高等数学微积分公式
高等数学常用微积分公式

高等数学常用微积分公式一、极限1.无穷大与无穷小:当x→∞时,若极限值L=0,则称函数f(x)是无穷小。
常见无穷小有:x→0时的无穷小o(x)、无穷次可导的无穷小O(x^n);当x→∞时,若极限值L≠0或不存在,则称函数f(x)是无穷大;2.函数极限:若函数f(x)当x→a时的极限存在稳定的常数L,则称L为f(x)当x→a时的极限,记作:lim(x→a) f(x) = L;3.等价无穷小:若 f(x) 和 g(x) 都是x→a 时的无穷小,并且lim(x→a)(f(x)/g(x))=1,则称 f(x) 和 g(x) 是x→a 时的等价无穷小。
二、导数1.导数的定义:若函数f(x)在点x处的函数值可近似表示为f(x+Δx)≈f(x)+f'(x)Δx,其中f'(x)为f(x)在点x处的导数,则称f'(x)是函数f(x)在点x处的导数。
2.常见函数的导数:(1)和差法则:(u±v)'=u'±v';(2)乘法法则:(u*v)'=u'*v+u*v';(3)除法法则:(u/v)'=(u'*v-u*v')/v^2,其中v≠0;(4) 链式法则:若 y=f(u),u=g(x) ,则 y=f(g(x)) 的导数为dy/dx = f'(u)*g'(x)。
3.高阶导数:函数f(x)的导数f'(x)的导数称为f(x)的二阶导数,记为f''(x)。
可以依此类推,得到函数f(x)的n阶导数f^(n)(x)。
三、微分1.微分的定义:函数 f(x) 在点 x 处的微分记为 dx,根据导数的定义,有 df(x) = f'(x)dx。
2.微分的性质:(1)常数微分:d(c)=0,其中c为常数;(2) 取单项微分:d(x^n) = nx^(n-1)dx,其中 n 为实数,x 为变量;(3) 和差微分:d(u ± v) = du ± dv;(4) 乘法微分:d(uv) = u*dv + v*du;(5) 除法微分:d(u/v) = (v*du - u*dv)/v^2,其中v ≠ 0;(6) 复合函数微分:若 y=f(u),u=g(x),则 dy = f'(u)du =f'(g(x))g'(x)dx。
高等数学中所涉及到的微积分公式汇总

高等数学中所涉及到的微积分公式汇总微积分是高等数学中的一门重要学科,涉及到很多重要的公式和定理。
下面是一些微积分中常用的公式的汇总:1.导数公式:- 函数f(x)在点x处的导数:f'(x) = lim (f(x+h)-f(x))/h,其中h -> 0- 常见函数的导数公式:常数函数导数为0,幂函数导数为nx^(n-1),三角函数的导数等-乘法法则:(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)-商法则:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.积分公式:- 不定积分和定积分的基本定理:若F'(x) = f(x),则∫f(x) dx = F(x) + C- 基本不定积分:∫x^n dx = (1/n+1)*x^(n+1) + C (其中n不等于-1)- 定积分的性质:∫(a to b) f(x) dx = -∫(b to a) f(x) dx,∫(a to b) [f(x) ± g(x)] dx = ∫(a to b) f(x) dx ± ∫(a to b)g(x) dx3.微分学的基本定理:- 导数的基本定理:如果F(x)是f(x)的一个原函数,那么∫(a to b) f(x) dx = F(b) - F(a)- 牛顿-莱布尼茨公式:若F(x)是f(x)的一个原函数,那么∫(a tob) f(x) dx = F(x),_(a to b) = F(b) - F(a)4.极限定理:- 极限的四则运算定理:设lim (x -> a) f(x) = L,lim (x -> a) g(x) = M,则lim (x -> a) [f(x)±g(x)] = L±M,lim (x -> a)[f(x)*g(x)] = L*M,lim (x -> a) [f(x)/g(x)] = L/M (其中M不等于0)- L'Hospital法则:设lim (x -> a) f(x) = 0,lim (x -> a) g(x) = 0,并且lim (x -> a) f'(x)/g'(x) 存在,则lim (x -> a) f(x)/g(x) = lim (x -> a) f'(x)/g'(x)- 夹逼定理:如果数列{a_n}、{b_n}、{c_n}满足a_n <= b_n <=c_n,并且lim (n -> ∞) a_n = lim (n -> ∞) c_n = L,则lim (n -> ∞) b_n = L5.泰勒级数:-函数f(x)的泰勒级数展开:f(x)=f(a)+f'(a)(x-a)+f''(a)*(x-a)^2/2!+...+f^n(a)*(x-a)^n/n!+...,其中f^n(a)表示函数f(x)在点a处的n阶导数以上仅是微积分中涉及到的一些公式,实际上微积分的公式和定理非常丰富,还有更多的公式可以在相关的教材和文献中找到。
