北师大版八年级数学下册 3 4简单的图案设计 同步练习 (含答案)

合集下载

北师大版八年级数学下册3.4《简单的图案设计》习题含答案

北师大版八年级数学下册3.4《简单的图案设计》习题含答案

3.4《简单的图案设计》习题含答案一、选择题1.在玩俄罗斯方块游戏时,底部已有的图形如图所示,接下去出现如下哪个形状时,通过旋转变换后能与已有图形拼成一个中心对称图形()第1题图A.B.C.D.2.经过平移或旋转不可能将甲图案变成乙图案的是()A.B.C.D.3.下列四个图形中,若以其中一部分作为基本图案,无论用旋转还是平移都不能得到的图形是()A.B.C.D.4.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30°B.45°C.60°D.90°二、填空题5.如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转次,每次旋转度形成的.第5题图6.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转所组成,这四次旋转中,旋转角度最小是度.第6题图7..在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该正方形的序号是.第7题图8.观察下列图象,与图1中的三角形相比,图2,图3,图4的三角形都发生了一些变化,若图1中P点的坐标为(a,b),则这个点在图2,图3,图4对应的P1,P2,P3对应的坐标分别为,,.图1 图2 图3 图4第8题图三、解答题9.某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装修地面,现已加工成如图1所示的等腰直角三角形,王聪同学设计了如图2所示的四种图案.第9题图(1)你喜欢哪种图案?并简述该图案的形成过程.(2)请你利用所学过的知识再设计一幅与上述不同的图案.10.如图的雪花图案可以看成是基本图案(画出示意图)绕中心每次旋转60°,旋转次得到;也可以看成是基本图案(图1)绕中心每次旋转°,旋转次得到;还可以看成是基本图案(图2)绕中心旋转°得到.第10题图11.图中的图形均可以由“基本图案”通过变换得到.( 填序号)第11题图(1)可以通过平移变换但不能通过旋转变换得到的图案是;(2)可以通过旋转变换但不能通过平移变换得到的图案是;(3)既可以通过平移变换,也可以通过旋转变换得到的图案是.12.利用平移、旋转、轴对称分别分析下面两个图案的形成过程.( 写出任意一种形成过程即可)第12题图13.图案设计,请你用○、△、材料拼成一幅你认为最漂亮的图形.3.4《简单的图案设计》习题答案1.D 解析:如图所示:只有选项D可以与已知图形组成中心对称图形.2.C解析:选项A,B,D通过旋转或平移,和乙图各点对应,均正确;C经过平移或旋转变换不可能将甲图案变成乙,故错误.3.C 解析:选项A可以通过平移得到,故本选项错误;选项B可以通过旋转得到,故本选项错误;选项C符合题意,故本选项正确.选项D可以通过平移得到,故本选项错误.4.C 解析:每一个图案都可以被通过中心的射线平分成6个全等的部分,则旋转的角度是60度.5.7;45.解析:如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,6.72°.解析:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是360°÷5=72°.7.②解析:在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该正方形的序号是②.8.(a+1,b﹣1),(a,﹣b),(a,b).解析:若图1中P点的坐标为(a,b),则这个点在图2,图3,图4对应的P1,P2,P3对应的坐标分别为:(a+1,b﹣1),(a,﹣b),a,b).9.解:(1)答案不唯一.如:我喜欢图案(4).图案(4)的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°得到.(2)如图所示:.10.,5,120,2,180.解析:∵菱形的每一个内角为60°,∴360°÷60°=6,∴旋转5次基本图案1,中心角为120°,∴360°÷120°=3,∴旋转2次基本图案2,每个中心角为180°,∴360°÷180°=2,∴旋转1次,180°.11.解:(1)可以通过平移变换但不能通过旋转变换得到的图案是①④; (2)可以通过旋转变换但不能通过平移变换得到的图案是②⑤;(3)既可以通过平移变换,也可以通过旋转变换得到的图案是③.12.解:图1可以由一个三角形依次旋转90°,180°,270°而形成;图2可以由一个十字花图案连续平移得到.( 答案不唯一 )13.解:(题答案不唯一).。

北师版初中八年级数学下册3.4《简单的图案设计》同步练习题

北师版初中八年级数学下册3.4《简单的图案设计》同步练习题

3.4 简单的图案设计一、仔仔细细,记录自信1.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度正确的为()A.30B.60C.120D.1802.将一张正方形纸片沿如图1所示的虚线剪开后,能拼成下列四个图形,其中是中心对称图形的是()3.某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是()二、拓广探索,游刃有余4.用4块如所示的瓷砖拼成一个正方形,使所得正方形(包括色彩因素)分别是具有如下对称性的美术图案:(1)只是轴对称图形而不是中心对称图形;(2)既是轴对称图形又是中心对称图形.画出符合要求的图形各两个.5.请你为班级设计一个具有中心对称特征的漂亮的班徽,并对你的设计方案加以解释.6.观察下列图案,你能利用图2来分析图3和图4是如何形成的吗?参考答案一、1. D 2.D 3.B二、4.答案不惟一,例如:5.略.6.解:图3是将图2进行连续的平移得到的;图4是将图2进行连续的平移、旋转再平移得到的.制定学习计划有什么好处?一、计划是实现目标的蓝图。

目标不是什么花瓶,你需要制定计划,脚踏实地、有步骤地去实现它。

通过计划合理安排时间和任务,使自己达到目标,也使自己明确每一个任务的目的。

二、促使自己实行计划。

学习生活是千变万化的,它总是在引诱你去偷懒。

制定学习计划,可以促使你按照计划实行任务,排除困难和干扰。

三、实行计划是意志力的体现。

持实行计划可以磨练你的.意志力,而意志力经过磨练,你的学习收获又会更一步提升。

这些进步只会能使你更有自信心,取得更好的成功。

四、有利于学习习惯的形成。

按照计划行事,能使自己的学习生活节奏分明。

从而,该学习时能安心学习,玩的时候能开心地玩。

久而久之,所有这些都会形成自觉行动,成为好的学习习惯。

北师大版八年级(下) 中考题同步试卷:3.4 简单的图案设计(01)

