微积分定理和公式
微积分知识点简单总结

微积分知识点简单总结1. 函数的导数函数的导数描述了函数在某一点处的变化率,可以简单理解为函数的斜率。
导数的定义为函数在某一点处的极限,即$f'(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$。
导数的计算可以使用求导法则,包括常数倍法则、幂函数法则、和差法则、乘积法则、商法则等。
2. 高阶导数函数的导数可以进行多次求导,得到的导数称为高阶导数。
高阶导数可以描述函数更加详细的变化情况,例如速度、加速度等概念。
3. 函数的微分微分是导数的一种形式,描述了函数在某一点附近的线性近似。
微分的定义为$dy=f'(x)dx$,可以理解为函数在某一点处的微小改变量。
微分可以用于估计函数的变化,以及在计算积分时的一些技巧和方法中。
4. 不定积分不定积分是积分的一种形式,用于求解函数的原函数。
不定积分的记号为$\intf(x)dx=F(x)+C$,其中$F(x)$为$f(x)$的一个原函数,$C$为积分常数。
不定积分的计算可以使用换元法、分部积分法、有理函数的积分等一系列的积分法则。
5. 定积分定积分是积分的一种形式,用于计算函数在一个区间上的累积变化。
定积分的计算可以使用牛顿-莱布尼茨公式,也可以使用定积分的近似计算法,如矩形法、梯形法、辛普森法等。
6. 微积分基本定理微积分基本定理是微积分的核心定理之一,描述了导数和积分的关系。
第一部分定理称为牛顿-莱布尼茨公式,表明了函数的不定积分可以表示为函数的定积分。
第二部分定理描述了定积分的求导运算,即若函数$f(x)$在区间$[a,b]$上连续,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数。
7. 微分方程微分方程是微积分的一个重要应用,描述了含有未知函数及其导数的方程。
微分方程可以是常微分方程或偏微分方程,按照阶数、线性性质、系数等分类。
微分方程在物理、工程、经济等领域有着广泛的应用,例如描述物体的运动、电路的动态行为、人口增长等问题。
微积分基本公式

微积分公式D x sinh -1(ax)=221x a + cosh -1(ax)=221ax - tanh -1(a x)= 22a a x -coth -1(a x)=22a a x -- sech -1(a x )= 22x a x a -- csch -1(a x )=22xa x a+-⎰ sinh -1 x dx = x sinh -1 x-21x ++ C ⎰ cosh -1 x dx = x cosh -1 x-12-x + C⎰ tanh -1 x dx = x tanh -1 x+ ½ ln | 1-x 2|+ C ⎰ coth -1 x dx = x coth -1 x- ½ ln | 1-x 2|+ C⎰ sech -1 x dx = x sech -1 x- sin -1 x + C ⎰ csch -1 x dx = x csch -1 x+ sinh -1 x + Csin 3θ=3sin θ-4sin 3θ cos3θ=4cos 3θ-3cos θ →sin 3θ= ¼ (3sin θ-sin3θ) →cos 3θ=¼(3cos θ+cos3θ)sin x = j e e jx jx 2-- cos x = 2jxjx e e -+sinh x = 2x x e e -- cosh x = 2xx e e -+正弦定理:αsin a= βsin b =γsin c =2R余弦定理: a 2=b 2+c 2-2bc cos αb 2=a 2+c 2-2ac cos βc 2=a 2+b 2-2ab cos γsin (α±β)=sin α cos β ± cos α sin β cos (α±β)=cos α cos β μsin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β)sin α + sin β = 2 sin ½(α+β) cos ½(α-β)sin α - sin β = 2 cos ½(α+β) sin ½(α-β) cos α + cos β = 2 cos ½(α+β) cos ½(α-β) cos α - cos β = -2 sin ½(α+β) sin ½(α-β) tan (α±β)=βαβαtan tan tan tan μ±, cot (α±β)=βαβαcot cot cot cot ±μe x=1+x+!22x +!33x +…+!n x n+ …sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r=1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1 ∑=ni 11= n∑=ni i 1= ½n (n +1)∑=ni i 12=61n (n +1)(2n +1) ∑=ni i13= [½n (n +1)]2Γ(x) =⎰∞t x-1e -t d t = 2⎰∞t 2x-12t e -d t =⎰∞)1(ln tx-1 d t β(m , n ) =⎰10x m -1(1-x)n -1 d x =2⎰20sin π2m -1x cos 2n -1x d x=⎰∞+-+01)1(nm m x x d x 希腊字母 (Greek Alphabets)大写小写读音 大写 小写读音 