神经生理(3)
合集下载
【公共】神经生物学 第三章 解剖生理学-神经系统

2. 骨骼肌的收缩机制
(1)骨骼肌收缩的肌丝滑行学说 (2)兴奋收缩偶联
生物电活动和机械收缩相伴随的事件。
3. 骨骼肌的机械收缩
(1).等张收缩与等长收缩
(2).单收缩与强直收缩 肌肉单收缩呈现等级性,但单条肌纤维收 缩符合“全或无”,收缩无等级性。
完全强直收缩和不完全强直收缩
人的随意活动是由不同程度强直收缩所构成的。
多巴胺循环通路经常和5-羟色胺通路在一些点上出现 交叉和融合,这两种通路可能会同时对某些行为产生影响。 例如,多巴胺与探索、外向、追求愉悦的行为有关,而5羟色胺则与抑制有关。这两个系统在某种意义上互相平衡。 一些药物可以作用于5-羟色胺系统,包括三环类抗抑 郁药和选择性5-羟色胺再摄抑制剂。这些药物被用于治疗 很多心理障碍,尤其是焦虑心境和饮食障碍。
四、骨骼肌的收缩
1. 骨骼肌的功能解剖和超微结构
粗肌丝和细肌丝构成肌原纤维 粗肌丝由肌球蛋白组成;细肌丝含有肌 动蛋白、 原肌球蛋白和肌钙蛋白。
骨骼肌纤维(细胞)的超微结构:
1、肌原纤维: 粗肌丝和细肌丝
2、肌膜:肌细胞膜
横小管(transverse tubule),又称T小管可将 肌膜的兴奋迅速同步地传导至肌纤维内部. 3、肌质网 ★结构:是肌纤维内高度发达的滑面内质网,形成 纵小管(longitudinal tubule),又称L小管; 终池 (terminal cisternae);三联体(triad )
5-羟色胺(5-HT)
5-羟色胺又名血清素,最早是从血清中发现的。脑 内5-HT具有广泛的功能,参与情绪调节、饮食、觉醒-睡 眠周期、痛觉、体温、性行为、梦和下丘脑-垂体的神经 内分泌活动的调节。 5-羟色胺系统的功能之一是缓和调节我们的反应。适 当的5-羟色胺的水平可以使饮食行为、性行为和攻击行为 等处于很好的控制之下。 如果大脑中的5-羟色胺循环通路受到损伤,会发现自 己对脑子里的每个念头和冲动都会付之于行动,使机体表 现得过分活跃:情绪不稳定、好冲动以及对环境过度反应 常常和5-羟色胺的活性极度降低联系在一起,攻击性行为、 自杀、过度饮食和活性降低有联系。
动物生理学 第九章神经生理

运动区对骨骼肌运动的支配有如下特点
①一侧皮质支配对侧躯体的骨骼肌,两侧呈交叉支配 的关系,但对头面部肌肉的支配大部分是双侧性的。
②具有精细的功能定位,即对一定部位皮质的刺激, 引起一定肌肉的收缩。而这种功能定位的安排,总的 呈倒置的支配关系。 ③支配不同部位肌肉的运动区,可占有大小不同的 定位区,运动较精细而复杂的肌群(如头部),占有 较广泛的定位区,而运动较简单而粗糙的肌群(如躯 干、四肢)只有较小的定位区。
巴甫洛夫囊袋 (Pavlovian Pouch)
巴甫洛夫关于条件作 用研究的实验装置
KAROLINSKA INSTITUTET 瑞典皇家卡罗林外科医学研究院 (诺贝尔生理学或医学颁奖委员会)
Ivan Petrovvich Pavlov Russia Military Medical Academy 1849 - 1936
