【帮帮群】二元一次方程组的解法易错点剖析

合集下载

二元一次方程组典型错解例析

二元一次方程组典型错解例析

二元一次方程组典型错解例析“化多为少,由繁至简,各个击破,逐一解决”的“消元”思想是解方程组的“法宝”,代入法和加减法则是落实“消元”思想的具体措施,但在具体运用这两种方法对二元一次方程组进行求解时,不少同学都“犯了不该犯的错”:错解一:错代入例1:解方程组:⎩⎨⎧=+=+②40y 2x ① 22y x 错误解答: 由①得 x =22-y ③把③代入①得 (22-y ) +y =22 ④整理④得 0=0 ⑤⑤是个恒等式,所以这个方程组有无数组任意解。

错解分析:利用代入消元法解二元一次方程组时,把其中一个系数较简单的方程变形为用其中一个未知数的代数式表示另一个未知数,然后应该代入到这个方程组中的“另一个”方程,而不能代入到变形前的那个方程。

本题中③是由①变形得,因此应把③代入②,而不是把③代入①。

正确解答: 由①得 x =22-y ③把③代入②得 2×(22-y )+y =40 ④解④得 y =4把y =4代入①得 x +4=22 ⑤解⑤得 x =18所以这个方程组的解是 ⎩⎨⎧==418y x 警示一:利用代入消元法解二元一次方程组时,把其中一个系数较简单的方程变形为用其中一个未知数的代数式表示另一个未知数,然后应该代入到这个方程组中的“另一个”方程,而不能代入到变形前的那个方程。

错解二:不完整例2:解方程组:⎩⎨⎧==②48y -3x ① y -x 13错误解答: 由①得 x = 3+y ③把③代入②得 3×(3+y )-8y =14 ④解④得 y =-1所以这个方程组的解是 y =-1 。

错解分析:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

而此例只是求出一个未知数y 的值,没有求出另一个未知数x 的值,所以此题应继续求出另一个未知数x 的值。

正确解答: 由①得 x =y +3 ③把③代入②得 3×(y +3)-8y =14 ④解④得 y =-1把y =-1代入①得 x -(-1)=3 ⑤解⑤得 x =2所以这个方程组的解是 ⎩⎨⎧==-1y 2x 警示二:求方程组的解时必须求出两个未知数的值,而不应该只是求出一个未知数的值。

二元一次方程组知识点归纳及解题技巧

二元一次方程组知识点归纳及解题技巧

二元一次方程组知识点归纳及解题技巧一、知识点归纳在代数学中,二元一次方程组是由两个含有两个未知数的方程组成的。

通常表示为:ax + by = cdx + ey = f其中,a、b、c、d、e、f为已知系数,x、y为未知数。

1. 方程组解的类型二元一次方程组的解可以分为以下三种类型:a) 有唯一解:方程组中的两个方程可以通过消元法或代入法得到唯一解。

b) 无解:方程组中的两个方程无法通过消元法或代入法得到一致的解,此时方程组为矛盾方程组。

c) 无穷解:方程组中的两个方程可以通过消元法或代入法得到多个解,此时方程组为同解方程组。

2. 消元法消元法是求解二元一次方程组的常用方法,它的基本思路是通过变换方程式,将两个方程中的一个未知数消去,从而得到只含有一个未知数的方程,再通过代入法求解。

以下是消元法的步骤:a) 将两个方程中的同一未知数系数相等,若系数不等,则可通过乘法变换,使其相等;b) 将两个方程式相减,将其中一个未知数消去,得到只含有另一个未知数的方程;c) 求解得到该未知数的值;d) 将求得的未知数的值带入其中一个方程,求解得到另一个未知数的值。

3. 代入法代入法也是求解二元一次方程组的有效方法,它的基本思路是将一个方程中的一个未知数表示为另一个未知数的函数,再将其代入另一个方程进行求解。

以下是代入法的步骤:a) 选择一个方程中的一个未知数表示为另一个未知数的函数,比如设x = g(y);b) 将该式子代入另一个方程,得到只含有一个未知数的方程;c) 求解得到该未知数的值;d) 将求得的未知数的值带入其中一个方程,求解得到另一个未知数的值。

