人教版九年级数学第二十八章第2节《解直角三角形及其应用》提高训练 (31)(有解析)
2014年秋新人教版九年级下28.2解直角三角形及其应用随堂优化训练课件

解法步骤
a 由 tanA=b求∠A;∠B=90° -∠A;c=
a2+b2
a 由 sinA=c求∠A;∠B=90° -∠A;b= 斜边,一直角边(c,a) c2-a2 b 锐角,邻边 ∠B=90° -∠A;a=b· tanA;c=cosA 一直角边 (∠A,b) 一锐角 锐角,对边 a a ∠B=90° -∠A;b=tanA;c=sinA (∠A,a) 斜边, 一锐角(c,∠A) ∠B=90°-∠A;a=c· sinA;b=c· cosA
图 28-2-6
解:如图 D72,过点 A 作 AB⊥BO,垂足为 B.
图 D72
AB 在 Rt△AOB 中,cos∠BAO=AO, ∴AB=AO市 A 不会受到此次台风的侵袭. 2≈282.8>260.
知识点 3 解直角三角形的应用(知识综合) 【例 3】 如图 28-2-7,线段AB,CD分别表示甲、乙两建 筑物的高,AB⊥BC,CD⊥BC,从点A测得点D的俯角α为 30°, 测得 C 点的俯角β为 60°,已知乙建筑物高CD=40 米,试求甲 建筑物高 AB.
图 28-2-2
3.方向角 北偏东 40° 如图 28-2-3,点 A 在点 O 的__________ 方向上,点 B 在点 西北 东偏南 26°方向上. O 的__________ 方向上,点 C 在点 O 的___________
图 28-2-3
4.坡度与坡角 如图 28-2-4,坡面的铅垂高度(h)与水平长度(l)的比叫做坡
图 28-2-7
思路点拨:过点 D 作 DE⊥AB,构造 Rt△ADE,通过解 Rt△ADE 和 Rt△ABC 求得 AB. 解:过点D作DE⊥AB于点E,则∠ADE=α=30°. 根据题意,得∠BAC=90°-β=30°,
人教版数学九年级下册第28章28.2-解直角三角形及其应用

课堂小结
解 直 角 三 角 形
依据
勾股定理 两锐角互余 锐角的三角函数
解法:只要知道五个元素中的两个元素(至 少有一个是边),就可以求出余下的三个未 知元素
对接中考
对接中考
H
对接中考
A
B
C
对接中考
A
B
C D
对接中考
B
CD
A
对接中考
B
C D
A
课后作业 请完成课本后习题第1题.
12 、能者上,庸者下,平者让。谁砸企业的牌子,企业就砸谁的饭碗。 19 、生活中的许多事,并不是我们不能做到,而是我们不相信能够做到。 5 、当你手中抓住一件东西不放时,你只能拥有一件东西,如果你肯放手,你就有机会选择更多。( ) 1 、生活是一面镜子。你对它笑,它就对你笑;你对它哭,它也对你哭。 17 、再长的路,一步步也能走完,再短的路,不迈开双脚也无法到达。 17 、忍耐力较诸脑力,尤胜一筹。 15 、如果你不给自己烦恼,别人也永远不可能给你烦恼。因为你自己的内心,你放不下。 19 、你不能左右天气,但可以改变心情。你不能改变容貌,但可以掌握自己。你不能预见明天,但可以珍惜今天。 7 、如果我们投一辈子石块,即使闭着眼睛,也肯定有一次击中成功。 1 、生活是一面镜子。你对它笑,它就对你笑;你对它哭,它也对你哭。 19 、经营信为本,买卖礼当先。心态决定成败,有志者事竟成。 10 、人生有顺境也有逆境,输什么也不能输了心情;人生有进有退,输什么也不要输掉自己。 7 、成功在于好的心态与坚持,心态决定状态,心胸决定格局,眼界决定境界。 7 、喜欢一个人不是回复他每条动态,而是研究下面可疑的评论。 13 、用冷静的目光去看待人世间的一切,才能活得坦荡,活得超然。 6 、人的一生要面临许多选择,而每次选择都会带来一阵阵剧痛,而这种剧痛叫做成长。 12 、天下没有免费的午餐,一切成功都要靠自己的努力去争取。机会需要把握,也需要创造。 6 、大部分人往往对已经失去的机遇捶胸顿足,却对眼前的机遇熟视无睹。 16 、并不是先有了勇气才敢于说话,而是在说话的同时培养了勇气。 13 、不要在你的智慧中夹杂着傲慢,不要使你的谦虚心缺乏智慧。 12 、你希望别人怎样对待自己,你首先应该怎样来对待别人。
人教版九年级数学下册28.2: 解直角三角形及其应 用同步练习(附答案)

人教版九年级下册28.2 解直角三角形及其应用同步练习一.选择题(共12小题)1.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan ∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m2.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A.3sinα米B.3cosα米C.米D.米3.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈,tan53°≈)A.225m B.275m C.300m D.315m4.如图,在四边形ABCD中,∠DAB=90°,AD∥BC,BC=AD,AC与BD交于点E,AC⊥BD,则tan∠BAC的值是()A.B.C.D.5.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15)米C.15米D.(36﹣10)米6.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10B.8C.4D.27.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.8.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米9.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile10.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米11.如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.12.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米二.填空题(共7小题)13.如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为米.(结果保留根号)14.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠P AB=30°,在B处测得∠PBC=75°,若AB =80米,则河两岸之间的距离约为米.(≈1.73,结果精确到0.1米)15.某数学小组三名同学运用自己所学的知识检测车速,他们将观测点设在一段笔直的公路旁且距公路100米的点A处,如图所示,直线l表示公路,一辆小汽车由公路上的B处向C处匀速行驶,用时5秒,经测量,点B在点A北偏东45°方向上,点C在点A北偏东60°方向上,这段公路最高限速60千米/小时,此车(填“超速”或“没有超速”)(参考数据:≈1.732)16.如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).17.如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)18.如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).19.