30巩固练习_提高

合集下载

巩固练习_提高_等差数列及其前n项和

巩固练习_提高_等差数列及其前n项和

【巩固练习】一、选择题1.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )A .5B .4C .3D .22.已知等差数列{a n }的前三项依次为a -1,172a -,3,则该数列中第一次出现负值的项为( ) A .第9项B .第10项C .第11项D .第12项 3.已知{a n }是等差数列,a 3+a 11=40,则a 6-a 7+a 8等于( ) A .20B .48C .60D .72 4. 等差数列{a n }中,a 1=8,a 5=2,若在每相邻两项间各插入一个数,使之成等差数列,那么新的等差数列的公差是( ) A.34B .34-C .67-D .-1 5.(2015 新课标Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A . 172 B .192C .10D .12 6. 已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且7453n n A n B n +=+,则使得n n a b 为整数的正整数n 的个数是( )A .2B .3C .4D .5二、填空题7.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 8.若x ≠y ,数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各自成等差数列,则1212a ab b --=________. 9.把20分成四个数成等差数列,使第一项与第四项的积同第二项与第三项的积的比为2∶3,则这四个数从小到大依次为____________.10.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =________.11.(2016 南通模拟)等差数列{}n a 中,1583,115a a a =-=,则其前n 项和n S 的最小值为 。

人教版二年级上册数学《整理和复习》说课稿

人教版二年级上册数学《整理和复习》说课稿

人教版二年级上册数学《整理和复习》说课稿一. 教材分析人教版二年级上册数学《整理和复习》这一章节,主要是对前面所学知识进行梳理和巩固。

内容包括数的认识、数的运算、几何图形、计量单位、时间和分数等。

本章节通过复习,使学生对所学知识有更深刻的理解,提高他们的数学素养。

二. 学情分析二年级的学生已经掌握了一定的数学基础知识,但对于一些概念和运算规则的理解还不是很深入。

此外,学生的学习兴趣和学习习惯各有不同,因此在教学过程中需要关注他们的个体差异,激发他们的学习兴趣,帮助他们建立良好的学习习惯。

三. 说教学目标1.知识与技能:通过复习,使学生对数的认识、数的运算、几何图形、计量单位、时间和分数等知识有更深刻的理解,提高他们的数学素养。

2.过程与方法:培养学生独立思考、合作交流的能力,提高他们的数学思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们积极、主动的学习态度,使他们感受到数学的价值。

四. 说教学重难点1.教学重点:通过对所学知识的复习,使学生对各个知识点有更深刻的理解,提高他们的数学素养。

2.教学难点:对于一些概念和运算规则的理解,以及如何运用所学知识解决实际问题。

五. 说教学方法与手段1.教学方法:采用启发式教学法、探究式教学法和小组合作学习法,引导学生独立思考、合作交流,提高他们的数学思维能力。

2.教学手段:利用多媒体课件、实物模型、练习题等,帮助学生直观地理解知识,巩固所学内容。

六. 说教学过程1.导入:通过一个有趣的数学故事,引发学生的兴趣,激发他们的学习积极性。

2.知识梳理:引导学生对数的认识、数的运算、几何图形、计量单位、时间和分数等知识进行回顾,巩固基础知识。

3.实例讲解:通过具体例子,讲解如何运用所学知识解决实际问题,让学生感受到数学的价值。

4.课堂练习:设计一些有针对性的练习题,让学生独立完成,检查他们对知识的掌握程度。

5.小组讨论:学生进行小组讨论,分享学习心得,互相交流,提高他们的合作能力。

初中数学中考总复习冲刺:数形结合问题--巩固练习题及答案(提高)

初中数学中考总复习冲刺:数形结合问题--巩固练习题及答案(提高)