二、解题技巧1. 观察方程组特征:通过观察方程组的系数和常数项,判断方程组的解类型。

当系数和常数项满足某种特定条件时,可以直接判断方程组的解类型,避免不必要的计算。

例如,当两个方程的系数比例相同,而常数项不同时,方程组无解;当两个方程的系数和常数项都相等,方程组有无穷解。

第五章 二元一次方程组易错剖析+重难点突破训练(含答案) 2024-2025-北师大版数学八年级上册

第五章 二元一次方程组易错剖析+重难点突破训练(含答案) 2024-2025-北师大版数学八年级上册

第五章二元一次方程组易错点剖析易错点一对二元一次方程(组)的定义理解不彻底【例1】下列方程中,是二元一次方程的是().A. 3x−2y=4zB. 6xy+9=0C. 1x +4y=6 D. 4x=y−24本题容易受6xy+9=0中的xy影响导致误选,二元一次方程(组)必须符合以下三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数;(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1,注意xy的次数是2;(3)二元一次方程的左边和右边都必须是整式.跟踪练习1. 下列方程中,是二元一次方程的是().A. xy=2B. 3x+4y=0C. x+1y=2 D. x2+2y=4易错点二解方程组时不注意项的符号导致错误【例2】解方程组:{x−2y=2,①x−y=−2.②用加减消元法中减法消元时,易出现符号错误,所以要特别细心.跟踪练习2. 解方程组:{2x−5y=−3,①2x−3y=−1.②易错点三不理解待定系数法而出错【例3】已知一次函数图象经过点(0,3),(3,0),写出它的表达式: .本题容易把待定的系数与变量混为一谈,直接误认为k=3,b=3,做出错误的答案.因此,用待定系数法解题,要牢牢把握准所求的系数.跟踪练习3. 已知一次函数的图象经过点(1,3)和点(−2,−3),则此一次函数的表达式是 .易错点四列方程组解应用题时不能正确理解题意【例4】现有食盐水两种,一种含盐12%,另一种含盐20%,分别取这两种盐水a kg和b kg,将其混合成18%的盐水100kg,求a,b的值.在列方程时,对背景不熟而出错,如:列方程12%a+20%b=100×18 %,方程左边表示混合之前两种食盐水的含盐量之和,而右边表示最后盐水中的含盐量.因此,解题时,要深刻理解题意,找准等量关系.跟踪练习4. 今年“五一”小长假期间,某市外来与外出旅游总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.重难点突破重难点一 二元一次方程(组)的有关概念注意理解定义中“元”是指未知数,“二元”就是指方程中有且只有两个未知数,且“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.1. 下列四个方程中是二元一次方程的是( ).A. 4x−1=xB. x +1x =2C. 2x−3y =1D. xy =82. 已知2x 3−k +y =0是二元一次方程,那么k 的值为( ).A. 3 B. 0 C. 2 D. 43. 在下列方程组:①{x +y =5,3y−x =1,②{xy =1,x +2y =3,③{1x +1y =1,x +y =1,④{x =1,y =3中,是二元一次方程组的是( ).A. ①③B. ①④C. ①②D. 只有①4. 已知3x a−1−5y b +2=1是关于x ,y 的二元一次方程,则a +b = .5. 若方程组{x +y ∣a∣−2=0,(a−3)x +9=0是二元一次方程组,求a 的值.重难点二 求解二元一次方程组解二元一次方程组的基本方法:代入消元法和加减消元法,核心思想是“消元”.6. 方程组{x +y =5,x−y =1的解是( ).A. {x =3,y =2 B. {x =−2,y =−3 C. {x =4,y =1 D. {x =4,y =37. 方程组{x +y =10,2x +y =16的解是( ).A. {x =7,y =3B. {x =6,y =4C. {x =5,y =5D. {x =1,y =98. [2023·深圳期末]解方程组:(1) {y =2x ,x +y =12;(2) {3x +5y =21,2x−5y =−11.重难点三 二元一次方程组的应用利用二元一次方程(组)解决实际问题的一般步骤:(1)审,(2)设,(3)找,(4)列,(5)解,(6)答.9. 某配餐公司需用甲、乙两种食材为在校午餐的同学配置营养餐,两种食材的蛋白质含量和碳水化合物含量如下表所示:甲食材乙食材每克所含蛋白质0.3单位0.7单位每克所含碳水化合物0.6单位0.4单位若每位中学生每餐需要21单位蛋白质和40单位碳水化合物,那么每餐甲、乙两种食材各多少克恰好满足一个中学生的需要?设每餐需要甲食材x克,乙食材y克,那么可列方程组为().A. {0.3x+0.6y=21,0.7x+0.4y=40 B. {0.6x+0.3y=21, 0.4x+0.7y=40C. {0.3x+0.7y=21,0.6x+0.4y=40 D. {0.3x+0.7y=40, 0.6x+0.4y=2110. [2023·东莞校考]某车间有60名工人,每人平均每天可加工螺栓14个或螺母20个,要使每天加工的螺栓和螺母配套(1个螺栓配2个螺母),设分配x 人生产螺母,y人生产螺栓,依题意列方程组为某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A,B的数量和费用如表所示:购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物65 1 140第二次购物37 1 110第三次购物98 1 062(1)在这三次购物中,第次购物打了折扣;(2)求出商品A,B的标价.12. 某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.重难点四二元一次方程与一次函数的综合一般地,以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象相同,是一条直线.13. 