如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为米.(精确到1米,参考数据:≈1.414,≈1.732)三.解答题(共3小题)20.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:≈1.732)21.如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E 处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)22.如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:≈1.41,=1.73)参考答案一.选择题(共12小题)1.如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan ∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.2.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米.若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A.3sinα米B.3cosα米C.米D.米【解答】解:由题意可得:sinα==,故BC=3sinα(m).故选:A.3.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为()(参考数据:tan37°≈,tan53°≈)A.225m B.275m C.300m D.315m【解答】解:如图,作CE⊥BA于E.设EC=xm,BE=ym.在Rt△ECB中,tan53°=,即=,在Rt△AEC中,tan37°=,即=,解得x=180,y=135,∴AC===300(m),故选:C.4.如图,在四边形ABCD中,∠DAB=90°,AD∥BC,BC=AD,AC与BD交于点E,AC⊥BD,则tan∠BAC的值是()A.B.C.D.【解答】解:∵AD∥BC,∠DAB=90°,∴∠ABC=180°﹣∠DAB=90°,∠BAC+∠EAD=90°,∵AC⊥BD,∴∠AED=90°,∴∠ADB+∠EAD=90°,∴∠BAC=∠ADB,∴△ABC∽△DAB,∴=,∵BC=AD,∴AD=2BC,∴AB2=BC×AD=BC×2BC=2BC2,∴AB=BC,在Rt△ABC中,tan∠BAC===;故选:C.5.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米B.(36﹣15)米C.15米D.(36﹣10)米【解答】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选:D.6.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10B.8C.4D.2【解答】解:∵∠C=90°,cos∠BDC=,设CD=5x,BD=7x,∴BC=2x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,∴BC=2;故选:D.7.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.【解答】解:如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选:D.8.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BF=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.9.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()A.30nmile B.60nmileC.120nmile D.(30+30)nmile【解答】解:过C作CD⊥AB于D点,∴∠ACD=30°,∠BCD=45°,AC=60.在Rt△ACD中,cos∠ACD=,∴CD=AC•cos∠ACD=60×=30.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与灯塔P的距离是(30+30)nmile.故选:D.10.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米【解答】解:作AD⊥BC于点D,则BD=0.3=,∵cosα=,∴cosα=,解得,AB=米,故选:B.11.如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.12.如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.65.8米B.71.8米C.73.8米D.119.8米【解答】解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20米,CG=48米,∴EG=20+0.8=20.8米,BG=52+48=100米.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100米,BM=EG=20.8米.在Rt△AEM中,∵∠AEM=27°,∴AM=EM•tan27°≈100×0.51=51米,∴AB=AM+BM=51+20.8=71.8米.故选:B.二.填空题(共7小题)13.如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为4﹣4米.(结果保留根号)【解答】解:在Rt△CMB中,∵∠CMB=90°,MB=AM+AB=12米,∠MBC=30°,∴CM=MB•tan30°=12×=4,在Rt△ADM中,∵∠AMD=90°,∠MAD=45°,∴∠MAD=∠MDA=45°,∴MD=AM=4米,∴CD=CM﹣DM=(4﹣4)米,故答案为:4﹣4.14.如图,河的两岸a,b互相平行,点A,B,C是河岸b上的三点,点P是河岸a上的一个建筑物,某人在河岸b上的A处测得∠P AB=30°,在B处测得∠PBC=75°,若AB =80米,则河两岸之间的距离约为54.6米.(≈1.73,结果精确到0.1米)【解答】解:过点A作AE⊥a于点E,过点B作BD⊥P A于点D,∵∠PBC=75°,∠P AB=30°,∴∠DPB=45°,∵AB=80,∴BD=40,AD=40,∴PD=DB=40,∴AP=AD+PD=40+40,∵a∥b,∴∠EP A=∠P AB=30°,∴AE=AP=20+20≈54.6,故答案为:54.615.某数学小组三名同学运用自己所学的知识检测车速,他们将观测点设在一段笔直的公路旁且距公路100米的点A处,如图所示,直线l表示公路,一辆小汽车由公路上的B处向C处匀速行驶,用时5秒,经测量,点B在点A北偏东45°方向上,点C在点A北偏东60°方向上,这段公路最高限速60千米/小时,此车没有超速(填“超速”或“没有超速”)(参考数据:≈1.732)【解答】解:作AD⊥直线l于D,在Rt△ADB中,∠ABD=45°,∴BD=AD=100,在Rt△ADB中,tan∠ACD=,则CD==100≈173.2,∴BC=173.2﹣100=73.2(米),小汽车的速度为:0.0732÷=52.704(千米/小时),∵52.704千米/小时<速60千米/小时,∴小汽车没有超速,故答案为:没有超速.16.