高等数学微积分公式大全

高等数学微积分公式大全
微积分是数学中最基本的概念,无论是科学研究还是工程分析,都会用到微积分的知识。
微积分的公式包括微分、积分、曲线积分、极限等。
它们是用来描述函数变化的连续性、快慢性、极限、导数、积分的公式。
微分的公式包括梯形公式、抛物线公式、椭圆公式、双曲线公式、圆公式等。
梯形公式表示两个函数在相同的点上的导数之差,抛物线公式是曲线函数的导数,椭圆公式是椭圆函数的导数,双曲线公式是双曲线函数的导数,圆公式是圆函数的导数。
积分公式包括欧拉积分公式、拉格朗日积分公式、牛顿积分公式等。
欧拉积分公式是求解一元函数积分的公式,拉格朗日积分公式是求解反常积分的公式,牛顿积分公式是求解多元函数积分的公式。
曲线积分公式包括平面曲线积分公式、曲面曲线积分公式等。
平面曲线积分公式是求解一元函数曲线积分的公式,曲面曲线积分公式是求解多元函数曲线积分的公式。
极限公式包括极限绝对值公式、极限比值公式等。
极限绝对值公式表示某函数在某一点的极限,极限比值公式表示某函数在某一点的极限的比值。
以上就是高等数学微积分的公式大全,它们涵盖了微积分涉及的各个方面。
通过研究和掌握这些公式,可以帮助我们更好地理解微积分理论,更好地分析和解决实际问题。
高数微积分公式大全3篇

高数微积分公式大全第一篇:高数微积分公式大全(上)微积分是数学中的重要分支,也是物理、工程、经济等领域中不可或缺的工具。
下面将介绍一些高等数学中常用的微积分公式,包括极限、导数、微分等,供读者参考。
1. 极限极限是微积分中的基本概念,它描述的是函数在某一点附近的取值趋近于某个常数的情况。
极限公式如下:(1)左极限$$\lim_{x\to x_{0}^{-}}f(x)=A$$(2)右极限$$\lim_{x\to x_{0}^{+}}f(x)=A$$(3)无穷远处的极限$$\lim_{x\to \infty}f(x)=A$$(4)无穷小量$$\lim_{x\to x_{0}}\frac{f(x)}{g(x)}=0$$2. 导数导数是微积分中的重要概念,它描述的是函数在某一点处的变化率。
导数公式如下:(1)切线的斜率$$k=\lim_{x\to x_{0}}\frac{f(x)-f(x_{0})}{x-x_{0}} $$(2)函数的导数$$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$3. 微分微分是微积分中的基本运算,它可以帮助我们研究函数的变化趋势。
微分公式如下:$$df=f'(x)dx$$其中,$dx$表示自变量$x$的微小变化量,$df$表示因变量$y$的微小变化量。
4. 泰勒公式泰勒公式是微积分中的重要定理,它可以帮助我们将一个函数表示为一系列多项式的和,从而简化函数的计算。
泰勒公式如下:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^{n} $$其中,$f^{(n)}(x)$表示函数$f(x)$的$n$阶导数。
5. 柯西-黎曼方程柯西-黎曼方程是复分析中的重要定理,它描述了复函数的导数和复共轭函数的关系。
柯西-黎曼方程如下:$$\frac{\partial u}{\partial x}=\frac{\partialv}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$$其中,$u(x,y)$和$v(x,y)$分别表示复函数$f(z)=u(x,y)+iv(x,y)$的实部和虚部。
高数微积分基本公式大全