(2)回返性抑制(recurrent inhibition)
是指某一中枢的神经元兴奋时,其传出冲动在沿轴 突外传的同时,又经其轴突侧支兴奋另一抑制性中间神 经元,后者兴奋沿其轴突返回来作用于原先发放冲动的 神经元。
2.突触前抑制 当突触后膜受到突触前轴突末梢的影响,使后膜上的
兴奋性突触后电位减小,导致突触后神经元不易或不能兴 奋而呈现抑制,称为突触前抑制(presynaptic inhibition)。
第四节 神经系统对躯体运动的调节
第四节 神经系统对躯体运动的调节
一、脊髓对躯体运动的调节
脊髓动物(spinal animal) (一)牵张反射
无论屈肌或伸肌,当其被牵张时,肌肉内的肌 梭就受到刺激,感觉冲动传入脊髓后,引起被牵拉 的肌肉发生反射性收缩,从而解除被牵拉状态,这 叫做牵张反射(stretch reflex)。
教育的生理学基础神经系统(3) (8)

2008 人体解剖生理学
被动运输的特点: 被动运输的特点: 不耗能; 不耗能; 由浓度高往浓度低处
2008
人体解剖生理学
扩散的形式: 单纯扩散(simple diffusion) 如H O、CO 、O2 协同扩散 如葡萄糖、氨 基酸
2 2
2008
人体解剖生理学
2008
人体解剖生理学
2008
人体解剖生理学
人体解剖生理学
2008
一、细胞膜的结构与功能
1、结构 液态镶嵌模型
2008
人体解剖生理学
2008
人体解剖生理学
2、功能
1、运输 (1)被动运输 指物质或离子顺着浓度梯度或电 位梯度通过细胞膜的扩散 扩散过程 位梯度通过细胞膜的扩散过程 扩散: 扩散: 分子从浓度高处向浓度低处移动 通透或渗透: 通透或渗透: 通过膜的扩散
2008 人体解剖生理学
小测验:
1、兴奋性 2、细胞 3、物质通过膜的扩散称为 4、线粒体的主要功能为 5、细胞核的主要功能为
。 。 。
2008
人体解剖生理学
(2)主动转运 (2)主动转运
物质逆着浓度梯度或电位梯度跨膜转运 的过程 特点: 特点: 消耗能量 由浓度低往浓度高处
2008
人体解剖生理学
2008
人体解剖生理学
(3)胞饮和胞吐作用
2008
人体解剖生理学
(4)受体作用
细胞膜上一定种类的蛋白质与外界特 定的化学信号进行特异性结合,引起 蛋白质构形的变化,把这种蛋白质称 为这一化学信号的受体。 不同的受体接受不同的化学信号,引 起细胞内不同的变化
2008
人体解剖生理学
2008
人体解剖生理学
被动运输的特点: 被动运输的特点: 不耗能; 不耗能; 由浓度高往浓度低处
2008
人体解剖生理学
扩散的形式: 单纯扩散(simple diffusion) 如H O、CO 、O2 协同扩散 如葡萄糖、氨 基酸
2 2
2008
人体解剖生理学
2008
人体解剖生理学
2008
人体解剖生理学
人体解剖生理学
2008
一、细胞膜的结构与功能
1、结构 液态镶嵌模型
2008
人体解剖生理学
2008
人体解剖生理学
2、功能
1、运输 (1)被动运输 指物质或离子顺着浓度梯度或电 位梯度通过细胞膜的扩散 扩散过程 位梯度通过细胞膜的扩散过程 扩散: 扩散: 分子从浓度高处向浓度低处移动 通透或渗透: 通透或渗透: 通过膜的扩散