如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为3m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).【解答】解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3,∴AB=AC﹣BC=3.3≈3(m),故答案为:3.17.如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为262m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【解答】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC=,则AE=≈=200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.18.如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是(15+15)米(结果保留根号).【解答】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15;可得CE=BE×tan45°=15米.在Rt△ABE中,∠ABE=30°,BE=15,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15米.答:教学楼AC的高度是(15)米.19.如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为566米.(精确到1米,参考数据:≈1.414,≈1.732)【解答】解:如图,设线段AB交y轴于C,在直角△OAC中,∠ACO=∠CAO=45°,则AC=OC.∵OA=400米,∴OC=OA•cos45°=400×=200(米).∵在直角△OBC中,∠COB=60°,OC=200米,∴OB===400≈566(米)故答案是:566.三.解答题(共3小题)20.小明同学在综合实践活动中对本地的一座古塔进行了测量.如图,他在山坡坡脚P处测得古塔顶端M的仰角为60°,沿山坡向上走25m到达D处,测得古塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助小明计算古塔的高度ME.(结果精确到0.1m,参考数据:≈1.732)【解答】解:作DC⊥EP交EP的延长线于C,作DF⊥ME于F,作PH⊥DF于H,则DC=PH=FE,DH=CP,HF=PE,设DC=3x,∵tanθ=,∴CP=4x,由勾股定理得,PD2=DC2+CP2,即252=(3x)2+(4x)2,解得,x=5,则DC=3x=15,CP=4x=20,∴DH=CP=20,PH=FE=DC=15,设MF=ym,则ME=(y+15)m,在Rt△MDF中,tan∠MDF=,则DF==y,在Rt△MPE中,tan∠MPE=,则PE==(y+15),∵DH=DF﹣HF,∴y﹣(y+15)=20,解得,y=7.5+10,∴ME=MF+FE=7.5+10+15≈39.8,答:古塔的高度ME约为39.8m.21.如图,学校教学楼上悬挂一块长为3m的标语牌,即CD=3m.数学活动课上,小明和小红要测量标语牌的底部点D到地面的距离.测角仪支架高AE=BF=1.2m,小明在E 处测得标语牌底部点D的仰角为31°,小红在F处测得标语牌顶部点C的仰角为45°,AB=5m,依据他们测量的数据能否求出标语牌底部点D到地面的距离DH的长?若能,请计算;若不能,请说明理由(图中点A,B,C,D,E,F,H在同一平面内)(参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86)【解答】解:能,理由如下:延长EF交CH于N,则∠CNF=90°,∵∠CFN=45°,∴CN=NF,设DN=xm,则NF=CN=(x+3)m,∴EN=5+(x+3)=x+8,在Rt△DEN中,tan∠DEN=,则DN=EN•tan∠DEN,∴x≈0.6(x+8),解得,x=12,则DH=DN+NH=12+1.2=13.2(m),答:点D到地面的距离DH的长约为13.2m.22.如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:≈1.41,=1.73)【解答】解:过点C作CE⊥AB于点E,∵CD=2,tan∠CMD=,∴MD=6,设BM=x,∴BD=x+6,∵∠AMB=60°,∴∠BAM=30°,∴AB=x,已知四边形CDBE是矩形,∴BE=CD=2,CE=BD=x+6,∴AE=x﹣2,在Rt△ACE中,∵tan30°=,∴=,解得:x=3+,∴AB=x=3+3≈8.2m。
数学人教版九年级下册28.2解直角三角形及其应用

九年级下册数学28.2解直角三角形及其应用(2)一、教学目标知识目标:了解仰角、俯角概念,能应用解直角三角形解决观测中的实际问题.帮助学生学会把实际问题转化为解直角三角形问题,从而把实际问题转化为数学问题来解决.能力目标:逐步培养学生发现问题、分析问题、解决问题的能力.渗透数学建模及方程思想和方法,能将实际问题中的数量关系转化为直角三角形中元素之间的关系.情感与价值观:渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识,同时激发学生学习数学的热情,更好的激励学习.二、教学重点、难点1.重点:应用解直角三角形的有关知识解决观测问题.2.难点:能够准确分析问题并将实际问题转化为数学模型.三、教学过程1.忆旧迎新[设计说明:明确本节课学习目标,复习解直角三角形的概念及相关方法原则,为接下来的学习做好充分准。
]展示学习目标,交流课前预习内容:解直角三角形中常用的数量关系及相关原则方法.2.新课讲解[设计说明:联系实际,对问题情境的理解需要学生具有一定的空间想象能力,在审题过程中自然引出仰角、俯角概念,逐步向学生渗透数学建模思想,帮助学生从实际问题中,抽象出数学模型,将实际问题转化为数学问题来解决。
]例4: 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到整数)3.练习巩固1. 建筑物BC上有一旗杆AB,从与BC相距40m的D处观察旗杆顶部A的仰角为50°,观察底部B的仰角为45°,求旗杆的高度(结果保留小数点后一位).2. 如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD = 140°,BD = 520m,∠D=50°,那么开挖点E离D多远正好能使A,C,E成一直线(结果保留小数点后一位).4.课堂小结,布置作业小结:想办法构造直角三角形,利用锐角三角函数或勾股定理解题。
九年级数学人教版下册28.2解直角三角形及其应用同步测试题