中考冲刺:数形结合问题—巩固练习(提高)【巩固练习】一、选择题1.如图,某工厂有两个大小相同的蓄水池,且中间有管道连通.现要向甲池中注水,若单位时间内的注水量不变,那么,从注水开始,水池乙水面上升的高度h与注水时间t之间的函数关系的图象可能是()2.若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序.①小车从光滑的斜面上滑下(小车的速度与时间的关系)②一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系)③运动员推出去的铅球(铅球的高度与时间的关系)④小杨从A到B后,停留一段时间,然后按原速度返回(路程与时间的关系)正确的顺序是 ( )A.③④②① B.①②③④ C.②③①④ D.④①③②二填空题3. 如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现点P与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB上会发出警报的点P有个.4.如下图所示,按下列方法将数轴的正半轴绕在一个圆(该圆的周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上:先让原点与圆周上数字0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4……所对应的点分别与圆周上1,2,0,1,……所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上的数字a与数轴上的数5对应,则a= ;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是(用含n的代数式表示).5.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的_________点.三、解答题6.将如图所示的长方体石块(a>b>c)放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm3/s,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图所示.在这三种情况下,水槽内的水深h (cm )与注水时间 t ( s )的函数关系如上图1-6所示.根据图象完成下列问题:(1)请分别将三种放置方式的示意图和与之相对应的函数关系图象用线连接起来;(2)水槽的高h= cm ;石块的长a= cm ;宽b= cm ;高c= cm ; (3)求图5中直线CD 的函数关系式; (4)求圆柱形水槽的底面积S .7.在数学活动中,小明为了求23411111+++++22222n …的值(结果用n 表示),设计如图1所示的几何图形.(1)请你利用这个几何图形求23411111+++++22222n …的值为_______; (2)请你利用图2,再设计一个能求23411111+++++22222n …的值的几何图形.8.探索研究:如图,在直角坐标系xOy 中,点P 为函数y =14x 2在第一象限内的图象上的任一点,点A 的坐标为12 122 123124 … (图1)(图2)(0,1),直线l 过B (0,-1)且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C ,Q ,连结AQ 交x 轴于H ,直线PH 交y 轴于R . (1)求证:H 点为线段AQ 的中点;(2)求证:①四边形APQR 为平行四边形;②平行四边形APQR 为菱形; (3)除P 点外,直线PH 与抛物线y =14x 2有无其它公共点?并说明理由.9.阅读材料,解答问题.利用图象法解一元二次不等式:x 2﹣2x ﹣3>0.解:设y=x 2﹣2x ﹣3,则y 是x 的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3.∴由此得抛物线y=x 2﹣2x ﹣3的大致图象如图所示. 观察函数图象可知:当x <﹣1或x >3时,y >0.∴x 2﹣2x ﹣3>0的解集是:x <﹣1或x >3.(1)观察图象,直接写出一元二次不等式:x 2﹣2x ﹣3<0的解集是 _________ ;(2)仿照上例,用图象法解一元二次不等式:x 2﹣1>0(画出草图).10.