风力发电齿轮箱传动结构形式主轴内置式

合集下载

双馈式风电齿轮箱结构

双馈式风电齿轮箱结构

双馈式风电齿轮箱结构
双馈式风电齿轮箱结构主要由以下几个部分组成:
1. 大轴:即主轴,其上装有风机的叶片,风力通过叶片驱动主轴旋转。

2. 小轴:即发电机轴,与主轴通过齿轮传动相连接,将旋转的动力传递给发电机。

3. 中间轴:位于主轴和发电机轴之间,通过齿轮传动将风机的旋转速度和发电机的旋转速度进行匹配,以提高效率。

4. 齿轮:由多个齿轮组成的传动装置,可根据需要进行多级齿轮传动。

5. 润滑系统:用于齿轮箱的润滑和冷却,以确保齿轮运转平稳和寿命延长。

6. 安全装置:包括齿轮箱温度、压力、震动等传感器,以及相应的监控和报警系统,用于监测齿轮箱的运行状态,并在异常情况下及时采取措施。

双馈式风电齿轮箱结构相对复杂,但在风力发电行业中得到广泛应用。

其主要特点是能够根据风机转速的变化对发电机进行调速,提高发电效率;同时,由于齿轮传动系统的存在,使得双馈式风电齿轮箱具有较高的承载能力和较长的使用寿命。

风力发电齿轮箱传动结构形式主轴内置式

风力发电齿轮箱传动结构形式主轴内置式

风力发电齿轮箱传动结构形式主轴内置式1. 引言1.1 概述风力发电作为一种清洁、可再生的能源形式,近年来在全球范围内受到广泛关注和应用。

而在风力发电系统中,齿轮箱是连接风力机叶片与发电机的重要部件之一。

传统的齿轮箱通常采用外置式结构,即齿轮箱独立于风力发电机主轴,并通过联轴器与主轴相连。

然而,随着技术的不断进步和需求的增加,出现了一种新型的齿轮箱传动结构形式——主轴内置式。

1.2 目的本文旨在深入研究和分析主轴内置式齿轮箱传动结构的特点和优势,并通过实际案例分析和性能对比研究探讨其在风力发电领域中的应用效果。

同时,希望能够评估主轴内置式齿轮箱传动结构在节能、可持续性和环保等方面所带来的潜在优势。

1.3 文章结构本文共分为五个章节,具体内容如下:第二章将介绍主轴内置式齿轮箱传动结构的相关概念和设计原理,并重点讨论其与传统外置式结构相比的优势。

第三章将通过某风力发电场的实际案例,对主轴内置式齿轮箱传动结构进行详细分析,并探讨其在实际中的表现及可行性和可靠性。

第四章将对主轴内置式结构和传统外置式结构进行性能和效率对比研究,评估主轴内置式齿轮箱在节能方面的潜力,并考虑其可持续性和环保因素。

最后一章将总结研究成果并展望未来发展趋势,提出改进建议和创新方向,以期为主轴内置式齿轮箱传动结构的进一步应用提供参考。

通过本文的研究,我们希望更深入地了解主轴内置式齿轮箱传动结构的特点和优势,并为风力发电系统的设计与改进提供有益建议。

2. 风力发电齿轮箱传动结构形式主轴内置式2.1 结构形式介绍风力发电齿轮箱是将风能转换为电能的重要组成部分。

在传统的设计中,齿轮箱通常采用外置结构,将主轴与发电机连接。

然而,近年来出现了一种新型的设计形式,即主轴内置式齿轮箱。

主轴内置式结构将主轴直接安装在发电机内部,通过减小传动链条长度和减少转动摩擦,提高了系统的整体效率。

2.2 主轴内置设计优势主轴内置设计相较于传统的外置结构有以下几个优势:1. 减小运动惯量:因为主轴直接安装在发电机内部,所以减少了传动链条和连接件的数量与长度,降低了系统的运动惯量。