九年级数学人教版下册28.2解直角三角形及其应用同步测试题28.2解直角三角形及其应用同步测试题(满分120分;时间:90分钟)一、选择题(本题共计小题,每题分,共计27分,)1.在Rt△ACB中,∠C=90∘,AB=10,sinA=35,cosA=45,tanA=34,则BC的长为()A.6B.7.5C.8D.12.52.兰州是古丝绸之路上的重镇,以下准确表示兰州市的地理位置的是()A.北纬34∘03'B.在中国的西北方向C.甘肃省中部D.北纬34∘03',东经103∘49'3.某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价为a元,则购买这种草皮至少需要()A.450a元B.300a元C.225a元D.150a元4.如图,在坡度为1:2的山坡上种树,要求相邻两棵树的水平距离是6m,则斜坡上相邻两棵树的坡面距离是()A.3mB.35mC.12mD.6m5.如图,梯形ABCD中,AD // BC,∠B=45∘,∠D=120∘,AB =8cm,则DC的长为()A.863cmB.463cmC.46cmD.8cm6.一束阳光射在窗子AB上,此时光与水平线夹角为30∘,若窗高AB=1.8米,要想将光线全部遮挡住,不能射到窗子AB上,则挡板AC (垂直于AB)的长最少应为()A.1.83米B.0.63米C.3.6米D.1.8米7.在河岸边一点A测得与对岸河边一棵树C的视线与河岸的夹角为30∘,沿河岸前行100米到点B,测得与C的视线与河岸的夹角为45∘,则河的宽度为()A.200米B.1003米C.1003-1米D.1003+1米8.如图,小黄站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30∘,若小黄的眼睛与地面的距离DG是1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡AB的坡度为i=4:3,坡长AB=10.5米,则此时小船C 到岸边的距离CA的长为()米.(3≈1.7,结果保留两位有效数字)A.11B.8.5C.7.2D.109.某班的同学想测量一教楼AB的高度,如图,大楼前有一段斜坡BC,已知BC的长为16米,它的坡度i=1:3,在离C点45米的D处,测得以教楼顶端A的仰角为37∘,则一教楼AB的高度约为()米.(结果精确到0.1米)(参考数据:sin37∘≈0.60,cos37∘≈0.80,tan37∘≈0.75,3≈1.73)A.44.1B.39.8C.36.1D.25.9二、填空题(本题共计7小题,每题分,共计21分,)10.在△ABC中,AC=6,BC=5,sinA=23,∠B为锐角,则tanB=________.11.如图,一艘轮船以20海里/小时速度从南向北航行,当航行至A处时,测得小岛C在轮船的北偏东45度的方向处,航行一段时间后到达B处,此时测得小岛C在轮船的南偏东60度的方向处.若CB=40海里,则轮船航行的时间为________.12.在Rt△ABC中,∠C=90∘,a=2,b=3,则cosA=________.如果港口A的南偏东52∘方向有一座小岛B,那么从小岛B观察港口A的方向是________.14.若一个等腰三角形的两边长分别为2cm和6cm,则底边上的高为________cm,底角的余弦值为________.如图,长为4m的梯子搭在墙上与地面成60∘角,则梯子的顶端离地面的高度为________m(结果保留根号).如图,A,B之间是一座山,一条高速公路要通过A,B两点,在A地测得公路走向是北偏西111∘32'.如果A,B两地同时开工,那么在B地按________方向施工,才能使公路在山腹中准确接通.三、解答题(本题共计小题,共计70分,)17.如图是大型超市扶梯的平面示意图.为了提高扶梯的安全性,超市欲减小扶梯与地面的夹角,使其由45∘改为30∘.已知原扶梯AB 长为42米.(1)求新扶梯AC的长度;(2)求BC的长.18.某校数学兴趣小组的同学为了利用所学知识,测量校园内一棵树DE的高度(如图所示),当这棵树顶点D的影子刚好落在旗台的台阶下点C处时,他们测得此时树顶点D的仰角为60∘;当点D的影子刚好落在台阶上点A时,树顶点D的仰角为30∘,台阶坡度为3:3,台阶高度AB=2米,点B、C、E在同一水平线上,求树高DE(测角仪高度忽略不计).19.某小区举行放风筝比赛,一选手的风筝C距离地面的垂直高度CD为226米,小明在火车站广场A处观测风筝C的仰角为21.8∘,同时小花在某楼顶B处观测风筝C的仰角为30∘,其中小花观测处距水平地面的垂直高度BE为100米,点A,E,D在一条直线上.试求小明与楼BE间的水平距离AE.(结果保留整数)(3≈1.73,sin21.8∘≈0.37,cos21.8∘≈0.93,tan21.8∘≈0.40)20.如图,我市某中学在创建“特色校园”的活动中,将奉校的办学理念做成宣传牌(CD),放置在教学楼的顶部(如图所示)该中学数学活动小组在山坡的坡脚A处测得宣传牌底部D的仰角为60∘,沿坡面AB向上走到B处测得宣传牌顶部C的仰角为45∘.已知山坡AB的坡度为i=1:3,AB=10米,AE=15米.(i=1:3是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求宣传牌CD的高度.(结果精确到0.1米.参考数据:2≈1.414,3≈1.732)21.如图,要环绕A、B、C、D四地修筑一条高等级公路ABCDA.已知A、B、C三地在同一直线上,D地在A地的北偏东45∘方向,在B地的正北方向,在C地北偏西60∘方向,C地在A地的北偏东75∘方向,B、D两地相距10km.如果该公路每公里造价为2000万元,求该公路全长的造价是多少万元?(用根号表示)在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF // MN,小聪在河岸MN上点A处测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30∘方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度.(结果保留根号)23.有一款如图(1)所示的健身器材,可通过调节AB的长度来调节椅子的高度,其平面示意图如图(2)所示,经测量,AD与DE的夹角为75∘,AC与AD的夹角为45∘,且DE // AB.现调整AB的长度,当∠BCA为75∘时测得点C到地面的距离为25cm.请求出此时AB的长度(结果保留根号).。
人教版数学九年级下册第28章28.2 解直角三角形及其应用2

锐角三角函数
28.2.2
应用举例
知识回顾
利用解直角三角形解决实际问题的一般过程:
实际问题
数学问题
选用适当的锐角三角 函数解直角三角形
实际问题的答案
数学问题的答案
学习目标
1.巩固解直角三角形的有关知识. 2.能运用解直角三角形的知识解决有关仰角和俯角 的实际问题,在解题过程中进一步体会数形结合、 转化、方程的数学思想,并从这些问题中归纳出常 见的基本模型及解题思路.
课堂导入
某探险者某天到达如图所示的点 A 处时,他准备估算出自 己离海拔 3500 m 的山峰顶点B处的水平距离.他能想出一个 可行的办法吗?
B.
.
.A
新知探究
知识点1:解与仰俯角有关的问题
平时观察物体时,我们的视线相对于水平线来说可有几
种情况?
铅垂线 视线
三种:重叠、向上和向下. 眼睛
水平线
视线
新知探究
在视线与水平线所成的角中,视线在水平线上方时,视线
与水平线所成的角叫仰角,视线在水平线下方时,视线与 水平线所成的角叫俯角.
铅垂线
视线
眼睛
仰角 俯角
水平线
视线
新知探究
例4 热气球的探测器显示,从热气球看 一栋高楼顶部的仰角为30°,看这栋楼底 部的俯角为60°,热气球与楼的水平距离 为 120 m,这栋楼有多高(结果取整数).
