , D 、a-b >a >a+b >b5、若等于,则yy x y x322x =+- ( ) A 、1, B 、45, C 、54, D 、56二化简1、19183-232)()(+ 2、313-1+3、1-32-23121++4、38a -5、aa 1-⨯三、已知x+y=1,求x 3+y 3+3xy四、若2)1()1(22=++-a a ,求a 的取值范围。
上海初三升高一专题01 数与式的运算(解析版)

专题01 数与式的运算在初中,我们已经学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式、分式、根式,它们具体细分又会包含单项式、多项式、绝对值、数幂等不同的小的类型,它们都具有实数的属性,可以进行运算.由于在高中学习中我们会经常遇到由代数式组成的各种混合运算,因此也需要较为复杂的公式结构和几何意义来进行辅助,比如:绝对值的几何意义、立方和差公式、杨辉三角公式、三种常见非负数形式等.1、绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.知识梳理 知识结构模块一绝对值3、两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 【例1】解不等式:13x x -+->4.【难度】★★【答案】0<x 或4>x【解析】解法一:由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->,即24x -+>4,解得x <0,又x <1,∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4, 解得x >4.又x ≥3,∴x >4.综上所述,原不等式的解为x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4.由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4.典例剖析【例2】(1)当x 取何值时,3-x 有最小值?这个最小值是多少?(2)当x 取何值时,25+-x 有最大值?这个最大值是多少?(3)求54-+-x x 的最小值.(4)求987-+-+-x x x 的最小值.【难度】★★【答案】(1)当x=3时,3-x =0为最小值;(2)当x=-2时,25+-x =5为最大值;(3)当54≤≤x 时取最小,则54-+-x x =1为最小值;(4)当x=8时取最小,则987-+-+-x x x =2为最小值.【例3】(1)阅读下面材料:点A 、B 在数轴上分别表示实数b a ,,A 、B 两点这间的距离表示为AB ,当A 、B 两点中一点在原点时,不妨设点A 在原点,如图1,b a b OB AB -===;当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边b a a b a b OA OB AB -=-=-=-=;②如图3,点A 、B 都在原点的左边()b a a b a b OA OB AB -=---=-=-=;③如图4,点A 、B 在原点的两边()b a b a b a OB OA AB -=-+=+=+=.综上,数轴上A 、B 两点之间的距离b a AB -=.(2)回答下列问题:①数轴上表示2和5两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ;②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果2=AB ,那么x 为 ; ③当代数式21-++x x 取最小值时,相应的x 的取值范围是 ;④求1997321-+⋅⋅⋅+-+-+-x x x x 的最小值.【难度】★★★【答案】①3,3,4;②|x+1|,1或-3;③21≤≤-x ;④找到1~1997的中间数999,当x=999时取得最小值,最小值是998+997+....+2+1+0+1+2+....+998=()299899812⨯+⨯ =997002 .1.解绝对值方程:321-=---x x x .【难度】★★【答案】4=x【解析】分类讨论:x <1,1≤x <2,x ≥2,根据绝对值的意义,可化简绝对值,根据解方程,可得答案. 解:当x <1时,原方程等价于1﹣x ﹣(2﹣x )=x ﹣3.解得x=2(不符合范围,舍);当1≤x <2时,原方程等价于x ﹣1﹣(2﹣x )=x ﹣3.解得x=0(不符合范围,舍);当x ≥2时,原方程等价于x ﹣1﹣(x ﹣2)=x ﹣3.解得x=4,综上所述:x=4.本题考查了含绝对值符号的一元一次方程,分类讨论是解题关键,此外也可以通过数形结合来解题.(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a ab b ±=±+;(3)立方和公式 2233()()a b a ab b a b +-+=+;(4)立方差公式 2233()()a b a ab b a b -++=-;(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++;(6)两数和立方公式 33223()33a b a a b ab b +=+++;(7)两数差立方公式 33223()33a b a a b ab b -=-+-. 引申:n 次方差公式;对点精练 模块二乘法公式()()()()()()???322344223322=-+++-=-++-=-+-=-n n b a b ab b a a b a b a b ab a b a b a b a b a b a 根据以上规律,可以归纳出乘法公式:()()n n n n n n b a b ab b a a b a -=++++-----1221 (n 为非零自然数)将等号左右两边倒一下得:()()1221----++++-=-n n n n n n b ab b a a b a b a (n 为非零自然数)这个公式称为n 次方差公式;由这个公式易得())(n n b a b a --; 定理:若n 为正偶数,则())(n n b a b a --与())(n n b a b a -+同时成立;【例4】计算:(1)22(1)(1)(1)(1)x x x x x x +--+++;(2)22222))(2(y xy x y xy x +-++;(3)22)312(+-x x ;(4)()()()()1111842++++a a a a . 