风电齿轮箱讲解

风电齿轮箱讲解

• 对于风电齿轮箱,对于所有的齿轮和轴承我们都要采用强 制润滑。原因有:
• 1、强制润滑可以进行监控,而飞溅润滑是监控不了的。 从安全性考虑采用强制润滑。
• 2、现在风电齿轮箱功率越来越大,其功率损耗也越来越 大,因此飞溅润滑已经满足不了冷却的作用。这是需要进 行强制润滑。
• 下为润滑实例:(以1500齿轮箱为例)
1、箱体:齿轮箱箱体由球墨铸铁制成。它具有抗扭曲功能,并 通过模塑成形而具有良好的噪声情况和温度变化特性。同时 具有抗低温的性能。箱体上已准备有足够多的运输吊环、观 察和装配盖板。另外还有检查油位的油位计,用于换油的放 油塞和箱体通风的放气塞。
2、齿零件:齿轮箱带齿零件除内齿圈外其余都经过渗碳处理。 所有齿轮都要经过磨削。通过高精度齿轮降低了齿轮箱的噪 声级并确保齿轮箱的运行安全。行星齿轮箱的内齿圈均由调 质钢制成。齿轮通过过盈配合与轴连接。这种连接方式可以 以更安全的方式传递扭矩。
3.产品的装配阶段 产品图纸下发后,根据图纸的设计要求,编制产
品的装配工艺,装配方案确认后,组织公司相关专家 进行装配方案评审,分析装配工艺的优劣,确认最优 的装配方案,评审后细化装配工艺,再次审核后执行。
按流水线的装配模式分部套进行装配,然后再总 装的方式,装配流程如下:
零部件清洗
第一级行 星架部套
产品制造流程图
根据设计图纸编写机加工工艺
采购铸锻件毛坯和小件材料
加工产品零件,合格后入库
编写产品的装配工艺
按装配工艺装配
编写产品的试验大纲
产品型式试验
试验后拆检
装配后出厂试验
扫尾、喷漆、发货
1.工艺编制阶段 根据技术部门设计的产品图纸,编制铸锻件零件的毛坯订货图,毛
坯粗车图,各零部件的机加工工艺。主要零件的工序流程如下: a . 齿轮件