如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x,y 的二元一次方程组{kx−y=−b,y−x=2的解是().A. {x=3,y=4 B. {x=2,y=4 C.{x=1.8,y=4 D.{x=2.4,y=414. 若关于x,y的二元一次方程组{y=kx+b,y=mx+n的解为{x=2,y=5,则一次函数y=kx+b与y=mx+n的图象的交点坐标为().A. (2,5)B. (5,2)C. (−2,−5)D. (1,5)15. 如图是函数y=−x+4与y=x+2的图象,则方程组{y=−x+4,y=x+2的解是 .16. 如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b),分别与x 轴交于A,B两点.(1)求b,m的值,并结合图象写出关于x,y的方程组{2x−y=−1,mx−y=−4的解;(2)求△ABP的面积;(3)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD的长为2,直接写出a的值.第五章二元一次方程组易错点剖析易错点一对二元一次方程(组)的定义理解不彻底跟踪练习1.B本题容易受6xy+9=0中的xy影响导致误选,二元一次方程(组)必须符合以下三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数;(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1,注意xy的次数是2;(3)二元一次方程的左边和右边都必须是整式.【例1】 D易错点二解方程组时不注意项的符号导致错误跟踪练习2.解:①−②,得−2y=−2,解得y=1,把y=1代入②,得2x −3=−1,解得x=1,所以原方程组的解为{x=1,y=1.用加减消元法中减法消元时,易出现符号错误,所以要特别细心.【例2】解:①−②,得−y=4,∴y=−4.把y=−4代入②,得x −(−4)=−2,解得x=−6,所以原方程组的解为{x=−6,y=−4.易错点三不理解待定系数法而出错跟踪练习3.y=2x+1本题容易把待定的系数与变量混为一谈,直接误认为k=3,b= 3,做出错误的答案.因此,用待定系数法解题,要牢牢把握准所求的系数.【例3】y=−x+3易错点四列方程组解应用题时不能正确理解题意跟踪练习4.解:设去年外来旅游的人数为x万人,外出旅游的人数为y万人,由题意得{x−y=20,(1+30%)x+(1+20%)y=226,解得{x=100, y=80,所以(1+30%)x=(1+30%)×100=130,(1+20%)y=(1+20%)×80=96.答:该市今年外来和外出旅游的人数分别是130万人和96万人.在列方程时,对背景不熟而出错,如:列方程12%a+20%b= 100×18%,方程左边表示混合之前两种食盐水的含盐量之和,而右边表示最后盐水中的含盐量.因此,解题时,要深刻理解题意,找准等量关系.【例4】解:根据题意得{a+b=100,12%a+20%b=100×18%,解得{a=25, b=75.答:a,b的值分别为25,75.重难点突破重难点一二元一次方程(组)的有关概念1.C2.C3.B4.15.解:∵方程组{x+y∣a∣−2=0,(a−3)x+9=0是二元一次方程组,∴|a|−2=1且a−3≠0,∴a=−3.重难点二求解二元一次方程组6.A7.B8.(1)解:{y=2x①,x+y=12②,将①代入②,得3x=12,解得x=4.将x=4代入①,得y=8,∴原方程组的解为{x=4,y=8.(2){3x+5y=21①,2x−5y=−11②,①+②,得5x=10,解得x=2,将x=2代入①,得6+5y=21,∴5y=15,解得y=3,∴原方程组的解为{x=2,y=3.重难点三二元一次方程组的应用9.C10.{x+y=60,20x=2×14y11.(1)三解:∵第三次购买的数量最多,总费用最少,∴小明以折扣价购买商品A,B是第三次购物.故答案为三.(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得{6x+5y=1140,3x+7y=1110,解得{x=90,y=120.答:商品A的标价为90元,商品B的标价为120元.12.(1)解:设A,B两种型号的汽车每辆进价分别为x万元,y万元.依题意,得{2x+3y=80,3x+2y=95,解得{x=25, y=10,答:A,B两种型号的汽车每辆进价分别为25万元,10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得25m+10n=200,∴m=8−25n.∵m,n均为正整数,∴n为5的倍数,∴m=6,n=5或m=4,n=10或m=2,n=15,∵m<n,∴m=6,n=5不合题意,舍去,∴共有2种购买方案.方案一:购进A型汽车4辆,B型汽车10辆;方案二:购进A型汽车2辆,B型汽车15辆.重难点四二元一次方程与一次函数的综合13.B14.A15.{x=1,y=316.(1)解:把点P(1,b)的坐标代入y=2x+1,得b=2+1= 3,把点P(1,3)的坐标代入y=mx+4,得m+4=3,∴m=−1.∵直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,3),∴关于x,y的方程组{2x−y=−1,mx−y=−4的解为{x=1, y=3.(2)∵l1:y=2x+1,l2:y=−x+4,∴A (−12,0),B(4,0),∴AB=4−(−12)=92.设点P到x轴的距离为ℎ,则ℎ=3,∴S △ABP =12AB ⋅ℎ=12×92×3=274.(3) 直线x =a 与直线l 1 的交点C 的坐标为(a ,2a +1),与直线l 2 的交点D 的坐标为(a,−a +4).∵CD =2,∴|2a +1−(−a +4)|=2,即|3a−3|=2,∴3a−3=2 或3a−3=−2,∴a =53或a =13.。