16. 人的本性就是贪婪,但没有贪婪社会就不会进步。 14 、乐学实学,挑战高考;勤勉向上,成就自我。 15 、总有一个人他教会你成长,然后又独自离开。 10 、当你再也没有什么可以失去的时候,就是你开始得到的时候。 16) 人生只有走出来的美丽,没有等出来的辉煌。在人生的道路上,即使一切都失去了,只要一息尚存,你就没有丝毫理由绝望。因为失去的 一切,又可能在新的层次上复得。
2023学年人教版九年级数学下册《28-2解直角三角形及其应用》应用解答题专题提升训练(附答案)

2022-2023学年人教版九年级数学下册《28.2解直角三角形及其应用》应用解答题专题提升训练(附答案)1.某小区准备购入一架滑梯供小区儿童使用,物业选定了左图的滑梯,但受小区儿童区域场地的限制,需知晓滑梯的水平长度.滑梯的截面如右图所示,已知梯子AE长度为3m,坡度为57°,顶台DE∥AB,且长度为1m,滑坡BD的坡度i=1:3.2,滑梯的缓冲长度BC为1.5m,求滑梯的水平长度AC.(结果精确到0.1m.参考数据:sin57°≈0.84,cos57°≈0.55,tan57°≈1.54)2.如图是一防洪堤背水坡的横截面图,斜坡AB的长为18m,它的坡角为45°.为了提高该堤的防洪能力,现将背水坡改造成坡度为的斜坡AD,在CB方向距点B处9m 处有一座房屋.(参考数据;)(1)求∠DAB的度数;(2)在背水坡改造的施工过程中,此处房屋是否需要拆除?3.如图(1)是一天桥的梯步图,为了方便残疾人出行,准备对梯步进行改建降低坡度,绘制了如图(2)的侧面示意图,点A为梯步顶端,点C为梯步底端,AB垂直于水平地面BC,并测得∠ACB=40°,CB=5米.要使改建后的梯步与水平面的夹角∠ADC=36°,求梯步底端向外延伸的长度DC(精确到0.1米,sin36°≈0.588,tan36°≈0.727,cos40°≈0.766,tan40°≈0.839).4.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B取∠ABD=120°,BD=400米,∠D=30°.那么另一边开挖点E离D多远正好使A、C、E三点在一直线上(≈1.732,结果精确到1米)?5.高淳固城湖大桥采用H型塔型斜拉桥结构(如甲图),图乙是从图甲抽象出的平面图.测得拉索AB与水平桥面的夹角是45°,拉索CD与水平桥面的夹角是65°,两拉索顶端的距离AC为2米,两拉索底端距离BD为10米,请求出立柱AH的长(结果精确到0.1米).(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)6.如图,某水库大坝的横截面是梯形,其迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝的高为20m,坝顶CD的宽为10m.求大坝横截面的周长.7.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:≈1.414,≈1.7328.浮式起重机是海上打捞、海上救援和海上装卸的重要设备(如图①),某公司的浮式起重机需更换悬索,该公司设计了一个数学模型(如图②),测量知,∠A=30°,∠C=49°,AB=60m.请你利用以上数据,求出悬索AC和支架BC的长(结果取整数).参考数据:≈1.73,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15..9.如图,AE是位于公路边的电线杆,高为12m,为了使拉线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根为6m的水泥撑杆BD,用于撑起电线.已知两根杆子之间的距离为8m,电线CD与水平线AC的夹角为60°.求电线CDE的总长L(A、B、C三点在同一直线上,电线杆、水泥杆的大小忽略不计).10.如图,我市常璩广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5m,在C点上方E处加固另一条钢缆ED,钢缆ED与地面夹角为60°,现在要在EC 处放置一个广告牌,请问广告牌EC的高度为多少?(sin40°≈0.6,cos40°≈0.8,tan40°≈0.8)11.如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm.使用时发现:光线最佳时灯罩BC与水平线所成的角为25°,求光线最佳时灯罩顶端C到桌面的高度CD的长.【参考数据:sin25°=0.42,cos25°=0.91,tan25°=0.47】.12.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角α;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)13.如图,幼儿园为了加强安全管理,决定将园内的滑滑梯的倾角由45°降为30°,已知原滑滑梯AB的长为5m,点D,B,C在同一水平地面上.(1)改善后滑滑梯会加长多少?(精确到0.01m)(2)若滑滑梯的正前方能有3m长的空地就能保证安全,原滑滑梯的前方有6m长的空地,像这样改造是否可行?说明理由(参考数据:=1.414,=1.732,=2.449)14.如图,身高1.75m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度(∠A=30°),已知她与树之间的距离为5m,那么这棵树大约有多高?(结果精确到0.1m)15.一灯柱AB被一钢缆CD固定,CD与地面成45°夹角,且BD=5m,现再在C点上方2m处加固另一根钢缆ED,那么钢缆ED的长度为多少?(结果保留根号)16.如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MB=m米,梯子的倾斜角度∠MCB=45°.若梯子斜靠在对面墙上,梯子的倾斜角度∠NCA=60°.试求该房间的宽和梯子的长度.17.如图,在一个坡角为30°的斜坡上有一棵树,高为AB,当太阳光与水平面75°角时.测得该树坡上的树影BC的长为4()米.求树高.18.如图,为迎接全国文明城市检查,某单位准备在一斜坡EF上安装衣服悬挂“社会主义核心价值观”宣传牌的金属架A﹣C﹣B,若CA与地面垂直,斜坡的坡角∠E=30°,∠C=45°,小王测得从A到B的距离是5m,已知每米金属架106元,请你帮该单位算一下安装这副金属架共需多少元(参考数据:≈1.414,≈1.732,≈2.236,≈2.449,结果保留整数).19.海绵城市是新一代城市雨洪管理概念,下雨时通过植被、下沉式绿地、渗透塘等设施吸水、蓄水、渗水、净水,需要时将蓄存的水“释放”并加以利用.我市是全国首批16个海绵城市建设试点城市之一,其中位于梦溪路与滨水路交界处的海绵主题公园,既是周边汇水区雨洪管理的一个有机模块,也是立体化展示海绵技术的科普公园,园区内有一块下沉式绿地(四边形ABCD),经测量,AB∥CD,AB=BC=20米,∠B=60°,∠D =45°,求该绿地边界的周长(结果保留根号).20.倡导“低碳环保”让“绿色出行”成为一种生活常态.