北师大版八年级(下) 中考题同步试卷:3.4 简单的图案设计(01)

且每个小正方形的边长都为 1,完成下列问题:
(1)图案设计:先作出四边形关于直线 l 成轴对称的图形,再将你所作的图形和原四边
形绕 0 点按顺时针旋转 90°;
(2)完成上述图案设计后,可知这个图案的面积等于

14.在数学活动课上,王老师发给每位同学一张半径为 6 个单位长度的圆形纸板,要求同学 们: (1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板 分成面积相等的四部分; (2)设计的整个图案是某种对称图形. 王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.
; 15.

声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
日期:2019/3/15 10:03:01; 用户:qgjyus er10 506;邮箱:q gjyus er10506.219 57750;学号 :21985514
第7页(共7页)
格点正方形的作法共有( )
A.2 种
B.3 种
C.4 种
D.5 种
二、填空题(共 4 小题)
7.以如图(1)(以 O 为圆心,半径为 1 的半圆)作为“基本图形”,分别经历如下变换能
得到图(2)的有
(只填序号,多填或错填得 0 分,少填个酌情给分).
①只要向右平移 1 个单位;
②先以直线 AB 为对称轴进行翻折,再向右平移 1 个单位;
D.黑(3,2),白(3,3)
4.视力表的一部分如图,其中开口向上的两个“E”之间的变换是( )
第1页(共7页)
A.平移
B.旋转
C.对称
D.位似
5.如图①是 3×3 正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称