大写 小写读音 Α α alpha Ι ι iota Ρ ρrhoΒ β beta Κ κ kappa Σ σ, ς sigmaΓ γ gamma Λ λ lambda Τ τtau Δ δ delta Μ μ mu Υ υ upsilonΕ ε epsilon Ν ν nu Φ φphi ΖζzetaΞξxiΧχkhi a bcαβγ R倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ⎰ 顺位高d 顺位低 ;1 000 000 000 000 000 000 000 000 10 yotta Y 1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0、1 10-1 deci d 分,十分之一0、01 10-2 centi c 厘(或写作「厘」),百分之一0、001 10-3 milli m 毫,千分之一0、000 001 10-6 micro ? 微,百万分之一0、000 000 001 10-9 nano n 奈,十亿分之一0、000 000 000 001 10-12 pico p 皮,兆分之一0、000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一0、000 000 000 000 000 001 10-18 atto a 阿0、000 000 000 000 000 000 001 10-21 zepto z0、000 000 000 000 000 000 000 001 10-24 yocto y。
微积分基本公式16个

微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。
可以理解为小步长地移动拟合函数,接近曲线本身。
可以表示为\frac{dy}{dx} 或f'(x) 。
2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。
可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。
它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。
4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。
可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。
5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。
6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。
微积分常用公式及运算法则

微积分常用公式及运算法则1.调和级数:调和级数为H(n)=1+1/2+1/3+...+1/n,其中n为正整数。
它是发散级数,在计算机科学和数学中都有重要应用。
2.多项式级数:多项式级数为f(x)=a0+a1x+a2x^2+a3x^3+...。
其中a0、a1、a2是常数系数,x是变量。
多项式级数可以直接求和,也可以使用其他方法进行求和。
3.幂级数:幂级数为f(x)=c0+c1(x-a)+c2(x-a)^2+c3(x-a)^3+...。
其中c0、c1、c2是常数系数,a是常数。
幂级数可以表示为基于常数系数和常数a的级数。
4.泰勒级数:在微积分中,泰勒级数是一种用函数的高阶导数来逼近函数的方法。
泰勒级数可以将函数表示为一个无限级数。
5.泰勒公式:泰勒公式是泰勒级数的具体表达形式。
泰勒公式可以将函数在其中一点的值表示为该点的函数值和函数的各阶导数值的线性组合。
6.均值定理:均值定理是微积分中的重要定理,它指出在其中一区间上,连续函数的平均变化率等于该区间内其中一点的瞬时变化率。
7.拉格朗日中值定理:拉格朗日中值定理是微积分中的一类中值定理,它指出在其中一区间上,连续函数的导数必在其中一区间内的其中一点等于函数在该区间两个端点的斜率。
8.柯西中值定理:柯西中值定理是微积分中的一类中值定理,它指出在其中一区间上,连续函数的导数必在其中一区间内的其中一点等于函数在该区间两个端点的斜率。
9.极值点:极值点是函数在其中一区间内的最大值点或最小值点。
极值点可以使用导数的符号和戴布尔不等式来判断。
10.弧长:弧长是曲线上的一段长度。
计算曲线的弧长可以使用微积分的方法,如积分的方法。
11.曲率:曲率是表示曲线弯曲程度的一个数值。
曲率可以使用导数和二阶导数计算。
12.方向角:方向角是表示曲线在其中一点的切线方向的角度。
方向角可以使用导数计算。
微积分基本公式和基本定理

x
sec2
xdx
tan
x
C
(9)
d sin
x
2
x
csc 2
xdx
cot
x
C
(10) sec x tan xdx sec x C
(11) csc x cot xdx csc x C
(12) ex dx ex C (13) a xdx a x C
ln a
(14) sh xdx ch x C
2
xdx.
2
2
0
0
例9
证
明2 e
1 4
2 e x2 xdx 2e2 .
0
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
例10
1 et2 dt
求
lim
x0
cos x
x2
.