2008 人体解剖生理学
小测验:
1、兴奋性 2、细胞 3、物质通过膜的扩散称为 4、线粒体的主要功能为 5、细胞核的主要功能为
。 。 。
2008
人体解剖生理学
(2)主动转运 (2)主动转运
物质逆着浓度梯度或电位梯度跨膜转运 的过程 特点: 特点: 消耗能量 由浓度低往浓度高处
2008
人体解剖生理学
2008
人体解剖生理学
(3)胞饮和胞吐作用
2008
人体解剖生理学
(4)受体作用
细胞膜上一定种类的蛋白质与外界特 定的化学信号进行特异性结合,引起 蛋白质构形的变化,把这种蛋白质称 为这一化学信号的受体。 不同的受体接受不同的化学信号,引 起细胞内不同的变化
2008
人体解剖生理学
2008
人体解剖生理学
神经生理学

静息电位的记录装置
(二)静息电位产生的机制 1. 静息状态下细胞膜内、外离子分布不匀 [Na+]o>[Na+]i≈12∶1, [K+]i>[K+]o≈30∶1 [ Cl- ]i<[ Cl胞膜对离子的通透性具有选择性
通透性:K+ > Cl- > Na+ > A-
逆向轴浆运输
由轴突末梢向胞体的运输。 速度约为205 mm/d,其意义可能 为摄入神经生长因子等物质,对胞体 蛋白质的合成起反馈调节作用。狂犬 病毒、破伤风病毒及辣根过氧化酶 可经逆向轴浆运输,由外周向中枢转 运
(4)神经纤维对所支配效应器的作用
①功能性作用(functional action):N元通过传导AP→递质 释放→调控所支配组织的功能活动; ②营养性作用(trophic action):神经末梢经常释放某些营 养性因子,持续地调节所支配组织细胞的代谢活动,促进糖原 与蛋白质合成。
特征之一。 兴奋:当机体、器官、组织或细胞受到刺激时,功能活 动由弱变强或由相对静止转变为比较活跃的反应
过程或反应形式。
兴奋性
• • • • 可兴奋细胞:受刺激后能产生AP的细胞。 可兴奋组织:受刺激后能产生AP的组织。 种类:神经细胞,肌细胞及腺体。 兴奋性又可定义为细胞接受刺激后产生动 作电位的能力,动作电位又是兴奋的同义 词。 • 兴奋性的高低用刺激的阈值来衡量。
图示Na+在膜内外的不平衡分布, 细胞外浓度高,而细胞内浓度低
图示细胞膜对Na+具有通透性, Na+由细胞外向细胞内扩散 图示由Na+的扩散形成的电-化 学平衡电位
2.动作电位期间的膜电导的变化
内向电流:如果细胞受刺激时引起离子流动,造成 膜外的正电荷流入膜内,称为内向电流(inward current). 外相电流:如果细胞受刺激时引起离子流动,造成 膜内的正电荷流出细胞外,称为外相电流 (outward current)
教育的生理学基础神经系统(3) (6)

特点: (1)是疏松的,可逆的; )是疏松的,可逆的; (2)铁始终保持二价; )铁始终保持二价; (3)不需任何酶参与; )不需任何酶参与; (4)该反应只有Hb存在于红细胞中才能 )该反应只有Hb存在于红细胞中才能 发生; 发生; (5)正常情况下1克Hb能携带1.34~ )正常情况下1 Hb能携带1.34~ 1.36mlO2.