解二元一次方程组的计算错误原因分析

解二元一次方程组的计算错误原因分析
ANLI POUXI
案例剖析
119
解二元一次方程组的计算错误原因分析
◎张 燕 ( 武汉市四美塘中学,湖北 武汉 430063)
【摘要】应用题一直以来都是初中数学中的重点与难点 内容. 学生从七年级开始就接触应用题,这是简单的运算不 能良好地解决的数学问题,这就需要用到二元一次方程组. 二元一次方程组 解 应 用 题 是 一 种 效 率 很 高 的 解 题 方 法 ,学 生对这项知识的掌握逐渐成为数学教学中的一大挑战. 因 此,本文对学生在 列 二 元 一 次 方 程 组 解 应 用 题 中 的 常 见 错 误进行了整理,并深究其错误原因,了解分析了学生对这些 错误知识的认知 掌 握,希 望 能 够 给 二 元 一 次 方 程 组 解 应 用 题教学提供一些参考.
x = 3. 5,
( 1 + 40% ) x + ( 1 + 60% ) y = 9,解得 y = 2. 5.
答: 2 月份男女服装销售收入分别为 3. 5 万元和 2. 5
万元.
2. 学生在列方程解应用题时概念理解错误
图 2 错题 2
具体的错解如错题 2 所示. 这道题是典型的行程问题, 如果两车相向而行,则其相对速度为速度之和,如果两车同 向而行,则其相对速度为速度之差,这一点在错解例题中并 没有解错,其错误是在相对移动的过程中,移动的行程应为 两列火车的长度之和,从而形成错解.
答: 快车每秒行驶 55 米,慢车每秒行驶 33 米.
3. 学生在列方程解应用题时对性质定理使用错误
2. 重要的信息在方程中抄错、遗漏
图 3 错题 3
错题 3 是典型的几何问题,本题中学生不理解正三角
形的性质: 三边相等. 其次,学生对图片观察后列方程毫无