【难度】★★【答案】(1)解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦ =242(1)(1)x x x -++=61x -. 解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -. (2)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+ 63362332)(y y x x y x ++=+=.(3)原式22]31)2([+-+=x x222222111()(2)()2(2)22(2)333x x x x x x =+-++-+⨯+⨯⨯-43282212239x x x x =-+-+. 典例剖析(4)1116--=a a 原式.【例5】已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.【难度】★★【答案】2222()2()8a b c a b c ab bc ac ++=++-++=.【例6】分解因式:(1)2222(48)3(48)2x x x x x x ++++++;(2)432673676x x x x +--+.【难度】★★【答案】(1)原式=22[(48)2][(48)]x x x x x x ++++++=22(68)(58)x x x x ++++=2(2)(4)(58)x x x x ++++(2)原式=4226(1)7(1)36x x x x ++--=422226[(21)2]7(1)36x x x x x x -+++--=22226(1)7(1)36x x x x -+--=22[2(1)3][3(1)8]x x x x ---+=22(232)(383)x x x x --+-=(21)(2)(31)(3)x x x x +--+. 1.已知335252-++=x ,求533-+x x 的值.【难度】★★【答案】1-【解析】对点精练()()()()()1552525131353333531152,52,52,52332233333333-=-++-=-+++++=-+++++=-+++=-=⇒-=⇒+=-==+=-ab b ab a b a b a ab b a b a b a b a ab ab b a b a 原式即令2.已知96333=-+z y x ,4=xyz,12222=++-++xz yz xy z y x ,求z y x -+的值.【难度】★★★【答案】9【解析】 ()()()()[]()()()()9123333310812963222222222233333333=-+∴=-++++-++++-+=-+-++++-+=+---+=+-+=+=+-+z y x xy yz xz z y x xyyz xz z y x z y x z y x xy z y x z y x z y x xyz xy y x z y x xyzz y x xyz z y x 解:3.分解因式:2(1)(2)(2)xy x y x y xy -++-+-.【难度】★★【答案】令a x y =+,b xy =,则原式=2(1)(2)(2)b a a b -+--=221222a b a b ab ++-+-=2(1)a b --=2(1)x y xy +--=2[(1)(1)]x y ---=22(1)(1)x y --1、分母(子)有理化 把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分子的有理化因式,化去分子中的根号的过程.2、二次根式2a 的意义 2a a ==,0,,0.a a a a ≥⎧⎨-<⎩ 【例7】试比较下列各组数的大小: (1)1211-和1110-; (2)64+和226-. 【难度】★★【答案】见解析【解析】(1)∵1211(1211)(1211)1211112111211--+-===++, 1110(1110)(1110)111011101110--+-===++, 又12111110+>+,∴1211-<1110-.(2)∵226(226)(226)226,226226===--+-++ 又 4>22,∴6+4>6+22,∴64+<226-.【例8】化简:(1)945-; (2)2212(01)x x x+-<<. 模块三:二次根典例剖析【难度】★★【答案】见解析【解析】(1)原式5454=++ 22(5)2252=+⨯⨯+ 2(25)=-25=-52=-.(2)原式=21()x x -1x x =-, ∵01x <<,∴11x x>>, 所以,原式=1x x -.【例9】化简22)1(111+++n n ,所得的结果为( ) A .1111+++n n B .1111++-n n C .1111+-+n n D .1111+--n n 【难度】★★【答案】C 【解析】方法一:通过通分,然后整理配平方来解题1111)()1()1(1)(2)1()1()1()1()1(111222222222222222222+-+=+++=+++++=+++++=+++n n n n n n n n n n n n n n n n n n n n 方法二:可利用特值法将A 、B 、D 一一排除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、绝对值
绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.