北师大版初中数学八年级下册《3.4 简单的图案设计》同步练习卷(含答案解析

北师大版初中数学八年级下册《3.4 简单的图案设计》同步练习卷(含答案解析

北师大新版八年级下学期《3.4 简单的图案设计》同步练习卷一.选择题(共2小题)1.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换,例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.現有10×10的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.7B.8C.9D.102.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13B.14C.15D.16二.填空题(共8小题)3.如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转次,每次旋转度形成的.4.如图的组合图案可以看作是由一个正方形和正方形内通过一个“基本图案”半圆进行图形的“运动”变换而组成的,这个半圆的变换方式是.5.如图:已知Rt△ABC,对应的坐标如图,请利用学过的变换(平移、旋转、轴对称)知识经过若干次图形变化,使得点A与点E重合、点B与点D重合,写出一种变化的过程.6.如图,在平面直角坐标系xOy中,正方形OABC的边长为1,点D,E分别在OA,OC上,OD=CE,△OCD可以看作是△CBE经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△CBE得到△OCD的过程:.7.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程8.如图,在平面直角坐标系xOy中,△O'A'B'可以看作是△OAB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OAB得到△O'A'B'的过程:.9.如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD的过程:.10.如图,在平面直角坐标系xOy中,△CDE可以看作是△AOB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△AOB得到△CDE的过程:.三.解答题(共40小题)11.已知甲、乙是两个大小完全相同的正方形,请你取甲、乙各两个按要求拼成一个大正方形.(1)阴影部分组成的图案是轴对称图形,但不是中心对称图形(在图1中完成拼图);(2)阴影部分组成的图案是中心对称图形,但不是轴对称图形(在图2中完成拼图);(3)阴影部分组成的图案既是中心对称图形,又是轴对称图形(在图3中完成拼图).12.如图是网格中由五个小正方形组成的图形,根据下列要求画图(涂上阴影).(1)图①中,添加一块小正方形,使之成为轴对称图形,且有两条对称轴;(2)图②中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴(画出一个即可);(3)图③中,添加一块小正方形,使之成为中心对称图形,且不是轴对称图形.13.如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在下面每个图形中,选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形.14.(1)如图1,直线a表示一条公路,点A、B表示两个乡镇.如果要在公路旁(直线a上)修一个车站S,使得AS+BS最小,请作出点S.(用尺规作图法,保留作图痕迹,不要求写作法);(2)如图2,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.将△ABC向左平移6个单位长度得到△A1B1C1;将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.15.如图,在平面直角坐标系中,有一Rt△ABC,且点A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)旋转中心的坐标是,旋转角的度数是.(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°,180°的三角形.(3)利用变换前后所形成的图案,可以证明的定理是.16.如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.17.(1)如图(a)在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号可以为.(2)如图(b),在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.作△ABC关于点O的中心对称图形△A1B1C1.18.在平面直角坐标系中,小方格都是边长为1的正方形,△ABC≌△DEF,其中点A、B、C、都在格点上,请你解答下列问题:(1)如图(a)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号为.(2)画出△ABC关于y轴对称的△A1B1C1;画出△ABC绕点P(1,﹣1)顺时针旋转90°后的△A2B2C2;(3)△A1B1C1与△A2B2C2成中心对称吗?若成中心对称请你求出对称中心的坐标;若不成,则说明理由.19.如图,在网格中有一个四边形图案.(1)请你分别画出△ABC绕点O顺时针旋转90°的图形,关于点O对称的图形以及逆时针旋转90°的图形,并将它们涂黑;(2)若网格中每个小正方形的边长为1,旋转后点A的对应点依次为A1,A2,A3,求四边形AA1A2A3的面积;(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.20.如图,已知△ABC(1)以△ABC为基本图案,借助旋转、平移或轴对称在图1中设计一个图形,使它是中心对称图形,但不是轴对称图形.(2)以△ABC为基本图案,借助旋转、平移或轴对称在图1中设计一个图形,使它既是轴对称图形又是中心对称图形.21.如下图,在由相同大小的三个小正方形组成的L形图中,请你按要求分别在下图中添画一个同样大小的小正方形,要求:使图1只是轴对称图形但不是中心对称图形;使图2只是中心对称图形但不是轴对称图形;使图3既是轴对称图形但又是中心对称图形.22.如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).(1)画出“基本图形”关于原点O对称的四边形A1B1C1D1;(2)写出点B1的坐标;(3)求四边形A1B1C1D1的面积.23.我们数学上将内角度数小于180°的四边形叫做凹凸四边形,形如图(1),(2),(4)是凸四边形,(3)不是凸四边形.操作:已知如图,两个全等的三角形纸片△ABC和△DEF,其中AB=6,AC=3,BC=4,按照下列要求把这两个三角形纸片无缝拼接,且没有重叠,画出所有可能的示意图,并写出所拼出图形的周长.(1)拼接成轴对称的凸四边形,写出对应的周长.(2)拼接成中心对称的凸四边形,写出对应的周长.24.请你用四块如图1所示的瓷砖图案为“基本单位”,在图2、图3中分别设计出一个正方形的地板图案,使拼铺的图案成轴对称图形或中心对称图形.(要求:两种拼法各不相同,所画图案阴影部分用斜线表示.)25.(1)图1是4×4的正方形网格,请在其中选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.(2)如图2,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.26.课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1.请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”(1)小明的方案是:“先将△ABC向右平移两个单位得到△A2B2C2,再通过旋转得到△A1B1C1”.请根据小明的方案画出△A2B2C2,并描述旋转过程;(2)小红通过研究发现,△ABC只要通过一次旋转就能得到△A1B1C1.请在图中标出小红方案中的旋转中心P,并简要说明你是如何确定的.27.认真观察图(1)﹣(4)中的四个图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征:特征1:;特征2:.(2)请你在图5中设计出你心中最美的图案,使它也具备你所写出的上述特征.28.如图.把边长为2 cm的正方形剪成四个完全重合的直角三角形,请用这四个直角三角形拼成符合下列要求的一个图形.(1)是轴对称图形,但不是中心对称图形的四边形;(2)是中心对称图形,但不是轴对称图形的四边形;(3)既是轴对称图形,又是中心对称图形的四边形;(4)既不是轴对称图形,又不是中心对称图形的四边形.29.(1)如图(a)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是.(2)如图(b),在边长为1个单位长度的小正方形组成的网格中,点A、B、C 都是格点.①将△ABC向左平移6个单位长度得到得到△A1B1C1,并画出△A1B1C1;②将△A1B1C1绕点O按逆时针方向旋转90°得到△A2B2C2,请画出△A2B2C2;③将△A1B1C1绕点O旋转180°得到△A3B3C3,请画出△A3B3C3.30.如图,在5×5方格纸中,点A,B都在小方格的顶点上,按要求画一个四边形ABCD,使它的顶点都在方格的顶点上.(1)在图1中所画的四边形ABCD是中心对称图形,但不是轴对称图形;(2)在图2中所画的四边形ABCD既是轴对称图形,又是中心对称图形.31.按下列要求画图:(1)将①中的图平移至②中的方格中;(2)将平移后的图形沿虚线翻折到③的方格中;(3)将翻折后的图形沿右下角的顶点旋转180度到④的方格中.32.在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.出示意图33.如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼符合要求的图形:(如图)34.用四块如图①所示的瓷砖拼成一个正方形的图案,使拼成的图案成一个轴对称图形(如图②),请你分别在图③、图④中各画一种与图②不同的拼法,要求两种拼法各不相同,且其中至少有一个图形既是中心对称图形,又是轴对称图形.35.下面方格中是美丽可爱的小金鱼,在方格中分别画出原图形向右平移五个格和把原图形以点A为旋转中心顺时针方向旋转90°得到的小金鱼(只要求画出平移、旋转后的图形,不要求写出作图步骤和过程).36.如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在方格纸上将该图形绕点O顺时针依次旋转90°、180°、270°,并画出它变换后的图形,你会得到一个美丽的图形,快来试一试吧!37.观察如图1所示的图形是否有其中一个图形,是另一个图形经旋转得到的.你能分析出图2、图3中旋转的现象吗?38.如图1所示,在7×6的正方形网格中,选取14个格点,以其中三个格点为顶点画出一个△ABC,请你以选取的格点为顶点再画出一个三角形,且分别满足下列条件:(1)图①中所画的三角形与△ABC组成的图形是轴对称图形.(2)图②中所画的三角形与△ABC组成的图形是中心对称图形.