总结解二元一次方程组的方法与技巧

总结解二元一次方程组的方法与技巧

总结解二元一次方程组的方法与技巧解二元一次方程组是初中数学课程中的重要内容,它在实际问题中有着广泛的应用。

在学习解二元一次方程组的过程中,我们需要熟练掌握一系列的解题方法和技巧。

本文将总结解二元一次方程组的方法与技巧,并带你深入了解解题过程。

一、方法一:代入法代入法是解二元一次方程组中最常用的方法之一。

其基本思路是将一个方程中的一个变量表示出来,然后带入另一个方程中进行求解。

以下是一个例子:例题:解方程组{ 2x + y = 7{ x - y = 1解法:首先,将第二个方程稍微变形,得到x = y + 1。

然后,将这一表达式代入第一个方程中,得到2(y + 1) + y = 7。

化简后得到3y = 5,进而解得y = 5/3。

将y的值代入x = y + 1中,可求得x = 8/3。

因此,方程组的解为{x = 8/3,y = 5/3}。

二、方法二:消元法消元法是解二元一次方程组的另一种常见方法。

它的核心思想是通过加减乘除操作,将方程组化成较简单的形式,进而求解未知数。

以下是一个例子:例题:解方程组{ 2x - 3y = 8{ 3x + 2y = 17解法:首先,将两个方程的系数对应乘上合适的常数,使得两个方程的x的系数相等或者y的系数相等。

这里我们可以将第一个方程乘以2,将第二个方程乘以3,得到如下方程组:{ 4x - 6y = 16{ 9x + 6y = 51然后,将第二个方程减去第一个方程,得到13x = 35。

进而解得x = 35/13。

将x的值代入第一个方程中,可求得y = -4/13。

因此,方程组的解为{x = 35/13,y = -4/13}。

三、技巧一:消元法的选择在应用消元法解题时,我们可以通过合理的选择消元顺序,简化计算过程。

一般来说,我们应选择将系数较小的方程乘以合适的常数,使其与系数较大的方程的系数相等。

这样可以避免出现过大的计算结果,提高解题效率。

四、技巧二:检验解的合理性在解二元一次方程组后,我们需要检验解的合理性,以验证求得的解是否正确。

《二元一次方程组》-二元一次方程组易错题解析

《二元一次方程组》-二元一次方程组易错题解析

选择题1、下列方程①3x+6=2x,②xy=3,③,④中,二元一次方程有几个()A、1个B、2个C、3个D、4个2、如果是方程2x+y=0的一个解(m≠0),那么()A、m≠0,n=0B、m,n异号C、m,n同号D、m,n可能同号,也可能异号3、二元一次方程x+3y=10的非负整数解共有()对.A、1B、2C、3D、44、方程(|x|+1)(|y|﹣3)=7的整数解有()A、3对B、4对C、5对D、6对5、(2007•枣庄)已知方程组:的解是:,则方程组:的解是()A 、B 、C 、D 、6、解方程组时,一学生把c 看错得,已知方程组的正确解是,则a,b,c的值是()A、a,b不能确定,c=﹣2B、a=4,b=5,c=﹣2C、a=4,b=7,c=﹣2D、a,b,c都不能确定7、若关于x、y 的方程组只有一个解,则a的值不等于()A 、B 、﹣C 、D 、﹣8、若方程组的解是,则方程组的解是()《二元一次方程组》二元一次方程组易错题解析A、B、C、D、9、若方程组的解是,则方程组的解是()A、B、C、D、10、若方程组有无穷多组解,(x,y为未知数),则()A、k≠2B、k=﹣2C、k<﹣2D、k>﹣2填空题11、若是方程2x+y=0的解,则6a+3b+2=_________.12、已知二元一次方程3x+y=0的一个解是,其中a≠0,那么9a+3b﹣2的值为_________.13、若是方程3x+y=1的一个解,则9a+3b+4=_________.14、若4x﹣3y=0且x≠0,则=_________.15、已知方程组的解适合x+y=2,则m的值为_________.16、当a=_________时,方程组无解.17、关于x、y的方程组的解x,y的和为12,则k的值为_________.答案与评分标准选择题1、下列方程①3x+6=2x,②xy=3,③,④中,二元一次方程有几个()A、1个B、2个C、3个D、4个考点:二元一次方程的定义。