本章的讲课思路
依据气体的在人体内的行走路线分四个方 面: (1)肺通气。 肺通气。 (2)气体交换:肺换气和组织换气。 气体交换:肺换气和组织换气。 (3)气体运输。 气体运输。 (4)呼吸运动的调节。 呼吸运动的调节。
第一节
肺通气
一.肺通气的结构基础与功能
1.呼吸道 结构:鼻~终末细支气管。 结构:鼻~终末细支气管。 (1)鼻:功能:气道;防御;共鸣;嗅觉。 鼻:功能:气道;防御;共鸣;嗅觉。 (2)咽:分段;咽鼓管。 咽:分段;咽鼓管。 (3)喉:气道;发声器官。 喉:气道;发声器官。 (4)气管与支气管 特点:随着支气管的分支,口径逐渐变小, 特点:随着支气管的分支,口径逐渐变小, 软骨逐渐减少,平滑肌相对增多。 软骨逐渐减少,平滑肌相对增多。 调节:神经双重调节。 调节:神经双重调节。 功能:气道;防御。 功能:气道;防御。
2.肺通气量: 肺通气量:
定义:单位时间内出入肺脏气体量总和。 定义:单位时间内出入肺脏气体量总和。 每分通气量=潮气量(400~ 每分通气量=潮气量(400~500 ml ) ×呼吸频率(12~18次/分) 呼吸频率(12~18次 =6~8 升 每分最大通气量:最快速度+ 每分最大通气量:最快速度+尽可能深 的幅度。 120升 的幅度。男120升,女70~80升。 70~80升 肺泡通气量: 肺泡通气量: 有效的通气量= 潮气量500 有效的通气量=(潮气量500 ml -解剖无效 腔150 ml )×呼吸频率
生理学第十章 神经生理

肌、胃肠平滑肌、膀胱逼 自主神经节神经元兴奋
尿肌、虹膜环行肌收缩,
消化腺、汗腺分泌↑,
▪
少突胶质细胞
▪
小胶质细胞
▪
室管膜细胞
神经胶质细胞的功能 1.支持作用 2.绝缘和屏障作用 3.修复和再生作用 4.物质代谢和营养性作用 5.维持细胞外液适当的 K+浓度 6.免疫应答作用 7.参与神经递质及生物活性物质的代谢
第二节 神经元间的信息传递
结构基础—— 突触:神经元相互接触的部位 接头:神经元与效应器细胞相接触的部位
二 神经递质和受体
(一) 神经递质(neurotransmitter)
1.概念:由突触前神经元合成并在末梢处释放,特 异性作用于突触后神经元或效应器细胞上的受体,并 使其产生一定效应的信息传递物质。 2.递质的鉴定
鉴定:5 个条件
2. 调质的概念:
不在神经元之间直接起信息传递作用,而是 增强或削弱递质的信息传递效应,这类对递质 信息传递起调节作用的物质 3. Dale原则与递质的共存
2. 兴奋传递过程(电-化学-电信号)
接头前膜去极化→ 电压门控性Ca2+通道开放 → Ca2+内流→ 出胞的方式释放Ach → Ach与接头后膜 (终板膜)上的N2型胆碱能受体结合 → 终板膜上Na+、 K+(以Na+为主)通道开放 → Na+内流>K+外流 → 终 板膜去极化产生终板电位(endplate potential) →终板电 位总和 → 达到阈电位产生动作电位。Ach发挥作用后 被接头间隙中的胆碱脂酶分解失活。
强刺激尾部后,再用弱刺激喷水管皮肤→缩腮反应明显增强。
(3)长时程增强(long-term potentiation, LTD)
生理-第3章 神经元的兴奋和传导

2.动作电位的“全或无”性特
• “全或无”(all or none):可兴奋细胞膜在受到
阈、阈上刺激时,或产生一个可向外扩布的、具有 完全相同幅值的、不随传导距离衰减的动作电位, 或完全无动作电位产生。 • 锋电位遵循“全或无”原则,是细胞兴奋的标志。
附1:电导
• 电导G:导体导电的能
力,电阻的倒数。
K+是形成静息电位的主要离子基础。
• 改变细胞内外 K+浓度,膜电位也随之改变; • 改变细胞内外 Na+浓度,对静息电位没有影响。 • K+、Na+的扩散:K+、Na+渗漏通道;
• Na+-K+泵:生电性Na+泵。
静息电位的形成机制
• 主要三个因素的作用: 离子浓度梯度 电压梯度 离子泵
Nernst方程
第三章 神经元的兴奋和传导
Chapter 3 Excitation and conduction of Neuron
• 不同的刺激——神经细胞、肌细胞、消化道分泌细 胞——细胞膜电学性质变化——细胞特异反应。 • 细胞膜的生物电现象 • 意大利生理学家Galvani的实验
雷克蓝士发明了干电池 伏特应用这一原理发明 了伏特电池
• 静息膜电位形成的离子机制总结
①膜对内、外离子有不同的通透性,导致静息膜电
位的产生。 ②静息状态,所有被动通透力都与主动转运力平衡, 离子透膜净流动速率为零——膜电位恒定不变。
二、细胞膜动作电位
(一)细胞的兴奋和阈刺激
• 刺激(stimulation)
• 反应(response)
• 兴奋(excitation)
(三)K+和Na+对膜电位的协同作用
生理-神经系统三

特点:①属于多突触反射。 ②无明显的运动表现,骨骼肌处于持续
地轻微的收缩状态。
意义:对抗肌肉的牵拉以维持身体的姿势,是一 切躯体运动的基础。
如果破坏肌紧张的反射弧,可出现肌张力 的减弱或消失,表现为肌肉松弛,因而无法维 持身体的正常姿势。
肌紧张机制:
高位中枢下传冲动
●γ环?