高数微积分基本公式大全1.导数的基本公式:-基本导数:(常数)' = 0, (x^n)' = nx^(n-1), (e^x)' = e^x, (a^x)' = a^xln(a), (ln(x))' = 1/x, (sin(x))' = cos(x),(cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x), (sec(x))' = sec(x)tan(x), (csc(x))' = -csc(x)cot(x).-乘法法则:(uv)' = u'v + uv'.-除法法则:(u/v)' = (u'v - uv') / v^2.-链式法则:(f(g(x)))' = f'(g(x)) * g'(x).2.不定积分的基本公式:-基本积分:∫(k) dx = kx + C, ∫(x^n) dx =(1/(n+1))x^(n+1) + C, ∫(e^x) dx = e^x + C, ∫(1/x) dx =ln(|x|) + C, ∫(sin(x)) dx = -cos(x) + C, ∫(cos(x)) dx =sin(x) + C.-分部积分:∫(uv') dx = uv - ∫(u'v) dx.-特殊积分:∫(1/(1+x^2)) dx = arctan(x) + C,∫(1/(sqrt(1-x^2))) dx = arcsin(x) + C.3.微分方程的基本公式:-一阶线性微分方程:dy/dx + P(x)y = Q(x),解为y = e^(-∫P(x)dx) * (∫Q(x)e^(∫P(x)dx)dx + C).-齐次方程:dy/dx = f(y/x),令v = y/x,化为可分离变量的形式求解.-常系数线性齐次微分方程:ay'' + by' + cy = 0,其特征方程为ar^2 + br + c = 0,解为y = C1e^(r1x) + C2e^(r2x)。
高数常用微积分公式24个

高数常用微积分公式24个为了更好地帮助大家理解高等数学中的微积分,本文主要介绍高数常用的微积分公式24个。
首先,介绍最基本的微积分概念。
微积分是一个广义的概念,它包括微分学和积分学。
微分学是研究变动数量的变化率,变量可以表达为函数。
积分学则是将某一函数在不同区域上的积分和运算,可以表示为面积、重量或其他距离变化的概念。
其次,介绍高数常用的微积分公式。
1、微分中的基本公式:(1)函数的定义域x的导数,表示为f′(x)(2)复合函数的导数,表示为f′(g(x))(3)二阶导数的定义,表示为f″(x)2、积分中的基本公式:(1)求解定积分,表示为∫[a, b]f(x)dx(2)定积分的换折叠公式,表示为∫[a, b]f(x)dx=[a,c]f(x)dx+[c, b]f(x)dx(3)求解不定积分,表示为∫f(4)二重积分的定义,表示为∫[a, b]∫[c, d]f(x,y)dydx (5)定义域积分,表示为∫[S]f(x,y)ds3、微分与积分的关系:微分与积分有着相互联系的关系。
积分是将函数某一段区间的值累积为某一量,而微分则是积分的反过程,求出函数在有限的区间内的变化率。
这一关系也被称为微分法和积分法的反射关系。
4、偏微分的基本公式:偏微分是指关于同一变量的偏导数。
它是微分中比较复杂的一种形式,通常与多元函数相关,旨在研究函数变化率在同一点上受其他变量影响的情况。
它的基本公式为f′(x, y)=f/x, f′(x, y)=f/y。
5、常见的微分与积分公式:(1)指数函数的求导公式,表示为f′(x)=ae^(ax)(2)对数函数的求导公式,表示为f′(x)=1/x(3)三角函数的求导公式,表示为f′(x)=cos(x),f′(x)=sin(x)(4)椭圆函数的求导公式,表示为f′(x)=2a(a+bx)/(b^2-a^2)(5)反椭圆函数的求导公式,表示为f′(x)=-2a(a+bx)/(b^2-a^2)(6)求极限的求导公式,表示为limX→0f′(x)=f(0)(7)求微积分的积分公式,表示为∫[a,b]f(x)=F(b)-F(a)最后,本文介绍了高数常用的微积分公式24个,包括微分、积分、偏微分以及极限的求导公式,利用这些公式,大家就可以更好地理解微积分的概念,从而更好地学习高等数学中的微积分内容。
高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '=⑵1x x μμμ-=⑶()sin cos x x '=⑷()cos sin x x '=-⑸()2tan sec x x'=⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅⑻()csc csc cot x x x'=-⋅⑼()x x e e '=⑽()ln x x a a a '=⑾()1ln x x'=⑿()1log ln x a x a '=⒀()21arcsin 1x x '=-⒁()21arccos 1x x '=--⒂()21arctan 1x x '=+⒃()21arccot 1x x '=-+⒄()1x '=⒅()12x