二元一次方程组的解法易错点剖析

二元一次方程组的解法易错点剖析

解二元一次方程组常见错解示例一、概念不清例1.下面不是二元一次方程组的是( ) .(A)1,2;xy=-⎧⎨=⎩(B) x+ 2y= 4y-3x= 8;(C)6,113;4x yx y+=⎧⎪⎨+=⎪⎩(D)3416,5633.x yx y+=⎧⎨-=⎩错解:选B .错解分析:错选B 原因是对二元一次方程组的概念理解不透彻. 事实上,二元一次方程组有两个特点:1.方程组中的每一个方程都是一次方程;2.方程组中含有两个且只含有两个未知数. C 中虽然含有两个未知数,但1134x y+=不是一次方程,所以C 就不是二元一次方程组. 要特别注意B这种形式的等式. 实际上它可以写成x + 2y = 8 和4y - 3x = 8 这两个方程,它们可以组成一个二元一次方程组. A、B、D都是二元一次方程组.正确答案:选 C.二、张冠李戴例2.若一个二元一次方程的一组解是1,2,xy=⎧⎨=⎩则这个方程可以是( 只要求写出一个) .错解:3, 3 1. x yx y+=⎧⎨-=⎩错解分析:题目要求写出一组解是12xy=⎧⎨=⎩的二元一次方程,而不是二元一次方程组,错误的原因是把二元一次方程的“冠”戴在了二元一次方程组的头上.正解:x+ y= 3(符合题意即可,答案不唯一) .三、循环代入例3.解方程组398510-=⎧⎨-=⎩x y x y ①,②.错解:由①,得 y = 3x - 9 ③将③代入①,得3x - ( 3x - 9) = 9,即9= 9.因此,原方程组的解是一切实数.错解分析:本题错在对代入法的主要步骤掌握不牢,理解不够深刻. 错解中出现了“9= 9”这个恒等式的原因是方程③是由方程①变形得到的,接着又代入方程①,犯下了循环代入的错误.正解:由①, 得 y = 3x - 9 ③将③代入②, 得8x - 5( 3x - 9) = 10.解之,得x = 5.将x = 5 代入③,得y = 6.所以原方程组的解是5,6.x y =⎧⎨=⎩ 四、换元后未还原例4.解方程组3()4()1,1.26x y x y x y x y +--=⎧⎪+-⎨+=⎪⎩错解:设x + y = a ,x - y = b , 则原方程组可化为341,1.26a b a b -=⎧⎪⎨+=⎪⎩ 解之,得5,31.a b ⎧=⎪⎨⎪=⎩ 所以原方程组的解是5,31.x y ⎧=⎪⎨⎪=⎩错解分析:整体换元的解题策略是正确的,但没有把元换回来, 因而致错. 正解:设x+ y= a,x- y= b,则原方程组可化为341,1. 26a ba b-=⎧⎪⎨+=⎪⎩解之,得5,31. ab⎧=⎪⎨⎪=⎩所以5,31. x yx y⎧+=⎪⎨⎪-=⎩解之,得4,31.3 xy⎧=⎪⎪⎨⎪=⎪⎩这就是原方程组的解.二元一次方程(组)错解示例一、例1.有下列各式:①2x+y-1;②ab-2b=7;③x-5=6;④1x-2y =1;⑤x=y;⑥2x-3y=5-x;⑦2x2+2x-6=2x2-(x+y).其中是二元一次方程的有。