(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米. ①如图1,若小明在相距10米的两路灯AB 、CD 之间行走(不含两端),他前后的两个影子长分别为 FM=x 米,FN=y 米,试求y 与x 之间的函数关系式,并指出自变量x 的取值范围?x lQC PA OB HRy②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定…比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图(实线表示乌龟,虚线表示兔子).【答案与解析】一、选择题1.【答案】C;2.【答案】A;二、填空题3.【答案】5.【解析】如图,分别以一顶点为定点,连接其与另一顶点的连线,在此图形中根据平行线分线段成比例定理可知,CD∥BE∥AF,ED∥FC∥AB,EF∥AD∥BC,EC∥FB,AE∥BD,AC∥FD,根据垂直平分线的性质及正六边形的性质可知,相互平行的一组线段的垂直平分线相等,在这五组平行线段中,AE、BD与AB垂直,其中垂直平分线必与AB平行,故无交点.故直线AB上会发出警报的点P有:CD、ED、EF、EC、AC的垂直平分线与直线AB的交点,共五个.4.【答案】(1)2 (2)3n+1;【解析】(1)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上数字a与数轴上的数5对应时a=2;(2)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上了数字0、1、2与正半轴上的整数每3个一组0、1、2,3、4、5,6、7、8,…分别对应,∴数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是3n+1.故答案为:a=2;3n+1.5.【答案】点Q.三、解答题6.【答案与解析】(1)(1)图1与图4相对应,图2与图6相对应,图3与图5相对应;(2)10; a=10; b=9; c=6.(3)由题意可知C点的坐标为(45,9),D点的坐标为(53,10),设直线CD的函数关系式为h=kt+b,∴945, 1053k bk b =+⎧⎨=+⎩解得1,8.278 kb⎧=⎪⎪⎨⎪=⎪⎩∴直线CD的函数关系式为h=127 88t+;(4)石块的体积为abc=540cm3,根据图4和图6可得:10540(106)535321s s--=-. 解得S=160(cm ).7.【答案与解析】(1)设总面积为:1,最后余下的面积为:12n , 故几何图形的值为:23411111+++++22222n …的值为112n -.故答案为:112n -.8.【答案与解析】(1)证明:∵A(0,1),B (0,﹣1),∴OA=OB. 又BQ∥x 轴, ∴HA=HQ;(2)证明:①由(1)可知AH=QH ,∠AHR=∠QHP,∵AR∥PQ,∴∠RAH=∠PQH, ∴△RAH≌△PQH. ∴AR=PQ, 又AR∥PQ,∴四边形APQR 为平行四边形; ②设P (m ,m 2),∵PQ∥y 轴,则Q (m ,﹣1),则PQ=1+m 2. 过P 作PG⊥y 轴,垂足为G .在Rt△APG中,AP=+1=PQ,∴平行四边形APQR为菱形;(3)解:设直线PR为y=kx+b,由OH=CH,得H(,0),P(m,m2).代入得:,∴,∴直线PR为.设直线PR与抛物线的公共点为(x,x2),代入直线PR关系式得:x2﹣x+m2=0,(x﹣m)2=0,解得x=m.得公共点为(m,m2).所以直线PH与抛物线y=x2只有一个公共点P.9.【答案与解析】解:(1)-1<x<3;(2)设y=x2-1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-1=0,解得x1=-1,x2=1.∴由此得抛物线y=x2-1的大致图象如图所示.观察函数图象可知:当x<-1或x>1时,y>0.∴x2-1>0的解集是:x<-1或x>1.10.【答案与解析】解:(1)∵EF∥AB,∴∠MEF=∠A,∠MFE=∠B.∴△MEF∽△MAB.①===.∴=,MB=3x BF=3x-x=2x.同理,DF=2y.∵BD=10,∴2x+2y=10,∴y=-x+5,∵当EF接近AB时,影长FM接近0;当EF接近CD时,影长FM接近5,∴0<x<,②如图2所示,设运动时间为t秒,则EE′=FF′=0.8t, ∵EF∥PQ,∴∠REF=∠RPQ,∠RFE=∠RQP,∴△REF∽△RPQ,∴∴∵EE′∥RR′,∴∠PEE'=∠PRR',∠PE′E=∠PR′R,∴△PEE′∽△PRR′,∴∴∴RR'=1.2t∴1.2t= 1.2(Vt=影子米/秒)1.2t= 1.2(Vt=影子米/秒).(2)如图3所示.。