(3)图③中所画的三角形与△ABC的面积相等,但形状大小不同.39.如图,在6×6的方格中,点A,O,B都在小方格的顶点上,请在方格中取点C和D,画△AOC和△BOD,使这两个三角形全等.(1)在图1中画出的两个三角形,可以使其中一个三角形通过轴对称得到另一个三角形.(2)在图2中画出的两个三角形,可以使其中一个三角形通过旋转得到另一个三角形.40.阅读下面材料,并解决相应的问题:在数学课上,老师给出如下问题,已知线段,求作线段的垂直平分线.AB AB小明的作法如下:同学们对小明的作法提出质疑,小明给出了这个作法的证明如下:连接AC,BC,AD,BD由作图可知:,AC=BC,AD=BD∴点C,点D在线段的垂直平分线上(依据1:)∴直线就是线段的垂直平分线(依据2:)(1)请你将小明证明的依据写在横线上;(2)将小明所作图形放在如图的正方形网格中,点A,B,C,D恰好均在格点上,依次连接A,C,B,D,A各点,得到如图所示的“箭头状”的基本图形,请在网格中添加若干个此基本图形,使其各顶点也均在格点上,且与原图形组成的新图形是中心对称图形.41.(1)如图1,在圆中画该圆的三条弦,使所得图形既是中心对称图形,又是轴对称图形;(2)如图2,在圆中画该圆的三条弦,使所得图形为轴对称图形,但不是中心对称图形;(3)如图3,在圆中画该圆的三条弦,使所得图形为中心对称图形,但不是轴对称图形.42.现有如图1所示的两种瓷砖,请从这两种瓷砖中各选2块,拼成一个新的正方形地板图案.(1)在图2中设计一个是轴对称图形而不是中心对称图形的正方形地板;(2)在图3中设计一个是中心对称图形而不是轴对称图形的正方形地板;(3)在图4中设计一个既是轴对称图形又是中心对称图形的正方形地板;(注:作图时阴影可用斜线代替.)43.世界数学家大会于2002年在北京举办,大会的会标如图所示,它是由四个全等的直角三角形围成的“弦图”.请你按要求拼图和设计图案.①每个直角三角形的顶点均在方格纸的格点上;②每个直角三角形按原来的尺寸画,且互不重叠;③五个图案互不全等,且不与图1全等.(1)拼图游戏:应用你所学过的图形变换的知识,将四个直角三角形通过平移、旋转、翻折等方法,拼成以下方格纸中要求的四边形;(2)设计图案:用四个直角三角形在下列方格纸中按要求设计另外不同的图案.设计一个既是轴对称图形设计一个是中心对称图形又是中心对称图形的图案但不是轴对称图形的图案.44.作图题:(1)如图,经过平移,小船上的点A移到了点B,作出平移后的小船.(2)在图中作出“三角旗”绕O点按逆时针旋转90°后的图案.45.请你分别在下面三个网格(两相邻格点的距离均为1个单位长度)中,各设计一个图案,要求所设计的图案既是轴对称图形又是中心对称图形,每个图形的面积都等于2,并且各图案不相同,将你设计的图案用铅笔涂黑.46.如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)47.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,其中点A与点P,点B与点Q,点C与点R是对应的点,在这种变换下:(1)直接写出下列各点的坐标①A(,)与P(,);B(,)与Q(,);C(,)与R(,)②它们之间的关系是:(用文字语言直接写出)(2)在这个坐标系中,三角形ABC内有一点M,点M经过这种变换后得到点N,点N在三角形PQR内,其中M、N的坐标M(,6(a+b)﹣10),N (1﹣,4(b﹣2a)﹣6),求关于x的不等式﹣>b﹣1的解集.48.如图1,在平行四边形ABCD中,对角线BD⊥AB,以BD为对称轴将△ABD 翻折,点A的对应点为A′,连接A′,C′,得到图2.推理证明(1)求证:四边形A′BDC是矩形;实践操作(2)在图1中将△ABD或△BDC进行平移、旋转或轴对称变换,重新构造一个特殊四边形.要求:①画出图形,标明字母;②写出构图过程及构造的特殊四边形的名称.(不要求证明)49.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离为个单位长度;点A的对应点为;(2)△AOC与△BOD关于直线对称,则对称轴是;点A的对应点为;(3)△AOC绕原点O顺时针旋转可以得到△DOB,则旋转角度是度,点A与其对应点之间的距离为个单位长度.50.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,AF=AE,已知△ABE≌△ADF.(1)在图中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE变到△ADF 的位置;(2)线段BE与DF有什么关系?证明你的结论.北师大新版八年级下学期《3.4 简单的图案设计》同步练习卷参考答案与试题解析一.选择题(共2小题)1.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换,例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.現有10×10的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.7B.8C.9D.10【分析】根据从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换,计算出按A﹣D﹣F的方向连续变换4次后点M的位置,再根据点N的位置进行适当的变换,即可得到变换总次数.【解答】解:如图1,连接AD,DF,则AF=3,∴两次变换相当于向右移动3格,向上移动3格,又∵MN=10,∴10÷3=,(不是整数)∴按A﹣D﹣F的方向连续变换4次后,相当于向右移动了4÷2×3=6格,向上移动了4÷2×3=6格,此时M位于如图2所示的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∴从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是4+4=8次,故选:B.【点评】本题主要考查了几何变换的类型以及勾股定理的运用,解题时注意:在平移变换下,对应线段平行且相等,两对应点连线段与给定的有向线段平行(共线)且相等.解决问题的关键是找出变换的规律.2.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13B.14C.15D.16【分析】根据从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换,计算出按A﹣C﹣F的方向连续变换10次后点M的位置,再根据点N 的位置进行适当的变换,即可得到变换总次数.【解答】解:如图1,连接AC,CF,则AF=3,∴两次变换相当于向右移动3格,向上移动3格,又∵MN=20,∴20÷3=,(不是整数)∴按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∴从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是10+4=14次,故选:B.【点评】本题主要考查了几何变换的类型以及勾股定理的运用,解题时注意:在平移变换下,对应线段平行且相等,两对应点连线段与给定的有向线段平行(共线)且相等.解决问题的关键是找出变换的规律.二.填空题(共8小题)3.如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的.【分析】利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案,进而判断出基本图形和旋转次数与角度.【解答】解:如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.【点评】本题主要考查利用旋转设计图案,关键是掌握把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.4.如图的组合图案可以看作是由一个正方形和正方形内通过一个“基本图案”半圆进行图形的“运动”变换而组成的,这个半圆的变换方式是旋转.【分析】根据图形旋转的性质即可得出结论.【解答】解:由图可知,组合图案可以看作是由一个正方形和正方形内通过一个“基本图案”半圆旋转而成.故答案为:旋转.【点评】本题考查的是利用旋转设计图案,熟知图形旋转的性质是解答此题的关键.5.如图:已知Rt△ABC,对应的坐标如图,请利用学过的变换(平移、旋转、轴对称)知识经过若干次图形变化,使得点A与点E重合、点B与点D重合,写出一种变化的过程先将△ABC以点B为旋转中心顺时针旋转90,再将得到的图形向右平移2个单位向下平移2个单位.【分析】根据旋转的性质,平移的性质即可解决问题;【解答】解:先将△ABC以点B为旋转中心顺时针旋转90,再将得到的图形向右平移2个单位向下平移2个单位,故答案为:先将△ABC以点B为旋转中心顺时针旋转90,再将得到的图形向右平移2个单位向下平移2个单位【点评】考查了坐标与图形变化﹣旋转,平移,对称,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.6.如图,在平面直角坐标系xOy中,正方形OABC的边长为1,点D,E分别在OA,OC上,OD=CE,△OCD可以看作是△CBE经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△CBE得到△OCD的过程:由△CBE 绕C点逆时针旋转90°,并向下平移1个单位得到△OCD.【分析】根据旋转的性质,平移的性质即可解决问题;【解答】解:△OCD可以看作是由△CBE绕C点逆时针旋转90°,并向下平移1个单位得到△OCD.故答案为:由△CBE绕C点逆时针旋转90°,并向下平移1个单位得到△OCD 【点评】考查了坐标与图形变化﹣旋转,平移,对称,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度【分析】根据旋转的性质,平移的性质即可解决问题;【解答】解:线段A′B′可以看作是由线段AB绕B点顺时针旋转90°,并向右平移2个单位得到线段A′B′.故答案为:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度【点评】考查了坐标与图形变化﹣旋转,平移,对称,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.如图,在平面直角坐标系xOy中,△O'A'B'可以看作是△OAB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OAB得到△O'A'B'的过程:以x轴为对称轴,作△OAB的轴对称图形,再将得到三角形沿向右平移4个单位长度.【分析】根据旋转的性质,平移的性质即可得到由△OAB得到△O'A'B'的过程.【解答】解:由△OAB得到△O'A'B'的过程为:以x轴为对称轴,作△OAB的轴对称图形,再将得到三角形沿向右平移4个单位长度;故答案为:以x轴为对称轴,作△OAB的轴对称图形,再将得到三角形沿向右平移4个单位长度【点评】考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.9.如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD的过程:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD..。