●γ环的意义:使 γ
肌肉维持于缩短状
牵张反射。
高级中枢对肌紧张
的调节
•易化系统:脑干网状结构易化区、
新小脑、前庭核。通过锥体束下传。
•抑制系统:脑干网状结构抑制区、
大脑皮层运动区、纹状体、小脑前 叶正中带。通过锥体外系下传。
高级中枢对肌紧张 有两种作用
❖易化作用:肌紧张加强 ❖抑制作用:肌紧张减弱
高级中枢对肌紧张调节 通过两种途径
柱状组构 (columnar organization) ❖分类:
运动柱(motor column)
感觉柱(sensory column)
❖功能:当有传入冲动到某一功能柱时,
同一柱状范围内的深,浅层神经元均发 生兴奋,并可激活其传出,同时位于柱 状范围外的邻近神经元则被抑制。
大脑皮层的功能定位及皮层运动区
主要运动区
其他运动区
部位:中央前回和运动前区 辅助运动区 第二运动区等
(4区) (6区)
(纵裂内缘及扣带回)
肢体远端肌 肢体近端肌
功能: 执行随意运动指令
(5、6、7、8、18、19 区)设计运动动作
协调随意运动
特征: ①交叉支配:
(除上面部肌受双侧皮层支配外)
②倒置分布:
(除头面部是正立的外)
③区域大小与精细程度呈正比: ④功能定位精确:
态。
地轻微的收缩状态。
意义:对抗肌肉的牵拉以维持身体的姿势,是一 切躯体运动的基础。
如果破坏肌紧张的反射弧,可出现肌张力 的减弱或消失,表现为肌肉松弛,因而无法维 持身体的正常姿势。
肌紧张机制:
高位中枢下传冲动
●γ环?
●γ环的意义:使 γ
肌肉维持于缩短状
牵张反射。
高级中枢对肌紧张
的调节
•易化系统:脑干网状结构易化区、
新小脑、前庭核。通过锥体束下传。
•抑制系统:脑干网状结构抑制区、
大脑皮层运动区、纹状体、小脑前 叶正中带。通过锥体外系下传。
高级中枢对肌紧张 有两种作用
❖易化作用:肌紧张加强 ❖抑制作用:肌紧张减弱
高级中枢对肌紧张调节 通过两种途径
柱状组构 (columnar organization) ❖分类:
运动柱(motor column)
感觉柱(sensory column)
❖功能:当有传入冲动到某一功能柱时,
同一柱状范围内的深,浅层神经元均发 生兴奋,并可激活其传出,同时位于柱 状范围外的邻近神经元则被抑制。
大脑皮层的功能定位及皮层运动区
主要运动区
其他运动区
部位:中央前回和运动前区 辅助运动区 第二运动区等
(4区) (6区)
(纵裂内缘及扣带回)
肢体远端肌 肢体近端肌
功能: 执行随意运动指令
(5、6、7、8、18、19 区)设计运动动作
协调随意运动
特征: ①交叉支配:
(除上面部肌受双侧皮层支配外)
②倒置分布:
(除头面部是正立的外)
③区域大小与精细程度呈正比: ④功能定位精确:
态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
螺旋形末梢发生变形
Ⅰa 、Ⅱ类纤维
的神经冲动 肌梭的传入冲动
脊髓前角
α运动神经元兴奋
γ传出纤维兴奋
梭外肌收缩
梭内肌收缩
维持肌梭兴奋的传入
2014.9