嘉嘉买了一辆自行车作为代步工具,各部件的名称如图1所示,该自行车的车轮半径为30cm,图2是该自行车的车架示意图,立管AB=27cm,上管AC=36cm,且它们互相垂直,座管AE可以伸缩,点A,B,E在同一条直线上,且∠ABD=75°.(1)求下管BC的长;(2)若后下叉BD与地面平行,座管AE伸长到18cm,求座垫E离地面的距离.(结果精确到1cm,参考数据sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)参考答案1.解:作ME⊥AC于M,DN⊥AC于N,则四边形MNDE为矩形,则MN=DE=1,EM=DN,在Rt△AEM中,∠EAM=57°,AE=3,∴EM=AE×sin57°≈3×0.84=2.52(m),AM=AE×cos57°≈3×0.55=1.65(m),在Rt△DNB中,i=1:3.2,即=,∴BN=2.52×3.2=8.064(m),又∵BC=1.5m,∴AC=AM+MN+NB+BC=1.65+1+8.064+1.5=12.214≈12.2(m),答:AC的长度约为12.2m.2.解:(1)∵坡度为的斜坡AD,∴tan∠ADC===,∴∠ADC=30°,∴∠DAC=60°,∵AB的坡角为45°,∴∠BAC=∠ABC=45°,∴∠DAB=60°﹣45°=15°;(2)∵AB=18m,∠BAC=∠ABC=45°,∴BC=AC=×18=9(m),∴tan30°===,解得:DC=9,故DB=DC﹣BC=9﹣9≈9.324(米),∵9.324>9,∴在背水坡改造的施工过程中,此处房屋需要拆除.3.解:由题意可得:tan40°==≈0.839,解得:AB≈4.195,tan36°==≈0.727,∴DB≈5.77(米),故DC=DB﹣BC=5.77﹣5≈0.8(米),答:梯步底端向外延伸的长度约为0.8米.4.解:∵∠ABD=120°,∠D=30°,∴∠AED=120°﹣30°=90°,在Rt△BDE中,BD=400m,∠D=30°,∴BE=BD=200m,∴DE==200≈346(m),答:另一边开挖点E离D346m,正好使A,C,E三点在一直线上.5.解:设AH的长为x米,则CH的长为(x﹣2)米.在Rt△ABH中,AH=BH•tan45°,∴BH=x,∴DH=BH﹣BD=x﹣10;在Rt△CDH中,CH=DH•tan65°,∴x﹣2=2.14(x﹣10),解得:x=17.01≈17.0.答:立柱AH的长约为17.0米.6.解:∵DE=20m,DE:AE=4:3,∴AE=15m,∴AD==25(m),∵CF=DE=20m,CF:BF=1:2,∴BF=40m,∴BC==20(m),则周长C=AD+DC+BC+AB=(100+20)m,答:大坝横截面的周长为(100+20)m,7.解:在Rt△CDE中,∵sin∠C=,cos∠C=∴DE=sin30°×DC=×14=7(m),CE=cos30°×DC=×14=7≈12.124≈12.12,∵四边形AFED是矩形,∴EF=AD=6m,AF=DE=7m在Rt△ABF中,∵∠B=45°∴DE=AF=7m,∴BC=BF+EF+EC≈7+6+12.12=25.12≈25.1(m)答:该坝的坝高和坝底宽分别为7m和25.1m.8.解:过点B作BD⊥AC于点D,∵∠A=30°,AB=60,∴BD=AB=30,∴AD=BD=30,在Rt△CBD中,tan49°=,sin49°=,∴CD≈26,BC≈40,∴AC=AD+CD≈78.9.解:作DF⊥AE于点F,则四边形ABDF是矩形.DF=AB=8(米),EF=AE﹣AF=AE﹣BD=12﹣6=6(m).在直角△DEF中,DE===10(m).在直角△BCD中,sin∠DCB=,则DC==BD=4(m).则电线CDE的总长L=DE+DC=10+4(m).答:电线CDE的总长L是(10+4)m.10.解:在Rt△CDB中,tan∠BDC=,∴BC=BD tan40°≈4,在Rt△BDE中,tan∠BDE=,∴BE=BD tan∠BDE=5,∴CE=BE﹣BC≈4.66(m),答:广告牌EC的高度约为4.66m.11.解:由题意得:AD⊥CD,过点B作BF⊥CE,BG⊥EA,∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为25°,∵CF⊥FB,即三角形CFB为直角三角形,∴sin25°==,∴CF=30×0.42=12.6(cm),∴CD=CF+FD+2=CF+AB+2=12.6+40+2=54.6(cm)答:光线最佳时灯罩顶端C到桌面的高度CD的长54.6cm.12.解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角α为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6米,∵=,∴AH=CH=6≈10.392(米),∴AB=AH﹣BH=6﹣6=4.392(米),∵3+4.392>7,∴文化墙需要拆除.13.解:(1)Rt△ABC中,AC=AB×sin45°=(m),Rt△ADC中,BC=AB×cos45°=(m),AD==5(m),∴AD﹣AB≈2.07(m).改善后滑滑梯会加长2.07 m;(2)这样改造能行.在直角△ACD中,CD==(m),因为CD﹣BC≈2.59(m),而6﹣3>2.59.因此,像这样改造是可行的.14.解:由题意可得:tan30°===,解得:CD=≈2.89(m),故CE=DC+DE=2.89+1.75≈4.6(m),答:这棵树大约有4.6m.15.解:∵在Rt△BCD中,∠CBD=90°,∠CDB=45°,BD=5,∴BC=BD=5.∵在Rt△BED中,∠EBD=90°,BE=BC+CE=5+2=7,BD=5,∴ED===(m).答:钢缆ED的长度为m.16.解:∵CB⊥MB,∠BCM=45°,∴∠BMC=45°,∵MB=m米,∴CB=m米,∴MC===m米,∵NC=CM,∴NC=m米,∵∠NCA=60°,∴∠ANC=30°,∴AC=m米,∴AB=AC+BC=m+m=m(米);答:该房间的宽是m米,梯子的长度是m米.17.解:过点B作BE⊥AC于E,以B为顶点,BE为一边,在∠ABE的内部作∠EBN=60°,交AE于N.∵∠D=30°,∠AMH=75°,∴∠DCM=∠AMH﹣∠D=45°,∴∠ECB=∠DCM=45°.在Rt△BCE中,∵∠BEC=90°,∠ECB=45°,BC=4(﹣1),∴BE=CE=BC=2﹣2,在Rt△BNE中,∵∠BEN=90°,∠EBN=60°,∴∠BNE=30°,∴EN=BE=6﹣2,BN=2BE=4﹣2,∵∠BNE=30°,∠A=90°﹣∠AMH=15°,∴∠ABN=∠BNE﹣∠A=15°,∴AN=BN=4﹣4,在Rt△ABE中,∵∠BEA=90°,BE=2﹣2,AE=2+2,∴AB==8(米),答:树高为8米.18.解:延长CA至D,则CD⊥ED,作BG⊥AC,∵∠E=30°,∴∠CAB=60°,则∠ABG=30°,∵AB=5,∴AG=AB=,∵∠C=45°,∴CG=BG=AG=,∴BC=BG=,∴AC+BC=AG+CG+BC=++≈2.5+4.33+6.12=12.95米,∴安装这副金属架共需12.95×106≈1373元.19.