北师大版八年级数学下:3.4《简单的图案设计》同步练习(含答案)

北师大版八年级数学下:3.4《简单的图案设计》同步练习(含答案)

3.4简单的图案设计一、基础训练题1.如图3-120所示,△ABC为不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作三角形与△ABC全等,这样的三角形最多可以有( )A.2个B.4个C.6个D.8个2.如图填空题3-121所示,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=.3.某产品的标志图案如图3-122(1)所示,要在所给的图3-122(2)中,把A,B,C三个菱形通过一种或几种变换,使之变为与图(1)一样的图案.(1)请你在图3-122(2)中作出变换后的图案;(最终图案用实线)(2)你所用的变换方法是.(填序号)①将菱形B向上平移;②将菱形B绕点O顺时针旋转120°;③将菱形B绕点O旋转180.4.将点A绕另一个点O旋转一周,点A在旋转过程中所经过的路线是.5.我国国旗上的四个小五角星,通过移动可以相互得到.二、能力提高题6.老师拿出6根小木棒,3根长的相同,3根短的也相同,且长的是短的的长度的2倍,请用这6根木棒摆成四个完全相同的三角形.7.为了美化绿地,要在给定的一块长方形的空地上设计一个花坛,只允许用正方形和圆两种图形,并使整个图案成轴对称,请画出两个图形.8.如图3-123所示的四个图形中,从几何图形变换的角度考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.9.你能用一张长方形的纸片折出一个正三角形吗?动手试一试,简单叙述你的折法.10.作线段AB和CD,且AB和CD互相垂直平分,交点为O,AB=2C D.分别取OA、OB、OC、OD的中点A′、B′、C′、D′,连结CA′、DA′、CB′、DB′、AC′、AD′、BC′、BD′得到一个四角星图案.将此四角星沿水平方向向右平移2厘米,作出平移前后的图形.参考答案1.B2.[提示:由旋转的特征可知∠PBP′=∠ABC=90°,BP′=BP=2,在Rt△BPP′中,PP′2=BP2+BP′2=22+22=8,∴PP′=.]3.解:(1)如图3-124所示.(2)①或③4.一个圆5.旋转或旋转和平移6.解:如图3-125所示.7.解:如图3-126所示.8.解:图(2),仅它不是轴对称图形.9.如图,先把矩形纸片对折,然后在沿着B M对折使C落在EF上的N点,再折出BM和CN即可.。

北师大版八年级初二数学下册《3.4简单的图案设计》专题同步试题试卷含答案解析

北师大版八年级初二数学下册《3.4简单的图案设计》专题同步试题试卷含答案解析

3.4简单的图形设计班级:二( )学号:( )姓名:( )一、课前练习1、下列条件中,不能用于判定两个三角形全等的是( )A.AASB. SAS C 、AAA D.HL2、到三角形三个顶点..距离相等的点是( ) A.三条中线的交点 B.三条角平分线的交点C.三条高所在直线的交点D.三边中垂线的交点A.三角形内角平分线的交点到各边..的距离相等 B.平移和旋转后的图形与原图形全等..C.三角形三条高的交点到三个顶点..的距离相等 D.“等边对等角”是指等腰三角形的两个底角相等4、如图,∠AOB=60°,PD ⊥OA 于D ,PE ⊥OB 于E ,PO 是角平分线,OP=6cm 。