即|a |=⎩⎪⎨⎪⎧ a ,a >0,0,a =0,
-a ,a <0.
绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.
两个数的差的绝对值的几何意义:|a -b |表示在数轴上,数a 和数b 之间的距离. 例1 在数轴上表示|x +1|与|x -1|的几何意义.
例2 化简:
(1)|3x -2|;(2)|x +1|+|x -3|; (3)x 2-4x +4;(4)t 4+4t 2+4.
例3 解下列方程:
(1)|x -1|=1;(2)|x 2-1|=1.
例4 解下列不等式.
(1)|2x +3|≤2;(2)|x -1|+|x -3|>4.
例5 画出下列函数的图象.
(1)y =|x |;(2)y =|x -2|+|x +2|.
二、乘法公式
1.平方差公式:(a +b )(a -b )=a 2-b 2.
2.完全平方公式:(a ±b )2=a 2±2ab +b 2.
3.立方和公式:(a +b )(a 2-ab +b 2)=a 3+b 3.
4.立方差公式:(a -b )(a 2+ab +b 2)=a 3-b 3.
5.三数和平方公式:(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ac ).
6.两数和立方公式:(a +b )3=a 3+3a 2b +3ab 2+b 3.
7.两数差立方公式:(a -b )3=a 3-3a 2b +3ab 2-b 3.
例6 因式分解.
(1)x 3-1;(2)x 3+1.
例7 计算:(x +1)(x -1)(x 2-x +1)(x 2+x +1).
例8 已知:x +y =1,求x 3+y 3+3xy 的值.
例9 已知:x 2-3x +1=0,求x 3+1x 3的值. 例10 设x =2+32-3,y =2-32+3
,求:x 3+y 3的值.
1.下列叙述正确的是( )
A .若|a |=|b |,则a =b
B .若|a |>|b |,则a >b
C .若a <b ,则|a |<|b |
D .若|a |=|b |,则a =±b
2.若|x |=5,则x =________;若|x |=|-4|,则x =________.
3.如果|a |+|b |=5,且a =-1,则b =________;若|1-c |=2,则c =________.
4.化简:|x +1|-|x -2|.
5.解方程3|x +1|-1=5.
6.解不等式|x 2-1|≤2.
7.画出下列函数的图象.
(1)y =-|x +1| (2)y =|x |+|x -1|
8.计算:(1)(4+m )(16-4m +m 2);(2)(x 2+2xy +y 2)·(x 2-xy +y 2)2;(3)(a +b )(a 2-ab +b 2)-(a
+b )3;(4)(a -4b )(14
a 2+4
b 2+ab ). 9.已知:x 2-5x +1=0,求x 3+1x
3的值. 10.已知:a +b +c =0,求1b 2
+c 2-a 2+1a 2+c 2-b 2+1a 2+b 2-c 2的值.
11.已知:a >0,a 2x
=3,求:a 3x +a -3x
a x +a -x 的值. 12.已知:a 2
-4a +1=0,求:a 2
a 4+5a 2+1的值. 13.已知:a +
b +
c =0,求a (1b +1c )+b (1c +1a )+c (1a +1b
). 14.已知:a +b +c =0.
求证:a 3+a 2c +b 2c -abc +b 3=0.。