解:连接AC,过点A作AE⊥CD,垂足为E,∵AB=BC,∠B=60°,∴△ABC是等边三角形,∴AC=BC=20米,∠ACB=60°,∵AB∥CD,∴∠BCD=180°﹣∠B=120°,∴∠ACD=∠BCD﹣∠ACB=60°,在Rt△ACE中,AE=AC•sin60°=20×=10(米),CE=AC•cos60°=20×=10(米),在Rt△AED中,∠D=45°,∴DE===10(米),AD===10(米),∴AB+BC+CD+AD=20+20+10+10+10=(50+10+10)米,∴该绿地边界的周长为(50+10+10)米.20.解:(1)∵BA⊥AC,∴∠BAC=90°,在Rt△ABC中,AB=27cm,AC=36cm,∴BC===45(cm),∴下管BC的长为45cm;(2)过点E作EF⊥BD,垂足为F,∵AE=18cm,AB=27cm,∴BE=AE+AB=45cm,在Rt△BEF中,∠ABD=75°,∴EF=BE•sin75°≈45×0.97=43.65(cm),∴座垫E离地面的距离=43.65+30≈74(cm),∴座垫E离地面的距离约为74cm.。
人教版九年级下册数学 28. 2 解直角三角形及应用 (共15张PPT)

作业:
如右下图,海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B在海船的北偏西45方向,求此时灯塔B 到C处的距离. 解:如图,过B点作BD⊥AC于D ∴∠ABD=60°,∠DCB=90°-45°=45° 设BD=x,则CD=BD=x 在Rt△ABD中,AD=x·tan60°= x 在Rt△BDC中, BC= BD= X 又AC=5×2=10,AD+CD=AC ∴ x +x=10 ,得x=5( -1) ∴BC= •5( -1)=5( - ) (海里), 答:灯塔B距C处5( - ) 海里。
28.2.2 解直角三角形的应用
一、创设情景,导入新课
画出方位角(表示东南西北四个方向的)并依次画出表示东南 方向、西北方向、北偏东60度、南偏东30度方向的射线.
西
北
北
东 西
东
南
南
合作探究 达成目标
例5 如图,一艘海轮位于灯塔P的北偏 东65 方向,距离灯塔80海里的A处,它
65°
A
沿正南方向航行一段时间后,到达位于 灯塔P的南偏东34 方向上的B处.这时, P
练习: 1、如图:一艘轮船由海平面上A地出发 向南偏西400的方向行驶40海里到达B地, 再由B地向北偏西200的方向行驶40海里 到达C地,则A,C两地的距离为 ___ _ 。
北
C A
北
D
B
2、如图,一艘海轮位于灯塔P的东北方向, 距离灯塔40 2 海里的 A处,它沿正南方向航行 一段时间后,到达位于灯塔P 的南偏东3 0 ° 方 向上的 B处,则海轮行驶的路程 AB 为多少海 里(结果保留根号).
解:在Rt△APC中, ∵AP=40 ,∠APC=45° ∴AC=PC=40 在Rt△BPC中, ∵∠PBC=30°,∴∠BPC=60° ∴BC=PC•tan60°=40× =40 ∴AB=AC+BC=40+40 (海里) 答:海轮行驶的路程AB为 (40+40
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)点E是线段AB上一动点,点F是线段OA上一动点,连接EF,线段EF的延长线与线段OM交于点G,当 BEF=2 BAO时,是否存在点E,使得3GF=4EF?若存在,直接写出点E的坐标;若不存在,请说明理由.
名称
红外线体温检测仪
安装示意图
技术参数
探测最大角:∠OBC=73.14°
探测最小角:∠OAC=30.97°
安装要求
本设备需安装在垂直于水平地面AC的支架CP上
根据以上内容,解决问题:
学校要求测温区域的宽度AB为4m,请你帮助学校确定该设备的安装高度OC.
(结果精确到0.1m,参考数据:sin73.14°≈0.957,cos73.14°≈0.290,tan73.14°≈3.300,sin30.97°≈0.515,cos30.97°≈0.857,tan30.97°≈0.600)
A.6.29B.4.71C.4D.5.33
4.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则弦BC的长为()
A.3AB的坡比为1: ,坝高BC=3m,则AB的长度为( )
A.6mB.3 mC.9mD.6 m
(1)当 时,求 的长度.
(2)如图,延长 、 交于点 ,求证: ;
(3)如图,连接 ,则 的最小值是.
10.如图,梯形ABCD中,AD∥BC,AD=2cm,AB=BC=8cm,CD=10cm.动点P从点B出发,以1cm/s的速度,沿B-A-D-C方向向点C运动;动点Q从点C出发,以1cm/s的速度,沿C-D-A方向向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点停止时另一个点同时停止,设运动时间为t秒.问:
22.我市里运河有一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,文化墙PM在天桥底部正前方8米处(PB的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1: .有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM是否需要拆除?请说明理由.(参考数据: 1.414, 1.732)
A.2×( )2020B.2×( )2021C.( )2020D.( )2021
3.如图,在国旗台DF上有一根旗杆AF,国庆节当天小明参加升旗仪式,在B处测得旗杆顶端的仰角为37°,小明向前走4米到达点E,经过坡度为1的坡面DE,坡面的水平距离是1米,到达点D,测得此时旗杆顶端的仰角为53°,则旗杆的高度约为()米.(参考数据: , , )
19.(1)在△ABC中,∠B=45°,cosA .求∠C的度数.
(2)在直角三角形ABC中,已知sinA ,求tanA的值.
20.如图,在Rt△ABC中,∠C=90˚,tanA ,BC=6,求AC的长和sinA的值.
21.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图.其中,AB⊥BD.∠BAD=18°,C在BD上,BC=0.5m.车库坡道入口上方要张贴限高标志.以便告知驾驶员所驾车辆能否安全驶入.为标明限高,请你根据该图计算CE的长度(即点C到AD的距离).(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.33)(结果精确到0.1m)
13.在平面直角坐标系xOy中,对于点P(a,b)和正实数k,给出如下定义:当ka2+b>0时,以点P为圆心,ka2+b为半径的圆,称为点P的“k倍雅圆”
例如,在图1中,点P(1,1)的“1倍雅圆”是以点P为圆心,2为半径的圆.