则PE=( )A .2cmB .3cmC .4cmD .5cm 5、在第4题中,各条件不变,则OE 的长是( ) A .3cm B .4cm C .5cm D .cm 二、课堂练习1、下面四个图形是由“基本图案”通过旋转和平移得到的。

如图(1),△ABC 是由“基本图案”△AOB 组成。

请画出图(2),图(3),图(4)的“基本图案”图(1) 图(2) 图(3) 图(4)2、如图,请你用一个圆、一个正三角形,通过2次旋转或平移设计一个图案,并标明你的设计意图。

编号:27数学新北大八下 45第、题图两盏电灯P A B D O E3、认真观察下图的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________;特征2:_________________________________________________.(2)请你设计出两个图案,使它也具备你所写出的上述特征.5、学校花园有一块正方形花池,打算将它面积四等份,种上四种花草,请你利用平移、旋转、轴对称等知识设计几个方案(至少三种)。

北师大八年级数学下册3.4简单的图案设计同步练习

北师大八年级数学下册3.4简单的图案设计同步练习

初中数学试卷3.4简单的图案设计同步练习一、单选题(共8题)1、如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A、2种B、3种C、4种D、5种2、在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用轴对称知识的是()A、B、C、D、3、下列图形不是由平移而得到的是()B、C、D、4、如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A、B、C、D、5、第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A、B、C、D、6、如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A、2种B、3种C、4种D、5种7、风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.现有一长条矩形硬纸板(其中心有一个小孔)和两张全等的矩形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是()A、B、C、D、8、下列每个图中都有一对全等三角形,其中的一个三角形只经过一次旋转运动即可和另一个三角形重合的是()A、B、C、D、二、填空题(共5题)9、在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有________种.10、如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为________.11、如图,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有________个,它们分别是________.12、如图,可以看作是一个基础图形绕着中心旋转7次而生成的,则每次旋转的度数是________.13、________ 和________ 不改变图形的形状和大小.三、解答题(共5题)14、在5×7的方格纸上,任意选出5个小方块涂上颜色,使整个图形(包括着色的“对称”)有:①1条对称轴;②2条对称轴;③4条对称轴.15、如图,两条相交直线l1与l2的夹角是45°,都是一个图案的对称轴,画出这个图案的其余部分.这个图案共有多少条对称轴?16、如图,按要求完成下列问题:作出这个小红旗图案关于y轴的轴对称图形,写出所得到图形相应各点的坐标.17、利用一条线段、一个圆、一个正三角形设计几个轴对称图案,并说明你要表达的意思.18、如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.答案解析一、单选题1A解:如图,.故选A.2、C解:A、,是轴对称图形,故此选项错误;B、,是轴对称图形,故此选项错误;C、,不是轴对称图形,故此选项正确;D、,是轴对称图形,故此选项错误;故选:C.3、D4、B解:观察图形可知,图案B可以看作由“基本图案”经过平移得到.故选:B.5、D解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.6、C解:如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.7、A解:风车应做成中心对称图形,并且不是轴对称图形,A、是中心对称图形,并且不是轴对称图形,符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,也是轴对称图形,不符合题意;D、不是中心对称图形,是轴对称图形,不符合题意;故选A.8、D解:A、无法借助旋转得到,故此选项错误;B、无法借助旋转得到,故此选项错误;C、可以借助轴对称得到,故此选项错误;D、可以只经过一次旋转运动即可和另一个三角形,故此选项正确.故选:D.二、填空题9、4解:如图所示,共有4条线段.故答案为:4.10、(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3)解:如图所示:A1(﹣1,1),A2(﹣2,﹣2),A3(0,2),A4(﹣2,﹣3),(﹣3,2)(此时不是四边形,舍去),11、5;△ACG、△AFE、△BFD、△CHD、△CGB解:如图所示:与△ABC成轴对称的有△ACG、△AFE、△BFD、△CHD、△CGB一共有5个.故答案为:5,△ACG、△AFE、△BFD、△CHD、△CGB.12、45°解:∵一个周角是360度,等腰直角三角形的一个锐角是45度,∴如图,是一个基础图形绕着中心旋转7次而生成的,∴每次旋转的度数是:=45°.故答案为:45°.三、解答题14、解:①如图1所示:②如图2所示:③如图3所示:15、解:如图所示:,这个图案共有4条对称轴16、解:小红旗关于y轴的轴对称图形如图所示:A′(8,3),B′(8,5),C′(2,5)17、解:如图所示,①表示劳动工具,②电灯泡,③路标.18、解:(1)如图1所示:(2)如图2所示:四边形ACBE的面积为:2×4=8.。