三年级数学下册巩固与提高练习题

三年级数学下册巩固与提高练习题

三年级数学下册巩固与提高(1)位置与方向一、早晨同学们面向太阳举行升旗仪式,此时同学们面向()面,背对着()面,左侧是()面。

二、送信。

(每小格20米)1.鸽子要向飞米,再向飞米就把信送给了小松鼠。

2.鸽子从松鼠家出来,向飞米就到了兔子家,把信送给兔子后再向飞米找到大象,最后再接着向飞米,又向飞米把信交给小猫。

3.从鸽子开始出发,到把信全部送完,在路上共飞了米。

三、星期天,我们去动物园游玩,走进动物园大门,正北面有狮子馆和河马馆,熊猫馆在狮子馆的西北面,飞禽馆在狮子馆的东北面,经过熊猫馆向南走,可到达猴山和大象馆,经过猴山向东走到达狮子馆和金鱼馆,经过金鱼馆向南走到达骆驼馆,你能填出它们的位置吗?除数是一位数的除法一、请你填一填。

1. 63是()的9倍,()的4倍是128。

3. 从245里连续减去8,最多能减()几次。

4 一个数的6倍是78,这个数的8倍是()。

5. 一个数除以9,商是17,余数最大是(),当余数最大时,被除数是()。

8. 16□÷7=23……6。

这道算式中,□里应填()。

二、对错我判断。

(对的打“√”,错的打“×”)1. 0×8=0÷8 ()2.一个三位数除以一个一位数,商不一定是三位数。

()3.8410÷7,商的末尾一定有一个0。

()三、脱式计算。

(390+30)÷7 2340÷5÷3 2065+4675÷5四、希望小学三年级共有49人,平均分成8组,每组多少人?还剩下几人?五、思考超市为了吸引顾客,准备用“2瓶洗手液,3块肥皂”进行包装,制成礼盒进行销售。

超市中的存货最多可制成多少个礼盒?超市存货单三年级数学下册巩固与提高(2)统计熟记平均数的格式,总数量除以总份数:(++…… +)÷()并脱式计算。

会检查平均数的对错,平均数一定介于最大数与最小数之间。

一、有两箱苹果,甲箱重10千克,乙箱重8千克,从甲中拿()千克放到乙箱中,两箱的苹果一样重,这样两箱都是()千克。

六年级下册数学教案3.4:巩固训练与飞跃提升

六年级下册数学教案3.4:巩固训练与飞跃提升

本教案作为六年级下册数学的学习指导,旨在帮助学生在巩固训练和飞跃提升的过程中更好地掌握数学知识和技能,提高数学运算和解题能力。

本教案分为四个部分,分别是课前预习、课堂学习、课后巩固和拓展延伸。

1. 课前预习在课前预习阶段,学生应认真阅读教材,理解各个知识点的定义、概念和性质,掌握基本的计算方法和解题思路。

学生还应该通过课外阅读、做题等方式,扩展自己的数学知识和视野,提高自己的数学素养和兴趣。

2. 课堂学习在课堂学习阶段,教师应根据学生的实际水平和需要,设计生动、有趣、有效的教学活动,提高学生的学习积极性和参与度。

教师可以采用多种教学方法,如板书、讲解、演示、练习、互动等,帮助学生理解知识点和解题思路,激发学生的求知欲和创造力。

3. 课后巩固在课后巩固阶段,学生应根据教师布置的作业和巩固练习,巩固和提高自己的数学知识和技能。

在完成作业的过程中,学生应集中注意力,认真思考,积极发扬自己的数学思维和创造力,掌握解题方法和技巧,提高解题速度和准确度。

同时,学生也应及时查漏补缺,弥补自己的不足,及时向教师请教,掌握更多的数学知识和技能。

4. 拓展延伸在拓展延伸阶段,学生可以通过参加数学竞赛、讲座等活动,拓展自己的数学视野和知识面,学习更高级、更深奥的数学知识和技能。

同时,学生还可以通过自主学习、研究等方式,深入探究数学的本质和规律,掌握更广泛、更深刻的数学知识和技能。

六年级下册数学教案-3.4:巩固训练与飞跃提升,通过课前预习、课堂学习、课后巩固和拓展延伸等多种教学方式和环节,为学生提供了全面、系统、有效的数学学习指导,帮助学生在数学学习中不断巩固提高,更好地掌握数学知识和技能,为以后的学习和发展打下坚实基础。

初中数学中考总复习冲刺:创新、开放与探究型问题--巩固练习题及答案(提高)

初中数学中考总复习冲刺:创新、开放与探究型问题--巩固练习题及答案(提高)