x'=二、导数的四则运算法则三、高阶导数的运算法则(1)()()()()()()()n nn u x v x u x v x ±=±⎡⎤⎣⎦(2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a u ax b +=+⎡⎤⎣⎦(4)()()()()()()()nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n n x n =(2)()()n ax b n ax be a e ++=⋅(3)()()ln n x x n a a a=(4)()()sin sin 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5)()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+(7)()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c =⑵()1d x x dx μμμ-=⑶()sin cos d x xdx =⑷()cos sin d x xdx =-⑸()2tan sec d x xdx=⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx=⋅⑻()csc csc cot d x x xdx=-⋅⑼()x x d e e dx =⑽()ln x x d a a adx =⑾()1ln d x dx x=⑿()1log ln x a d dx x a =⒀()21arcsin 1d x dx x=-⒁()21arccos 1d x dxx=--⒂()21arctan 1d x dx x=+⒃()21arccot 1d x dx x=-+六、微分运算法则⑴()d u v du dv ±=±⑵()d cu cdu=⑶()d uv vdu udv =+⑷2u vdu udv d v v-⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c=+⎰⑵11x x dx cμμμ+=++⎰⑶ln dxx c x=+⎰⑷ln xxa a dx c a=+⎰⑸x x e dx e c =+⎰⑹cos sin xdx x c =+⎰⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x=++⎰⑾21arcsin 1dx x cx=+-⎰八、补充积分公式九、下列常用凑微分公式积分型换元公式十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,ax dv e dx =形如sin n x xdx ⎰令n u x =,sin dv xdx =形如cos n x xdx ⎰令n u x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,n dv x dx =形如ln n x xdx ⎰,令ln u x =,n dv x dx=⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos ax u e x x =均可。
高等数学微积分公式

高等数学微积分公式1.极限的定义和性质:- 极限定义:如果对于任意给定的正数ε,存在正数δ,使得当0 < ,x - a,< δ时,有,f(x) - L,< ε,那么称函数f(x)在x=a处的极限为L,记作lim(x→a) f(x) = L。
2.导数公式:-基本导数公式:-(c)'=0,其中c为常数。
- (x^n)' = nx^(n-1),其中n为正整数,x为自变量。
-(e^x)'=e^x,其中e为自然对数的底数。
- (ln,x,)' = 1/x,其中x为自变量。
- (sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec^2x,(cotx)' = -csc^2x,其中x为自变量。
- 乘法法则:(fg)' = f'g + fg'。
- 除法法则:(f/g)' = (f'g - fg')/g^2-链式法则:若y=f(g(x)),则y'=f'(g(x))g'(x)。
3.积分公式:-不定积分的基本公式:- ∫kdx = kx + C,其中k为常数,C为积分常数。
- ∫x^n dx = (x^(n+1))/(n+1) + C,其中n不为-1- ∫e^x dx = e^x + C,其中e为自然对数的底数。