北师大版八年级数学下学期《3.4 简单的图案设计 》 同步练习 包含答案

北师大版八年级数学下学期《3.4 简单的图案设计 》 同步练习  包含答案

3.4 简单的图案设计一.选择题(共10小题)1.将如图方格纸中的图形绕O点顺时针旋转90°得到的图形是()A.B.C.D.2.在以下绿色食品、回收、节能、节水四个标志中,是由某个基本图形经过旋转得到的是()A.B.C.D.3.如图绕中心旋转180°,所得到的图形是()A.B.C.D.4.如图,下列四个图形都可以分别看作是一个“基本图案”经过旋转所形成,则它们的旋转角相同的图形为()A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)5.如下左图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是()A.B.C.D.6.如图,△DEF是△ABC经过某种变换后得到的图形.△ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点N,点N的坐标是()A.(﹣y,﹣x)B.(﹣x,﹣y)C.(﹣x,y)D.(x,﹣y)7.如图,在平面直角坐标系xOy中,△AOB可以看作是由△OCD经过两次图形的变化(平移、轴对称、旋转)得到的,这个变化过程不可能是()A.先平移,再轴对称B.先轴对称,再旋转C.先旋转,再平移D.先轴对称,再平移8.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣3,b)B.(a+3,b)C.(3﹣a,﹣b)D.(a﹣3,﹣b)9.如图,在9×6的方格纸中,小树从位置A经过平移旋转后到达位置B,下列说法中正确的是()A.先向右平移6格,再绕点B顺时针旋转45°B.先向右平移6格,再绕点B逆时针旋转45°C.先向右平移6格,再绕点B顺时针旋转90°D.先向右平移6格,再绕点B逆时针旋转90°10.如图,对△ABC分别作下列变换:①先以x轴为对称轴作轴对称图形,然后再向左平移4个单位;②以点O为中心顺时针旋转180°,然后再向左平移2个单位;③先以y 轴为对称轴作对称图形,然后再向下平移3个单位;其中能使△ABC变成△DEF的是()A.①B.②C.②或③D.①或③二.填空题(共5小题)11.在下图方框中设计一个美丽的中心对称图形并使它成为正方体的一种侧面展开图.12.在中国的园林建筑中,很多建筑图形具有对称性.如图是一个破损花窗的图形,请把它补画成中心对称图形..13.下面图案中,可以由一个基本图案连续旋转45°得到的是(填序号).14.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(﹣4,1)、(﹣1,3),在经过两次变化(平移、轴对称、旋转)得到对应点A''、B''的坐标分别为(1,0)、(3,﹣3),则由线段AB得到线段A'B'的过程是:,由线段A'B'得到线段A''B''的过程是:.15.如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序实数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是(请填写正确答案的序号)①黑(1,5),白(5,5)②黑(3,2),白(3,3)③黑(3,3),白(3,1)④黑(3,1),白(3,3)三.解答题(共6小题)16.如图,是由2个白色正方形和2个黑色正方形组成的“L”型图形,按下列要求画图:(1)在图1中,添1个白色或黑色正方形,使它成轴对称图形;(2)在图2中,以点O为旋转中心,将图形顺时针旋转90°.17.(1)图1是4×4的正方形网格,请在其中选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.(2)如图2,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.18.课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1.请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”(1)小明的方案是:“先将△ABC向右平移两个单位得到△A2B2C2,再通过旋转得到△A1B1C1”.请根据小明的方案画出△A2B2C2,并描述旋转过程;(2)小红通过研究发现,△ABC只要通过一次旋转就能得到△A1B1C1.请在图中标出小红方案中的旋转中心P,并简要说明你是如何确定的.19.如图,是3×3的正方形网格,将其中两个方格涂黑,使得涂黑后的整个图案是轴对称图形.请在以下备用网格中画出四个不同的图案(如果绕正方形的中心旋转,能重合的图案视为同一种,例如,下列四个图形就属于同一种).20.在平面直角坐标系中,如图所示A(﹣2,1),B(﹣4,1),C(﹣1,4).(1)△ABC向上平移一个单位,再向左平移一个单位得到△A1B1C1,那么C的对应点C1的坐标为;P点到△ABC三个顶点的距离相等,点P的坐标为;(2)△ABC关于第一象限角平分线所在的直线作轴对称变换得到△A2B2C2,那么点B 的对应点B2的坐标为;(3)△A3B3C3是△ABC绕坐标平面内的Q点顺时针旋转得到的,且A3(1,0),B3(1,2),C3(4,﹣1),点Q的坐标为.21.如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移可得到△OBD,则平移的距离是个单位长度;△AOC 与△BOD关于某直线对称,则对称轴是;△AOC绕原点O顺时针旋转可得到△DOB,则旋转角至少是°.(2)连接AD,交OC于点E,求∠AEO的度数.参考答案一.选择题(共10小题)1.D.2.B.3.C.4.D.5.B.6.B.7.C.8.C.9.B.10.A.二.填空题(共5小题)11.解:12.解:13.(2).14.向右平移4个单位长度;绕原点顺时针旋转90°.15.④.三.解答题(共6小题)16.解:(1)如图1所示:(2)如图2所示:17.解:(1)如图1所示:此阴影部分是中心对称图形;(2)如图2所示:△AB1C1,即为所求.18.解:(1)如图所示,△A2B2C2即为所求,将△A2B2C2绕着点B1顺时针旋转90°,即可得到△A1B1C1.(2)如图所示,连接CC1,BB1,作CC1的垂直平分线,BB1的垂直平分线,交于点P,则点P即为旋转中心.19.解:符合要求的正方形如图所示:20.解:(1)如图,△A1B1C1即为所求,那么C的对应点C1的坐标为(﹣2,5)P,点P 的坐标为(﹣3,3).故答案为(﹣2,5),(﹣3,3).(2)△A2B2C2如图所示,那么点B的对应点B2的坐标为(1,﹣4).故答案为(1,﹣4).(3)△A3B3C3即为所求,Q(﹣1,﹣1),故答案为(﹣1,1).21.解:(1)∵点A的坐标为(﹣2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DOB.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE为等腰△AOD的顶角的平分线,∴OE垂直平分AD,∴∠AEO=90°.故答案为;2;y轴;120.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八下 3.4 简单的图案设计