解 d 1 et2dt d cos x et2dt,
dx cos x
dx 1
ecos2 x (cos x) sin x ecos2 x ,
1 et2 dt
lim
x0
cos x
x2
lim sin x ecos2 x
x0
2x
1. 2e
ln
x
C
x 0时 ( ln x ) [ ln(x) ] 1
(4)
1
dx x
2
arctan
x
C
x
或 arccot x C
微积分重要公式及概念

当x→+∞时,以下各函数趋势于+∞的速度为:
㏑x , xⁿ (n>0) , a (a>1) , x
由慢到快
当n→∞时
㏑x , xⁿ (n>0) , a (a>1) , n! , x
由慢到快
7.积分中值定理:若f(x)在[a,b]上连续,则在[a,b]上至少存在一个点ξ使∫f(x)dx=f(ξ)(b-a)
2.常见的偶函数:|x| , cosx , x (n为正整数), e , e ……
常见的奇函数:sinx , tanx , 1/x , x , arcsinx , arctanx ,……
3.常见的函数周期:sinx , cosx ,其周期T=2π;
tanx , cotx , |sinx| , |cosx| ,其周期T=π.
4.三个恒等式:a =x ; arcsinx + arccosx = π/2 ; arctanx + arccotx = π/2
5.常用的等价形式:当x→0时,sinx ~ x , arcsinx ~ x , tanx ~ x , arctan x ~ x ,
㏑(1+ x) ~ x , e –1 ~ x , 1-cosx ~ (1/2)x², (1+x) -1 ~ (1/n)x
8.微分中值定理:若函数f(x)满足条件:函数f(x)在x的某邻域内有定义,并且在此邻域内恒有
f(x)≤f (x )或f(x)≥f (x ),f(x)在x处可导,则有f′(x )=0
9.洛尔定理:设函数f(x)满足条件:在闭区间[a,b]上连续;在开区间(a,b)内可导;f(a)=f(b),则
在(a,b)内至少存在一个ξ,使f′(ξ)=0
积分微分公式

积分微分公式摘要:一、引言二、积分与微分的概念1.积分的定义2.微分的定义三、积分与微分的关系1.微积分基本定理2.反函数定理四、积分微分公式1.基本积分公式2.基本微分公式五、实际应用1.物理中的应用2.工程中的应用六、结论正文:一、引言在数学的发展历程中,积分与微分是两个重要的概念。
它们在解决实际问题中发挥着关键作用,如物理、工程等领域。
本文将对积分与微分的关系进行详细阐述,并通过实例介绍它们在实际应用中的价值。
二、积分与微分的概念1.积分的定义积分是对一个函数在某一区间上的累积效果进行度量的方法。
通俗地说,就是求解一个曲线下的面积。
数学上,我们可以用以下符号表示:∫f(x)dx其中,f(x) 表示被积函数,x 表示自变量,∫ 表示积分符号。
2.微分的定义微分是对一个函数在某一点上的变化率进行度量的方法。
用数学符号表示为:f"(x)其中,f(x) 表示被微分函数,x 表示自变量," 表示微分符号。
三、积分与微分的关系1.微积分基本定理微积分基本定理是积分与微分之间的桥梁。
它表明,如果一个函数f(x) 在区间[a, b] 上可积,那么f(x) 在[a, b] 上的原函数(即微分后的函数)可以表示为:F(x) = ∫f(x)dx此外,微积分基本定理还给出了求解定积分的逆运算方法,即求解原函数(微分后的函数)。
2.反函数定理反函数定理是微积分基本定理的推广。
它表明,如果一个函数f(x) 在区间[a, b] 上可积,并且f(x) 在[a, b] 上单调,那么f(x) 在[a, b] 上存在反函数,且反函数也是可积的。
四、积分微分公式1.基本积分公式基本积分公式是一些常用的积分计算方法,例如:∫x^n dx = (1/n+1)x^(n+1) + C其中,n 为常数,C 为积分常数。
2.基本微分公式基本微分公式是一些常用的微分计算方法,例如:(f(x) + g(x))" = f"(x) + g"(x)(cf(x))" = cf"(x)(f(x)g(x))" = f(x)g"(x) + g(x)f"(x)五、实际应用1.物理中的应用在物理学中,积分与微分发挥着重要作用。
微积分基本公式