浅述风电主齿轮箱传动形式和轴承布置

浅述风电主齿轮箱传动形式和轴承布置

浅述风电主齿轮箱传动形式和轴承布置风电主齿轮箱是将风力发电机产生的机械能转化为电能的重要装置之一,其传动形式和轴承布置在整个系统的性能和可靠性方面起着重要作用。

以下将对风电主齿轮箱传动形式和轴承布置进行深入浅出的阐述。

一、传动形式风电主齿轮箱的传动形式一般分为两种:直驱式和间接驱动式。

1.直驱式传动形式直驱式传动形式是指风力发电生成系统中的风力机叶片直接连接齿轮箱,由齿轮箱直接驱动发电机转子旋转,实现将机械能转化为电能的过程。

直驱式传动形式的特点是传动效率高、结构简单、成本相对较低。

但由于叶片和齿轮箱相连,所以风力机的转速直接受到叶片转速的限制,使得整个系统的功率输出不灵活,容易受到传动装置的振动和冲击加载。

因此,直驱式传动形式在大型风力发电机中很少使用。

2.间接驱动式传动形式间接驱动式传动形式是指风力机叶片通过主轴与齿轮箱相连,齿轮箱再通过发电机转子的轴与发电机相连的传动方式。

间接驱动式传动形式的特点是转速范围广、功率输出稳定、适应性强。

由于通过主轴连接,可以使风力机叶片的转速与齿轮箱的转速脱离,提高了整个系统的灵活性和可靠性。

同时,通过合理设计齿轮轴承和减速器,可以将高速低扭矩的风力机叶片输出的动力转变为低速高扭矩的发电机所需要的动力,实现了发电机的高效运行。

因此,间接驱动式传动形式在现代风力发电系统中得到了广泛应用。

二、轴承布置风电主齿轮箱中的轴承布置是指在齿轮箱中各个轴承的位置和数量以及其承载能力的安排。

合理的轴承布置能有效提高齿轮箱的传动效率和整体运行效果。

一般来说,风电主齿轮箱的轴承布置可以分为四个部分:输入轴承、中间轴承、输出轴承和其他轴承。

1.输入轴承的作用是承受风力机传动系统输入的扭矩,并保证输入轴与齿轮磨损减小,传递更高效率。

2.中间轴承的作用是支撑整个齿轮箱中的齿轮和轴的运动,同时承受中间齿轮组的扭矩,并保证其转动平稳、可靠。

3.输出轴承的作用是承受整个齿轮箱输出轴的扭矩和载荷,同时使输出轴转动平稳。

第七章 风力发电机组传动系统

第七章 风力发电机组传动系统
风力发电机组传动、偏航、 控制系统等
风力发电机组 传动系统
传动系统
定义:将风轮吸收的风能以机械的方式传送到 发电机的中间装置。
一.传动链布局形式 二.传动零部件组成
传动系统
传动系统包括主轴、联轴器、齿轮箱、制动器和过载安全保护 器等。
传动链的布局形式
传统的风力发电机采用齿轮增速装置, 按主轴轴承的支撑方式风力发电机组传动 的形式可以分为“两点式”、“四点式” 、“三点式”、“主轴齿轮箱集成式”、 “直驱式”、“半直驱式”。
2)齿轮箱可靠性要求高,维护不变。 体积较大、重量大、结构相对复杂、造 价较高
传动链布局形式—直驱式
直驱式:直驱永磁风力 发电机组的发电机机轴 直接连接到风轮上,转 子的转速随风速而改变, 其交流电的频率也随之 变化,经过大功率电力 电子变流器,将频率不 定的交流电整流成直流 电,再逆变成与电网同 频率的交流电输出。
风力发电机组 偏航系统
偏航系统
风力机的偏航系统:也称为对风装置,其作用在于当风速矢量的方向变 化时,能够快速平稳地对准风向,以便风轮获得最大的风能。
小微型风力机—尾舵对风:尾翼装在尾杆上与风轮轴平行或成一定的角 度。为了避免尾流的影响,也可将尾翼上翘,装在较高的位置。
中小型风机—舵轮对风:工作原理:当风向变化时,位于风轮后面两舵 轮(其旋转平面与风轮旋转平面相垂直)旋转,并通过一套齿轮传动系 统使风轮偏转,当风轮重新对准风向后,舵轮停止转动,对风过程结束。
传动链布局形式—半直驱式
半直驱式:采用了一级行星齿轮传动 和适当增速比,把行星齿轮副与发电 机集成在一起,构成了发电机单元。
采用单级变速装置以提高发电机 转速,同时配以多级永磁同步发电机。 介于直驱和双馈之间,齿轮箱的调速 没有双馈的高,发电机也由双馈的绕 线式变为永磁同步式。