消元——二元一次方程组的解法知识点讲解

消元——二元一次方程组的解法知识点讲解

消元——二元一次方程组的解法知识点讲解
1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

2.用代入消元法解二元一次方程组的步骤:
(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来。

(2)把(1)中所得的方程代入另一个方程,消去一个未知数。

(3)解所得到的一元一次方程,求得一个未知数的值。

(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。

注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值。

⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便。

3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

用加减消元法解二元一次方程组的基本思路仍然是“消元”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、概念不清
⎨ y = 2; ⎨ 解二元一次方程组常见错解示例
例 1.下面不是二元一次方程组的是( ) .
(A) ⎧x = -1,
(B) x + 2y = 4y -3x = 8; ⎩

x + y = 6,
(C) ⎪ 1 1 3
+ = ;
(D)
⎨ ⎩ ⎨ ⎩ ⎧3x + 4 y = 16, 5x - 6 y = 33. ⎪⎩ x y 4 ⎩
错解:选 B .
错解分析:错选 B 原因是对二元一次方程组的概念理解不透彻. 事实上, 二元一次方程组有两个特点:1.方程组中的每一个方程都是一次方程;
2.方程组中含有两个且只含有两个未知数. C 中虽然含有两个未知数,但 1 + 1 = 3 不是一次方程,所以 C 就不是二元一次方程组. 要特别注意 B 这种形式
x y 4
的等式. 实际上它可以写成 x + 2y = 8 和 4y - 3x = 8 这两个方程,它们可以组成一个二元一次方程组. A 、B 、D 都是二元一次方程组.
正确答
案:选
C. 二、
张冠李

例 2.若一个二元一次方程的一组解是⎧x = 1,
⎨ y = 2,
则这个方程可以是 (
只要求写出一个) .
错解: ⎧x + y = 3, ⎩3x - y = 1. 错解分析:题目要求写出一组解是 ⎧x = 1
的二元一次方程,而不
是二元一次 ⎨ y = 2 方程组,错误的原因是把二元一次方程的“冠”戴在了二元一次方程组的头上
正解:x + y = 3(符合题意即可,答案
不唯一) . 三、循环代入
⎩ ⎨
⎨⎪ ⎨ ⎨ 例 3.解方程组⎧3x - y = 9 ①,
⎨ ⎩8x - 5 y = 10 ②.
错解:由①,得 y = 3x - 9 ③
将③代入①,得 3x - ( 3x
- 9) = 9, 即 9= 9.
因此,原方程组的解是一切实数.
错解分析:本题错在对代入法的主要步骤掌握不牢,理解不够深刻. 错解中出现了“9= 9”这个恒等式的原因是方程③是由方程①变形得到的,接着又代入方程①,犯下了循环代入的错误.
正解:由①, 得 y = 3x - 9 ③
将③代入②, 得 8x -
5( 3x - 9) = 10. 解之,得
x = 5.
将 x = 5 代入③,得 y = 6.
所以原方程组的解是⎧x = 5,
⎨ y = 6.
四、换元后未还原
⎧3(x + y ) - 4(x - y ) = 1, 例 4.解方程组⎪ x + y x - y + = 1. ⎩⎪ 2 6
错解:设 x + y = a ,x - y = b ,
⎧3a - 4b = 1, 则原方程组可化为⎪ a b + = 1. ⎩ 2 6 ⎧a = 5 ,
解之,得⎪ 3
⎪⎩b = 1.
⎧x = 5 , 所以原方程组的解是⎪ 3
⎪⎩ y = 1.
错解分析:整体换元的解题策略是正确的,但没有把元换回来, 因而致错. 正解:设 x + y = a ,x - y = b ,
⎨⎪ ⎨ ⎨ ⎨ ⎪ ⎧3a - 4b = 1, 则原方程组可化为⎪ a b + = 1. ⎩ 2 6 ⎧a = 5 ,
解之,得⎪ 3
⎪⎩b = 1.
⎧x + y = 5 ,
所以⎪ 3
⎪⎩x - y = 1.
⎧x = 4 ,
解之,得⎪ 3
⎪ y = 1 .
⎩ 3 这就是原方程组的解.
二元一次方程(组)错解示例
一、 例 1.有下列各式:① 2x +y -1;②ab -2b =7;③x 1 y =1;
-5=6;④ x
-2
⑤ x =y ;⑥2x - 3y =5 - x ;⑦2x 2+2x - 6=2x 2 - (x +y ). 其中是二元一次方程的有 。