一、选择题(共8小题)
1. 在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A. B.
C. D.
2. 如图所示的四个图案,能通过基本图形旋转得到的有( )
A. 1个
B. 2个
C. 3个
D. 4个
3. 如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90∘后得到Rt△AʹOʹB,则下列四
个图形中正确的是( )
A. B.
C. D.
4. 如图,三角形ABC是在2×2的正方形网格中以格点为顶点的三角形,那么图中与三角形ABC
成轴对称且也以格点为顶点的三角形共有( )
A. 2个
B. 3个
C. 4个
D. 5个
5. 下面是四位同学作△ABC关于直线MN对称的△AʹBʹCʹ,其中正确的是( )
A. B.
C. D.
6. 在下列现象中,是平移现象的是( ).
①方向盘的转动;②电梯的上下移动;③保持一定姿势滑行;④钟摆的运动.
A. ①②
B. ②③
C. ③④
D. ①④
7. 经过点P(−4,3)垂直于x轴的直线可以表示为( )
A. 直线x=3
B. 直线y=−4
C. 直线x=−4
D. 直线y=3
8. 对图的变化顺序描述正确的是()
A. 翻折、旋转、平移
B. 翻折、平移、旋转
C. 平移、翻折、旋转
D. 旋转、翻折、平移
二、填空题(共7小题)
9. 旋转作图的步骤和方法:
(1)确定旋转中心,及;
(2)作出图形关键点经过旋转后的;
(3)按一定的顺序连接对应点.
10. 如图,三角形AʹBʹCʹ是由三角形ABC沿射线AC方向平移2cm得到,若AC=3cm,则
AʹC=.
11. 如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)△ABC的面积等于;
(2)请在如图所示的网格中,用无刻度的直尺,以BC所在直线为对称轴,作出△ABC关于直线BC对称的图形,并简要说明画图方法(不要求证明).
12. 如图,两个直角三角形重叠在一起,将其中一个三角形ABC沿着点B到C的方向平移到三
角形DEF的位置.若AB=10,DH=4,平移距离为4,则阴影部分的面积是.
13. 如图,在△ABC中,AB=AD=DC,∠BAD=20∘,则∠C=.
14. 如图,在正方形网格中,线段AʹBʹ可以看作是线段AB经过若干次图形的变化(平移、旋转、
轴对称)得到的,写出一种由线段AB得到线段AʹBʹ的过程:.
15. 如图,在△BDE中,∠BDE=90∘,BD=6√2,点D的坐标是(7,0),∠BDO=15∘,将△BDE
旋转到△ABC的位置,点C在BD上,则旋转中心的坐标为.
三、解答题(共6小题)
16. 已知平行四边形ABCD及点Aʹ.将平行四边形ABCD平移,使点A移到点Aʹ处,得到平行
四边形AʹBʹCʹDʹ.
17. 如图,画出线段AB关于直线l的对称线段AʹBʹ.
18. 如图,在10×6的网格中,每个小网格的边长都是1,将三角形ABC平移,使得点A到达
点D处,请你画出平移后的三角形DEF(点B与点E是对应点,点C与点F是对应点).
19. 如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.在图中,画出△ABC绕点C按
顺时针方向旋转90∘后的三角形.
20. 如图,点O是等边三角形ABC三条角平分线的交点,试分别根据下列旋转中心与旋转角,将
△ABC顺时针旋转,并画出旋转后的图形.
(1)以点O为旋转中心,旋转角为120∘;
(2)以点A为旋转中心,旋转角为60∘.
21. 以给定的图形“○○(两个圆)、△△(两个三角形)、══(两条平行线段)”为构件,构思独特
且有意义的轴对称图形.举例:如图所示,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的一个图形,并写出一两句贴切、诙谐的解说词.
答案
1. D
2. D
3. B
【解析】A选项是原图形的对称图形,故A不正确;
B选项是Rt△AOB绕点B按顺时针方向旋转90∘后得到Rt△AʹOʹB,故B正确;
C选项旋转后的对应点错误,即形状发生了改变,故C不正确;
D选项是按逆时针方向旋转90∘,故D不正确.
4. D
5. B
6. B
7. C
【解析】经过点P(−4,3)且垂直于x轴的直线可以表示为直线x=−4.
故选:C.
8. B
【解析】【分析】根据翻折、旋转、平移的定义进行判断即可.
【解析】解:由图可知,变换的顺序依次为:翻折、平移、旋转.
故选:B.
【点评】本题考查了几何变换的类型,熟记各种变化的定义并准确识图是解题的关键.
9. 旋转角度,旋转方向,对应点
10. 1cm
11. (1)7;
(2)如图,取格点D,E,连接DE.取格点F,作直线AF与DE相交,得点Aʹ.连接AʹC,AʹB.则△AʹBC即为所求.
12. 32
【解析】提示:由题意可知HE=6,BE=4,AB=10,从而借助三角形的面积或者梯形面积公式求解.
13. 40∘
【解析】∵AB=AD,∠BAD=20∘,
∴∠B=1
2(180∘−∠BAD)=1
2
(180∘−20∘)=80∘.
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠BAD=80∘+20∘=100∘.∵AD=DC.
∴∠C=1
2(180∘−∠ADC)=1
2
(180∘−100∘)=40∘.
14. 将线段AB绕点B逆时针旋转90∘,再向左平移2个单位长度
15. (4,3√3)
【解析】如图,AB与BD的垂直平分线的交点即为旋转中心P,连接PD,过P作PF⊥x轴于F,
∵点C在BD上,
∴点P到AB,BD的距离相等,都是1
2BD,即1
2
×6√2=3√2,
∴∠PDB=45∘,
PD=3√2×√2=6,
∵∠BDO=15∘,
∴∠PDO=45∘+15∘=60∘,∴∠DPF=30∘,
∴DF=1
2PD=1
2
×6=3,
∵点D的坐标是(7,0),
∴OF=OD−DF=7−3=4,
由勾股定理得,PF=√PD2−DF2=√62−32=3√3,即P点的坐标为(4,3√3).
16. 略.
17. 略.
18. 如图所示.
19. 如图所示:
20. (1)如图所示,△BOC即为所求;
(2)如图所示,△AOʹB即为所求.
21. 答案不唯一,下面仅举几例,如图所示.。

相关文档
最新文档