腱反射:膝跳反射、跟腱反射。
膝跳反射弧:
叩击肌腱 ↓
肌肉受到牵拉刺激 ↓
肌梭兴奋性↑ ↓
Ia类和Ⅱ类 N纤维传入
↓ α运动N元兴奋
↓ 梭外肌收缩
2014.9
意义:具有保护性意义,逃避伤害。
不属姿势反射
2014.9
(2)牵张反射
牵张反射的类型 1)腱反射(位相性牵张反射):快速牵拉肌腱时
发生的牵张反射,为单突触反射。膝反射。
2)肌紧张(紧张性牵张反射):指缓慢持续牵拉 肌腱时发生的牵张反射,为多突触反射。
特点:不同运动单位交替收缩,不易产生疲劳。
2014.9
肌紧张: 高位中枢下传冲动 重力作用
γ运动N元兴奋
梭内肌收缩
γ
肌梭的 环 敏感性↑兴奋性↑
α运动N元兴奋
持续轻微 牵拉伸肌
梭外肌收缩
骨骼肌处于持续地轻微的收缩状态 201●4.9脑干某些中枢调节肌紧张是通过兴奋γ环实现的。
腱器官:感受肌肉张力变化
2014.9
(3)节间反射:
脊髓某节段神经元发出的轴突与邻近上下 节段的神经元发生联系,通过上下节段之 间神经元的协同活动所进行的一种反射活 动。如搔扒反射。
2014.9
(2)翻正反射
概念:当人和动物处于不正常体位时,通过一系 列动作将体位恢复常态的反射活动。 特点:先转头,再转身。 应用:体育运动中,很多动作是在翻正反射的基 础上形成的运动技能。 实例:体操运动员的空翻转体,跳水运动中转体 及篮球转体过人等动作,都要先转头,再转上半 身,然后下半身,使动作优美、协调且迅速。
2014.9
三、脑干对肌紧张和姿势的调节
1.脑干对肌紧张的调节
2014.9
去大脑僵直
去大脑僵直实验: 在动物中脑上下丘之 间切断脑干,动物出 现伸肌过度紧张现象, 表现为四肢伸直、坚 硬如柱,头尾昂起、 脊柱挺硬,称为去大 脑僵直。
2014.9
大脑皮层运动区 纹状体
小脑前叶蚓部
↓ 脑干网状结构抑制区
(三)脊髓对姿势的调节
脊髓水平完成的姿势反射: 对侧伸肌反射、牵张反射、节间反射等。 (1)对侧伸肌反射:
当剌激强度加大时,可在同侧肢体发生 屈肌反射的基础上出现对侧肢体伸肌收 缩的反射活动。
具有维持姿势的作用,保持躯体平衡。
2014.9
屈肌反射:
脊动物皮肤受到伤害性剌激时,反射性 引起同侧肢体屈肌收缩,伸肌弛缓,称屈 肌反射。
第九章 神经系统功能(3)
第三节 神经系统对躯体运动的调控
2014.9
一、运动的中枢调控功能概述
一)运动的分类 1.反射运动 2.随意运动 3.节律运动
2014.9
(二)运动调控的基本结构和功能
策划
执行
随意运动 的设想
2014.9
基底神 经节 皮层联 络区 皮层小 脑
运动皮 层和运 动前区
运动 脊髓小 脑
二、脊髓队躯体运动的调控作用
(一)运动反射的最后公路 1.脊髓运动神经元
1)α运动神经元 支配梭外肌纤维,是躯体骨骼肌运动反 射的最后公路。递质为ACh。 2)γ运动神经元 胞体较小,支配梭内肌纤维,兴奋性 高,递质为ACh。
2014.9
2.运动单位: 由一个α运动神经元或脑干神经元及其
所支配的全部肌纤维组成的功能单位。
2014.9