风机齿轮箱介绍

风机齿轮箱介绍
风电齿轮箱技术简介
周黎明
双馈式风机
永磁直驱式风机
风电主齿轮箱结构
齿轮箱结构: 1 、一级行星两级平行级 2 、两级行星一级平行级 3 、带主轴齿轮箱 4 、紧凑型齿轮箱(半直驱齿轮箱)
风电主齿轮箱结构
齿轮箱与主轴联接方式: 1 、收缩盘联接 2 、法兰联接
齿轮箱与电机联接方式: 1 、键联接 2 、收缩盘联接
润滑冷却系统
2 、结构: 润滑冷却系统分为润滑系统、冷却系统以及传感器。 润滑系统:吸油管、电机泵、电机、 过滤器、连接阀块、 温 控阀以及相应的连接胶管,部分齿轮箱的设计包含机械泵;
冷却系统:分为风冷和水冷。目前风电齿轮箱上用的比较多 的为风冷, 风冷包括风扇、电机以及相应的连接胶管;
传感器:包括压差开关、压力传感器、压力开关等。
水冷
风冷
润滑冷却系统
润滑冷却系统
润滑冷却系统
1 、通过电机泵以及机械泵(齿轮箱转动时运行)将润滑油从 齿轮箱油池吸出,润滑油经过滤器后到达温控阀。
2 、温控阀能够根据通过的润滑油油温来自动控制润滑油的流 向。当通过的润滑油油温低于 45 °C 时,润滑油直接进入齿 轮箱 ( 由于此时的润滑油温度较低,不需要进行冷却 ) ;当通 过的润滑油温高于 45 ° C 时,温控阀阀芯开始动作,此时的 润滑油部分直接进入齿轮箱,部分通过冷却系统进入齿轮箱; 当通过的润滑油温高于 60 °C 时,温控阀阀芯完全关闭,此 时的润滑油完全通过冷却器进入齿轮箱(此时的润滑油温度 较高,须经冷却后才能进入齿轮箱)。
压差开关
压差开关
1 、用途: 用于测量齿轮箱过滤器滤芯两侧润滑油的压力差。
2 、工作原理: 当滤芯在吸纳润滑油中污物颗粒的时候,滤芯两侧的润滑油 压力会逐步增大。当压力增大到设定值(压差开关的设定 值),压差开关启动。风机维护人员须立即更换或者清洗滤 芯(部分厂家的粗滤可以清洗,精滤须更换)。部分压差开 关带警报功能,譬如在达到设定压力的 75% 时,进行报警, 在达到设定压力时,开关断开。

风电齿轮箱介绍

风电齿轮箱介绍
行星轮系和差动轮系统称为周转轮系 [一个周转轮系由三类构件组成:一个系杆(行星架)、一 个或几个行星轮(目前主要为三个行星轮,部分载荷大的为四个行星轮,带柔性销的可具有更 多的行星轮)、一个或几个与行星轮相啮合的中心轮(目前主要为两个,一个太阳轮,一个齿 圈)]
行星轮系中,两个中心轮有一个固定(目前常见的为齿圈固定);差动轮系中,两个中心轮都 可以动。目前国内外常见的风电齿轮箱主要为行星轮系结构,但也有部分厂家选用的为差动轮 系。因此本文主要介绍的是行星轮系结构。
行星轮系相对平行轴系的优点:结构紧凑、体积小、质量小、承载能力大、噪音小等; 行星轮系相对平行轴系的缺点:结构复杂、加工要求高、装配要求高等。
2020/5/4
a
5
一级行星两级平行结构
该种结构主要用于2MW以及2MW以下功率的风电齿轮箱,用一组 平行级代替行星级,可靠性高,但体积与重量大
2020/5/4
2020/5/4
a
14
齿轮箱铭牌
2020/5/4
a
15
行星级
某1.5MW齿轮箱装配图
高速级
2020/5/4
中间级
a
16
风电齿轮箱结构详细描述
行星级
收缩盘
扭力臂 喷油环
行星架
行星架叶片 侧轴承
行星架透盖
2020/5/4
a
箱体 齿圈 行星轮 销轴 行星轮轴承 行星架电机侧 轴承 喷油环 太阳轮
17
中广核桥六第二风电场
2017年8月25日
风电齿轮箱简介
a
2
风力发电机结构图
双馈式风机
2020/5/4
永磁直驱式风机
a
3
风电主齿轮箱结构
齿轮箱结构:

风力发电齿轮箱结构及原理

风力发电齿轮箱结构及原理

风力发电齿轮箱结构及原理
风力发电齿轮箱是风力发电机组的核心部件之一,其主要作用是将风轮转动速度转换为高速旋转的发电机适用的输出转速。

风力发电齿轮箱的结构一般包括主齿轮、从动齿轮、轴承、油封等部分组成。

其中,主齿轮与风轮轴相连,从动齿轮与发电机轴相连。

主齿轮和从动齿轮采用不同的齿数,通过齿轮传动的方式,实现从风轮转动速度到发电机输出转速的转换。

轴承用于支撑和固定齿轮和轴,确保其平稳运转,油封用于防止润滑油流失和防尘。

风力发电齿轮箱的工作原理根据齿轮传动原理,利用齿轮的齿数比来实现速度转换。

当风轮转动时,主齿轮随之转动,主齿轮与从动齿轮之间的齿轮传动使从动齿轮以不同的速度旋转。

从动齿轮的旋转速度取决于主齿轮和从动齿轮的齿数比,通过合理选择齿数比,可以将风轮的低速转动转换为适合发电机工作的高速转动。

总的来说,风力发电齿轮箱通过齿轮传动原理,实现了从风轮转动速度到发电机输出转速的转换,是风力发电机组的关键部件之一,对于风能转换为电能具有重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电齿轮箱传动结构形式主轴内置式Wind power generation is a rapidly growing sector in the renewable energy industry. As one of the primary components in a wind turbine, the gearbox plays a crucial role in converting low-speed rotation from the rotor into high-speed rotation for electricity generation. Among different gearbox configurations, the main shaft integrated design
has been widely adopted due to its advantages in compactness, mechanical efficiency, and reliability.
风力发电是可再生能源行业中迅速发展的一个领域。

作为风力涡轮
机的主要组件之一,齿轮箱在将转子的低速旋转转化为用于发电的
高速旋转过程中起着至关重要的作用。

在不同的传动结构形式中,
主轴内置式设计由于其紧凑性、机械效率和可靠性方面的优势而被
广泛采用。

The main shaft integrated gearbox features a unique design where the main shaft and gearbox are combined into one unit. This design eliminates the need for an additional coupling between the rotor and gearbox, reducing complexity and improving overall system efficiency. By having the gearbox
directly mounted on the main shaft, power transmission losses due to misalignment or other mechanical limitations are minimized.
主轴内置式齿轮箱具有独特的设计,其中主轴和齿轮箱被合并成一
个单位。

这种设计消除了转子和齿轮箱之间需要额外耦合器的需求,减少了复杂性并提高了整体系统效率。

通过直接安装齿轮箱在主轴上,由于不对齿轮箱导致的失调或其他机械限制而产生的传动功率
损失得到了最小化。

The main shaft integrated gearbox offers several advantages in terms of maintenance and reliability. By having the main shaft and gearbox integrated, it simplifies the inspection and repair process as technicians only need to access one single unit instead of multiple components. This reduces downtime during maintenance and improves overall
operational efficiency.
主轴内置式齿轮箱在维护和可靠性方面提供了几个优势。

通过将主
轴和齿轮箱集成在一起,简化了检查和修理过程,技术人员只需要
访问一个单独的装置而不是多个组件。

这减少了维护期间停工时间,并提高了整体运行效率。

In addition, the main shaft integrated gearbox design has a smaller footprint compared to other configurations. This is particularly beneficial for offshore wind turbines where space is limited on the platform. By reducing the size of the gearbox, it allows for greater flexibility in turbine placement without compromising energy output.
与其他配置相比,主轴内置式齿轮箱设计占用的空间更小。

这对于海上风力涡轮机来说尤为有益,因为平台上的空间有限。

通过减小齿轮箱的尺寸,可以在不影响能源输出的情况下更灵活地放置涡轮机。

Furthermore, the main shaft integrated gearbox design improves the overall system efficiency. With the gearbox directly mounted on the main shaft, power losses due to friction and misalignment are minimized, resulting in higher energy conversion efficiency. This not only maximizes electricity generation but also reduces the wear and tear on the gear components, thereby extending their lifespan.
主轴内置式齿轮箱设计提高了整体系统的效率。

通过将齿轮箱直接安装在主轴上,由于摩擦和失调而导致的功率损失得到了最小化,从而提高了能源转换效率。

这不仅最大限度地增加了发电量,还减少了齿轮部件的磨损,从而延长了它们的使用寿命。

Overall, the main shaft integrated gearbox is a highly efficient and reliable transmission structure for wind power generation. Its compact design, ease of maintenance, and improved system efficiency make it an ideal choice for harnessing wind energy to meet growing global energy demands.
主轴内置式齿轮箱是风力发电的一种高效可靠的传动结构。

其紧凑设计、易于维护和改进的系统效率使其成为利用风能满足全球不断增长能源需求的理想选择。

相关文档
最新文档