- ∫(1/x) dx = ln,x, + C。
- ∫sinx dx = -cosx + C,∫cosx dx = sinx + C。
-定积分的基本公式:- ∫[a, b] f(x) dx = F(b) - F(a),其中F(x)为f(x)的一个原函数。
- ∫[a, b] kf(x) dx = k∫[a, b] f(x) dx,其中k为常数。
- ∫[a, b] (f(x) ± g(x)) dx = ∫[a, b] f(x) dx ± ∫[a, b]g(x) dx。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学微积分公式
高等数学微积分公式
微积分是数学中的一个重要分支,它研究的是函数的变
化规律。
在微积分的学习中,我们需要掌握许多公式,在处理函数的变化过程中起到了非常重要的作用。
下面是高等数学中常见的微积分公式。
一、导数公式
1.常数函数的导数公式:
\[\frac{d}{dx} C=0\]
其中C为常数。
2.幂函数的导数公式:
\[\frac{d}{dx} x^{n}=nx^{n-1}\]
其中n为常数。
3.自然指数函数的导数公式:
\[\frac{d}{dx} e^{x}=e^{x}\]
4.对数函数的导数公式:
\[\frac{d}{dx} ln(x)=\frac{1}{x}\]
5.三角函数的导数公式:
\[\frac{d}{dx} sin(x)=cos(x)\]
\[\frac{d}{dx} cos(x)=-sin(x)\]
6.反三角函数的导数公式:
\[\frac{d}{dx} sin^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}\] \[\frac{d}{dx} cos^{-1}(x)=-\frac{1}{\sqrt{1-x^{2}}}\]
7.复合函数的导数公式(链式法则):
设y=f(u)和u=g(x),则有
\[\frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}\]
二、微分公式
1.常数函数的微分公式:
\[d(C)=0\]
其中C为常数。
2.幂函数的微分公式:
\[d(x^{n})=nx^{n-1}dx\]
其中n为常数。
3.指数函数的微分公式:
\[d(e^{x})=e^{x}dx\]
4.三角函数的微分公式:
\[d(sin(x))=cos(x)dx\]
\[d(cos(x))=-sin(x)dx\]
5.反三角函数的微分公式:
\[d(sin^{-1}(x))=\frac{dx}{\sqrt{1-x^{2}}}\]
\[d(cos^{-1}(x))=-\frac{dx}{\sqrt{1-x^{2}}}\]
6.复合函数的微分公式(链式法则):
设y=f(u)和u=g(x),则有
\[dy=\frac{dy}{du}\times du\]
三、泰勒公式
泰勒公式是微积分中的一个重要定理,它可以将一个函
数在某点的值表示为一系列关于该点的导数的和。
其公式如下:\[f(x)=\sum_{n=0}^{\infty}\frac{f^{n}(a)}{n!}(x-
a)^{n}\]
其中a为表达式的中心。
四、不定积分公式
1.基本初等函数的不定积分公式:
(1)幂函数 \[\int x^{n}dx=\frac{x^{n+1}}{n+1}+C\] 其中C为常数。
(2)指数函数 \[\int e^{x}dx=e^{x}+C\]
(3)对数函数 \[\int \frac{1}{x}dx=ln|x|+C\]
(4)三角函数 \[\int sin(x)dx=-cos(x)+C \] \[\int cos(x)dx=sin(x)+C \]
2.一些常用的不定积分公式:
(1)分式 \[\int \frac{1}{x^{2}-
a^{2}}dx=\frac{1}{2a}ln|\frac{x-a}{x+a}|+C\]
(2)幂函数 \[\int
x^{n}ln(x)dx=\frac{x^{n+1}}{(n+1)^{2}}(nln(x)-1)+C\] (3)三角函数 \[\int tan(x)dx=-ln|cos(x)|+C\]
(4)反三角函数 \[\int \frac{dx}{\sqrt{a^{2}-
x^{2}}}=\sin^{-1}(\frac{x}{a})+C\]
以上是高等数学微积分常见的公式,应该掌握并熟练运用。
在学习高等数学微积分的过程中,认真掌握这些公式,可以帮助我们更加深刻地理解微积分的知识,提高解题的能力。