微积分公式D x sinh -1(a x )= 221x a + cosh -1(a x )= 221ax - tanh -1(a x)= 22a a x -coth -1(a x )=22a a x -- sech -1(a x )= 22x a x a -- csch -1(a x )=22x a x a +- ? sinh -1 x dx = x sinh -1 x-21x ++ C? cosh -1 x dx = x cosh -1 x-12-x + C? tanh -1 x dx = x tanh -1 x+ ? ln | 1-x 2|+ C? coth -1 x dx = x coth -1 x- ? ln | 1-x 2|+ C ? sech -1 x dx = x sech -1 x- sin -1 x + C ? csch -1 x dx = x csch -1 x+ sinh -1 x + C sin 3θ=3sin θ-4sin 3θcos3θ=4cos 3θ-3cos θ →sin 3θ= ? (3sin θ-sin3θ)→cos 3θ=?(3cos θ+cos3θ) sin x = j e e jxjx 2-- cos x =2jx jx e e -+ sinh x = 2x x e e -- cosh x =2x x e e -+ 正弦定理:αsin a = βsin b =γsin c =2R 余弦定理: a 2=b 2+c 2-2bc cos αb 2=a 2+c 2-2ac cos β c 2=a 2+b 2-2ab cos γsin (α±β)=sin α cos β ± cos α sin βcos (α±β)=cos α cos β μsin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β)2 sin α sin β = cos (α-β) - cos (α+β)sin α + sin β = 2 sin ?(α+β) cos ?(α-β) sin α - sin β = 2 cos ?(α+β) sin ?(α-β) cos α + cos β = 2 cos ?(α+β) cos ?(α-β) cos α - cos β = -2 sin ?(α+β) sin ?(α-β)tan (α±β)=βαβαtan tan tan tan μ±, cot (α±β)=βαβαcot cot cot cot ±μe x=1+x+!22x +!33x +…+!n x n+ …sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r =1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1 ∑=ni 11= n∑=ni i 1= ?n (n +1)∑=ni i 12= 61 n (n +1)(2n +1) ∑=ni i13= [?n (n +1)]2Γ(x) = ⎰∞0t x-1e -td t = 2⎰∞0t2x-12t e-d t = ⎰∞0)1(ln tx-1 d tβ(m , n ) =⎰10x m -1(1-x)n -1d x =2⎰20sin π2m -1x cos 2n -1x d x= ⎰∞+-+01)1(nm m x x d x希腊字母 (Greek Alphabets)大写小写读音 大写 小写读音 大写 小写读音 Ααalpha Ιιiota Ρρrhoa b c α β γR倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1 商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ? 顺位高d 顺位低 ;1 000 000 000 000 000 000 000 000 10 yotta Y1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十10-1 deci d 分,十分之一10-2 centi c 厘(或写作「厘」),百分之一10-3 milli m 毫,千分之一001 10-6 micro 微,百万分之一000 001 10-9 nano n 奈,十亿分之一000 000 001 10-12 pico p 皮,兆分之一000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一000 000 000 000 001 10-18 atto a 阿000 000 000 000 000 001 10-21 zepto z000 000 000 000 000 000 001 10-24 yocto y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欢迎共阅、函数【定义1.1】设在某一变化过程中有两个变量X和y,若对非空集合D中的每一点x,都按照某一对应规则f ,有惟一确定的实数y与之相对应,则称y是x的函数,记作x称为自变量,y称为因变量,D称为函数的定义域,y的取值范围即集合1y|y = f(x),x・D?称为函数的值域•xoy平面上点的集合:(x, y) | y = f (x), x • D :■称为函数y=f(x)的图形.定义域D (或记D f )与对应法则f是确定函数的两个要素.因此称两个函数相同是指它们的定义域与对应法则都相同.