错解:由二元一次方程的定义,知②、④、⑤、⑥是二元一
次方程。

错解分析:本例考查的是二元一次方程的概念,
具体判断时应注意:
⑴方程中含有两个未知数, 与“ 二元”对应, 故③不是二元一次方程.
⑵方程中含有未知数的项的指数都是一次, 与“一次”对应, 但这里要注意不是说“未知数的指数是一次”.所以②不是二元一次方程.
⑶等号两边的代数式是整式, 第④个式子等号左边的式子是一个分式, 所以它不是二元一次方程.
⑷判定一个方程是否是二元一次方程, 先得对所给的方程进行整理, 再依据定义进行判断,如第⑦个等式两边合并同类项后, 不含有二次项了, 所以它是二元一次方程.
综上所述, 只有⑤、⑥、⑦是二元一次方程.
二、例 2.判断下列方程组是否是二元一次方程组. ⎧ y - 2x = 1 , ⎧ 1 ①
⎧2x + 3y = 4, ② ⎧x = 0,
③⎧xy -1 = 0,
④⎪⎪
2 ⑤⎪x =
3 ,

x - 3z = 2;
⎩ ⎩ ⎩

x + 2 y = 3;
x + 3y = 7;
1 ⎪+
2 y = 6;

⎩x
⎪⎩y =1;
错解:②、③、④、⑤是二元一次方程组,①中因为含有 3 个
未知数,故① 不是二元一次方程组。

①错误。

错解分析:要根据二元一次方程组的定义来判断, 看方程中未知数的个数与含未知数的项的次数. 第①个方程组含有 3 个未知数, 第③个方程组其中一个方程含有未知数的项的次数是 2 , 第④个方程组其中一个方程中出现了分式,
所以它们都不是二元一次方程组. 只有第②个方程组、第⑤个方
程组符合二元一次方程组的定义.
二、例3.在⑴⎧x = 8, ⑵⎧x =-3, ⑶⎧x = 4,
⑷⎧x =-1,四组数值中,是方程

y = 2; ⎨
y = 2;

y =10;
⎩ ⎩ ⎩ ⎩

⎩ ⎨ y = -1
x -3y =2 的解的是 ;是方程 2x +y =18 的解的是 ;是方程组⎧x - 3y = 2
⎨2x + y = 18 的 解 的 是 . 错解:经代入检验, 是方程 x -3y =2 的解的是⑴、⑷;是方程 2x +y =18 的
解的是⑴、⑶;是方程组⎧x - 3y = 2
⎨2x + y = 18
的解的是⑴、⑶、⑷。

错解分析:主要考查对二元一次方程及二元一次方程组的解的
理解, 关键要区分清二元一次方程及二元一次方程组的解的范围的
大小及两者之间的联系
每一个二元一次方程都有无数个解, 在这无数个解中, 两个未知数的值是相互关联、一一对应的, 即其中一个未知数的值确定后, 另一个未知数的值随之确定并且是唯一的. 二元一次方程组的解是指同时满足两个方程的一对未知数的值, 二元一次方程组的解必定是其中每一个方程的解。

应注意在同一个方程组中,同一个未知数的取值相同。

由以上分析过程,知方程组⎧x - 3y = 2

2x +y = 18

的解是第(1)组数值。

相关文档
最新文档