2、脑干对姿势的调节
(1)状态反射: 头部在空间的位置改变以及头部与躯体的相
对位置改变时,可以反射性地改变躯体肌肉 紧张性。
2014.9
①迷紧张反射: 内耳迷路的椭圆囊和球囊的传入冲动对躯体 伸肌紧张性的反射性调节,中枢为前庭核。
②颈紧张反射: 颈部扭曲时颈上部椎关节韧带和肌肉本体 感受器的传入冲动对四肢肌肉紧张性的反 射性调节,中枢在脊髓。
α僵直和γ僵直
2014.9
γ僵直:
由于高位中枢的下行作用首先提高γ运动神经 元的活动,使肌梭的传入冲动增多,转而增 强α运动神经元的活动,称为γ僵直。 实验证据:
在去大脑僵直时,如切断动物腰骶段脊髓后根 以消除肌梭传入冲动, 则可使后肢僵直现象 消除。
2014.9
α-僵直:
由于高位中枢的下行作用直接或间接通过脊 髓中间神经元提高α运动神经元活动。 实验证据: 如果在上述切断脊髓后根的去大脑动物,进 一步切除小脑前叶,能使僵直再次出现,这 种僵直属于α-僵直,因脊髓后根已切断,γ 僵直已不可能发生。
定义: 有神经支配的骨
骼肌在受到外力牵拉 时能引起受牵拉的同 一肌肉收缩的反射活 动。
特点: 感受器和效应器都是 在同一块肌肉中
意义: 在于维持身体姿势,增
强肌肉力量。
2014.9
牵张反射的机制:
感受器(肌梭): 感受长度 和牵拉刺激 核袋纤维
梭内肌 核链纤维
2014.9
肌 梭:
① 肌梭与梭外肌并联, 肌梭两端与中间的 感觉装置串联
前庭核
小脑前叶两侧部
↓ 脑干网状结构易化区
脊髓γ
脊髓α
↓
↓
梭内肌
梭外肌(伸肌)
2014.9
(肌 梭)
大脑皮层运动区 纹状体
小脑前叶 两侧部
小脑前叶 蚓部
(+)
(+)
脑干网状结构 抑制区
前庭核 (+) (+)
易化区
()
(+)
肌紧张
2014.9
去大脑僵直的产生机制:
网状结构抑制区的下行始动作用 (大脑皮层运动区和纹状体等)被切断, 抑制区活动减弱,易化区活动占优势。 传向脊髓的易化作用相对增强,引起 γ运动神经元活动过强,伸肌的肌紧张 过度亢进,导致去大脑僵直。
② 梭外肌收缩时, 肌梭抑制
③ γ-运动N兴奋、 梭内肌收缩、 肌肉受牵拉时, 肌梭兴奋
2014.9
2014.9
肌梭的传入神经纤维:
*Ⅰα类纤维:螺旋形
分布于核袋纤维和核链纤维 *Ⅱ类纤维:花枝状
分布于核链纤维 终止: 脊髓前角的α运动神经元
2014.9
牵张反射的过程:
肌肉受牵拉 梭内肌感受装置被拉长
2014.9
四、大脑皮层对运动的调控
1、中央前回和运动前区 ①具有交叉性质,但头面部为双侧; ②具有精细的功能定位,功能代表区的 大小与运动的精细复杂程度有关; ③总体定位为倒置,但头面部为正立。
2014.9
(二)脊休克
人和动物脊髓与高位中枢离断后,反射活 动能力暂时丧失而进入无反应状态的现象。
表现:
肌紧张降低或消失
发汗反射消失
血压下降
粪尿积聚
•
(以后反射可恢复)
2014.9
脊休克产生和恢复的原因:
• 产生:
•脊髓突然失去高位中枢的易化性调节所致
• 恢复:
•脊髓的初级中枢发挥作用
2014.9