(1)在点P1(3,1),P2(1,﹣2)中,存在“1倍雅圆”的点是.该点的“1倍雅圆”的半径为.
29.如图,Rt△ABC中,∠C=90°,tan∠B ,AB=10,则AC=__.
【答案与解析】
1.D
【解析】
连接BD交AC于点O,由菱形的性质得出AB=BC=CD=AD,AC⊥BD,OA=OC= AC=2 ,∠ABD=∠CBD= ∠ABC=60°,求出∠BAO=30°,由直角三角形的性质得OB= OA=2,AB=2OB=4,即可得出答案.
15.如图1,在Rt△ABC中,点C为直角顶点,点D为AB上的一点,且AB=10.
(1)当CD⊥AB时,求证:BC2=AB·BD;
(2)如图2,当点D为AB的中点时,AC=8,点E是边BC上的动点,连结DE,作DF⊥DE交AC于点F,连结EF、CD交于点G,当EG∶FG=1∶2时,求线段CE的长;
(3)当∠CAB=15°时,点P是AC上一点,求 PA+PB的最小值.
27.如图所示的是两个同心圆.大圆的直径是 寸,连接两圆上线段的端点的孔都等分圆周.且 和 的长度相等.
(1)图中小圆的直径是__________寸;
(2)BD的长度为__________寸.
28.如图是某支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=α,若AO=85cm.BO=DO=65cm.问:当α=60°时,较长支撑杆的端点A离地面的高度h约为____________cm.(结果保留到0.01, ≈1.732)
17.如图,在大楼AC的正前方有一个舞台,舞台前的斜坡DE=4米,坡角∠DEB=41°,小红在斜坡下的点E处测得楼顶A的仰角为60°,在斜坡上的点D处测得楼顶A的仰角为45°,其中点B,C,E在同一直线上求大楼AC的高度.(结果精确到整数.参考数据: ≈1.73,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)
(1)当点P在边BA上运动,t=______时,直线PQ将梯形ABCD的周长平分;
(2)在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,求出所有符合条件的t的值;若不存在,请说明理由;
(3)在运动过程中,是否存在这样的,使得以P、D、Q为顶点的三角形恰好是以DQ为腰的等腰三角形?若存在,求出所有符合条件的t的值或取值范围.
(1)求点 的坐标和 的长.
(2)在点 的整个运动过程中,
①求点 的坐标(用含 代数式表示).
②若 ,以 为直角顶点作等腰直角 (点 按逆时针顺序排列).当 与 的一边平行时,求所有满足条件的 的值.
8.如图1,在平面直角坐标系 中,矩形 的边 , ,若不改变矩形 的形状和大小.
(1)当矩形顶点 在 轴的正半轴上左右移动时,矩形的另一个顶点 始终在 轴的正半轴上随之上下移动.当 时,求点 的坐标.
(3)在点 从点 返回点 的运动过程中,设 的面积为 平方单位.
①求 与 之间的函数关系式.
②当 最大时,过点 作直线交 于点 ,将 中沿直线 折叠,使点 落在直线 上,求折叠后的 与 重叠部分的面积.
7.如图,在平面直角坐标系中,直线 分别交 轴、 轴于点 ,交直线 于点 .动点 在直线 上以每秒3个单位的速度从点 向终点 运动,同时,动点 以每秒 个单位的速度从点 沿 的方向运动,当点 到达终点 时,点 同时停止运动,设运动时间为 秒.
②点D是直线AB上一点,点D的“ 倍雅圆”的半径为R,是否存在以点D为圆心, 为半径的圆与直线l有且只有1个交点,若存在,求出点D的坐标;若不存在,请说明理由.
14.为进一步加强疫情防控工作,避免在测温过程中出现人员聚集现象,某学校决定安装红外线体温监测仪,该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温,无需人员停留和接触,安装说明书的部分内容如表.
(2)如图2,点M是y轴正半轴上的一个动点,点N在第一象限内,且满足∠MON=30°,试判断直线ON与点M的“2倍雅圆”的位置关系,并证明;
(3)如图3,已知点A(0,3),B(﹣1,0),将直线AB绕点A顺时针旋转45°得到直线l.
①当点C在直线l上运动时,若始终存在点C的“k倍雅圆”,求k的取值范围;
(2)如图2、3,长方形 中, 在 轴上,且 与 重合.将矩形折叠,折痕 的一个端点 在边 上,另一个端点 在边 上,且 ,顶点 的对应点为 ,连接 .
①如图2,当顶点 的对应点 落在边 上时,求折痕 的长.
②如图3,当顶点 的对应点 落在长方形内部, 的纵坐标为6,求 的长.
9.如图,在菱形 中, , , 为对角线 上一点( 不与点 、 重合),过点 作 ,使得 ,连接 、 、 .
第二十八章第2节《解直角三角形及其应用》提高训练 (31)
一、单选题
1.如图,在菱形ABCD中,∠ABC=120°,对角线AC=4 ,则菱形ABCD的周长为( )
A.12 B.20C.8 D.16
2.如图所示,把多块大小不同的30°角三角板,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与x轴重合且点A的坐标为(2,0),∠ABO=30°,第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交x轴于点B1,第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交y轴于点B2,第四块三角板斜边B2B3与第三块三角板的斜边B1B2垂直且交x轴于点B3.按此规律继续下去,则线段OB2020的长为( )
二、解答题
6.如图,在 中, , , .点 从点 出发,以每秒1个单位长度沿 的方向运动;点 从点 出发,以每秒2个单位沿 的方向运动,到达点 后立即原速返回,若 、 两点同时运动,相遇后同时停止,设运动时间为 秒.
(1)当点 与点 相遇时,求 的值.
(2)在点 从点 到点 的运动过程中,当 为何值时, 为等腰三角形?
三、填空题
23.一座建于若干年前的水库大坝的横截面如图所示,目前坝高4米,现要在不改变坝高的情况下修整加固,将背水坡AB的坡度由1:0.75改为1:2,则修整后的大坝横截面积增加了_____平方米.
24.如图,菱形ABCD的对角线AC、BD相交于点O,OH⊥AB于H.若菱形ABCD的周长为16,∠BAD=60°,则OH=_____.