(二)函数的几何特性1.单调性(1)【定义1.2】设函数f (x)在实数集D上有定义对于D内任意两点X,, x2,当x, V x2时,若总有f(xj < f(X2)成立,则称f (x)在D内单调递增(或单增);若总有f(xj V f(X2)成立,则称f (x)在D内严格单增,严格单增也是单增.当f (x)在D内单调递增时,又称f (x)是D内的单调递增函数.单调递增或单调递减函数统称为单调函数.2.有界性【定义1.3】设函数f(x)在集合D内有定义,若存在实数M > 0,使得对任意x D,都有| f(x)| < M,则称f(x)在D内有界,或称f(x)为D内的有界函数.【定义1.4】设函数f(x)在集合D内有定义,若对任意的实数M > 0,总可以找到一x D,使得| f (x) | > M,则称f (x)在D内无界,或称f (x)为D内的无界函数.【定义1.5】设函数f(x)在一个关于原点对称的集合内有定义,若对任意x D,都有f(-x)--f(x)(或 f(-x)=f(x)),则称f (x)为D 内的奇(偶)函数.奇函数的图形关于原点对称,当f(x)为连续的函数时,f(x)=0,即f(x)的图形过原点.偶函数的图形关于y轴对称.关于奇偶函数有如下的运算规律:设fjx) 一f2(x)为奇函数,g1(x),g2(y)为偶函数,则f'x) 一f2(x)为奇函数;g'x) _g2(x)为偶函数;f'x) 一g'x)非奇偶函数;I •f j(x) g1(x)为奇函数;f j(x) f2(x), g'x) °2(x)均为偶函数. 常数C是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助.4.周期性【定义1.6】设函数f(x)d在集合D内有定义,如果存在非零常数T,使得对任意x D恒有f(x f (x)成立,则称f (x)为周期函数.满足上式的最小正数T,称为f(x)的基本周期,简称周期.我们熟知的三角函数为周期函数(考纲不要求),除此以外知之甚少.y二x -[x]是以1为周期的周期函数.y =[x]与y=x-[x]的图形分别如图1-1(a)和图1-1(b)所示.(三)初等函数1.基本初等函数(1)常数函数y=C,定义域为(-s ,+x),图形为平行于x轴的直线.在y轴上的截距为c.(2)幕函数y =x‘,其定义域随着的不同而变化.但不论〉取何值,总在(1,+s)内有定义,且图形过点(1,1).当〉> 0时,函数图形过原点(图1-2)图1-2(3)指数函数y = :• x(:. - 0, 1),其定义域为(-g, + x).当0v v 1时,函数严格单调递减.当〉> 1时,函数严格单调递增.子数图形过点(0,1).微积分中经常用到以e为底的指数函数,即y =e x(图1-3)(4)对数函数y = log :.x(: -0,篇胡),其定义域为(1,+g),它与y三x互为反函数.微积分中常用到以e 为底的对数,记作y=1 nx,称为自然对数.对数函数的图形过点(1,0)(图1-4)(图1-3)(图1-4)另有两类基本初等函数:三角函数与反三角函数,不在考纲之内•对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分应用中都很重要. 例如,设f(x)在(a,b)区间内二阶可导,对任意x (a,b), f " (x) v0.则⑴f ' (x)在(a,b)内严格单调减少;(2) f (x)在(1,b)上为凸弧,均不充分.此题可以用举例的方法来说明(1)、(2)均不充分.由初等函数的图形可知,y=-x4为凸弧.y ' =-4x3在(—g g + )上严格单调递减但y" =-12x2<0,因此(1) , (2)均不充分,故选E.此题若把题干改成f 〃(x) < 0,则(1) , (2)均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2•反函数【定义1.7】设函数y二f(x)的定义域为D,值域为R,如果对于每一个y R ,都有惟一确定的D与之对应,且满足y二f(x) x是一个定义在R以y为自变量的函数,记作并称其为y = f (x)反函数.习惯上用x作自变量,y作因变量,因此y = f(x)反函数常记为y = f^(x), R.函数y二f(x)与反函数y r f'(x)的图形关于直线y=x对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性十a%y二log a x互为反函.y =x2,x • [0,+x]的反函数为y = •.. x ,而y =x2,x • (-^ ,0)的反函数为y x (图1-2 (b)).3•复合函数【定义1.8】已知函数y二f(u),u・ D f,y R f .又u —(x),x D :AR ,若D f R f非空,则称函数为函数y = f(u)与u V:(x)的复合函数.其中y称为因变量,x称为自变量,u称为中间变量.4•初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式.(四)隐函数若函数的因变量y明显地表示成y = f(x)的形式,则称其为显然函数.y =x2,y =1 n(3x2 - 1),y = ix2 -1 等.设自变量x与因变量y之间的对应法则用一个方程式F(x,y)二0表示,如果存在函数y二f(x) (不论这个函数是否能表示成显函数),将其代入所设方程,使方程变为恒等式:其中D f为非空实数集.则称函数y = f(x)由方程F(x,y)=0所确定的一个隐函数.如方程.x「y =1可以确定一个定义在[0,1]上的隐函数.此隐函数也可以表示成显函数的形式即但并不是所有隐函数都可以用x的显函数形式来表示,如e xy x 0因为y我法用初等函数表达,故它不是初等函数.另外还需注意,并不是任何一个方程都能确定隐函数,如x2• y2• 1 = 0.(五)分段函数有些函数,对于其定义域内的自变量x的不同值,不能用一个统一的解析式表示,而是要用两个或两个以上的式子表示,这类函数称为分段函数,如都是定义在( —%, + x)上的分段函数.分段函数不是初等函数,它不符合初等函数的定义.二、极限(不在考试大纲内,只需了解即可)二'I极限是微积分的基础.(一)数列极限按照一定顺序排成一串的数叫做数列,如a,a2…务a n称为通项.1.极限定义【定义1.9】设数列「a「,当项数n无限增大时,若通项a.无限接近某个常数A,则称数列;收敛于A,或称A为数列忌?的极限,记作否则称数列:a n匚发散或lim a.不存在.n 丫七2.数列极限性质(1)四则极限性质设lim ^n二a,|im y n =b,则(2)lim^^a u lim x n * =a ( k 为任意正整数).n—JpC(3)若lim.X n =a,则数列U?是有界数列.(4)夹逼定理设存在正整数N o,使得N o时,数列{x n H yn}」Zn}满足不等式Z n兰X n兰y n. 若lim y n二lim z n = a,则lim 焉=a.禾利用此定理可以证明重要极限(1 丫lim 1 e (e=2.718是一个无理数).(5)单调有界数列必有极限设数列;有界,且存在正整数N o ,使得对任意n _ N o都有X n d< Xn (或X n・1 _X n ),则数列:X n』的极限一定存在.利用此定理可以证明重要极限(1、lim 1二e (e = 2.718,是一个无理数).. n(二)函数的极限1.时的极限【定义1.10】设函数f (X)在|x|_a (a ■ 0)上有定义,当x—;『:时,函数f(x)无限接近常数A,f '::、J" ) 1则称f (X)当x —;:::时以A为极限,记作I当X r「* 或X)-::时的极限当X沿数轴正(负)方向趋于无穷大,简记X—• •: :( x)-::)时,f (x)无限接近常数A,则称f (X) 当X—小-'(X-. )时以A为极限,记作3.X—;X0时的极限【定义1.11】设函数f (X)在X。
附近(可以不包括X0点)有定义,当X无限接近X0(X = X0)时,函数f(x)无限接近常数A,则称当X > X0时,f(x)以A为极限,记作4.左、右极限若当X从X0的左侧(x :::x0)趋于x0时,f(x)无限接近一个常数A,则称A为X—. x0时f (x)的左极限,记作lim f(x) = A.或f (冷—0) = AX T K(T\ \ | •若当x从X0的左侧(X X0 )趋于X0时,f (x)无限接近一个常数A,则称A为X-;X0时f (x)的右极限,记作• Ilim_/(x) = A.或f (x0 +0) = Ax T x广(三)函数极限的性质1 .惟一性若,lim f(x)二A, lim f(x)=B 则A=B.X—iX) X—2.局部有界性若lim f (x) A.则在X0的某邻域内(点X0可以除外),f(x)是有界的.X—^03.局部保号性若lim f(x)二A.且A>0 (或A v0=,则存在x°的某邻域(点x°可以除外),在该邻Xio域内有f (X) >0 (或f (x) v0=。
若lim f(x)二A。
且在X。
的某邻域(点X。
可以除外)有f(x) >0 (或f(x) V0=,则必有A >0 x「X o(或A < 0)。
4 •不等式性质若lim f (x) = A,x_X°X^gw,且A>B,则存在X0的某邻域(点X0可以除外) ,使f(x)>g(x).若lim f (x) = A, X—0 lim g(x)=B.且在x°的某邻域(点x°可以除外)有f(x) <g(x)或(f(x) < X >X0g(x)),贝U A< Bo5 •四则运算同数列(四)无穷小量与无穷大量1 •无穷小量的定义i 【定义1.12】若lim f(x) = 0,则称f (x)是x > X0时的无穷小量。