中考冲刺:创新、开放与探究型问题—巩固练习(提高)【巩固练习】一、选择题1. 下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为()A、55B、42C、41D、292.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D 重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯3.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ) A.495 B.497 C.501 D.503二、填空题4. 如图所示,一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个5×3的矩形用不同的方式分割后,小正方形的个数可以是____ ____.5. 一园林设计师要使用长度为4L 的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O 为圆心的两个同心圆弧和延长后通过O 点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)使图①花圃面积为最大时R -r 的值为 ,以及此时花圃面积为 ,其中R 、r 分别为大圆和小圆的半径;(2)若L =160 m ,r =10 m ,使图面积为最大时的θ值为 .6.如图所示,已知△ABC 的面积1ABC S =△,在图(a)中,若11112AA BB CC AB BC CA ===,则11114A B C S =△; 在图(b)中,若22213AA BB CC AB BC CA ===,则222A B C 13S =△;在图(c),若33314AA BB CC AB BC CA ===,则333716A B C S =△.…按此规律,若88819AA BB CC AB BC CA ===,则888A B C S =△________.三、解答题7.如图所示,∠ABM 为直角,C 为线段BA 的中点,D 是射线BM 上的一个动点(不与点B 重合),连接AD ,作BE ⊥AD ,垂足为E ,连接CE ,过点E 作EF ⊥CE ,交BD 于F .(1)求证:BF =FD ;(2)∠A 在什么范围内变化时,四边形ACFE 是梯形?并说明理由;(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件14DG DA?并说明理由.8.如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.(1)①如图(a),求证:△ADC≌△ABE;②探究:图(a)中,∠BOC=________;图(b)中,∠BOC=________;图(c)中,∠BOC=________;(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)②根据图(d)证明你的猜想.9. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC上任取一点P(P 不与B,C重合),连接DP,作射线.PE⊥DP,PE与直线AB交于点E.(1)试确定CP=3时,点E的位置;(2)若设CP=x(x>0),BE=y(y>0),试写出y关于自变量x的函数关系式;(3)若在线段BC上能找到不同的两点P1,P2,使按上述作法得到的点E都与点A重合,试求出此时a的取值范围.10. 点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=k·AB.连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图(a),当k=1时,探究线段EF与EB的关系,并加以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC为特殊角),在图(b)中补全图形,完成证明.(2)如图(c),若∠ABC=90°,k≠l,探究线段EF与EB的关系,并说明理由.【答案与解析】一、选择题1.【答案】C;【解析】找出规律:∵图②平行四边形有5个=1+2+2,图③平行四边形有11个=1+2+3+2+3,图④平行四边形有19=1+2+3+4+2+3+4,∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41.故选C.2.【答案】A;【解析】由题意得,AD=12BC=52,AD1=AD﹣DD1=158,AD2=25532⨯,AD3=37532⨯,AD n=21532nn+⨯,故AP1=54,AP2=1516,AP3=26532⨯…APn=12532nn-⨯,故可得AP6=512532⨯.故选A.3.【答案】A ;【解析】根据题意,当第1位数字是3时,按操作要求得到的数字是3624862486248…,从第2位数字起每隔四位数重复一次6248,因为(100-1)被4整除得24余3,所以这个多位数前100位的所有数字之间和是3+(6+2+4)+(6+2+4+8)×24=495,答案选A . 二、填空题4.【答案】4或7或9或12或15;【解析】 一个5×3的矩形可以有下面几种分割方式,如图所示.5.【答案】(1)R -r 的值为4L ,以及此时花圃面积为24L ; (2)θ值为240π.【解析】要使花圃面积最大,则必定要求扇环面积最大.设扇环的圆心角为θ,面积为S ,根据题意得:2()180180R rL R r θπθπ=++- ()2()180R r R r πθ+=+-g ,∴180[2()]()L R r R r θπ--=+∴2222()360360360R r S R r θπθππθ=-=-22180[2()]()360()L R r R r R r ππ--=-+gg1[2()]()2L R r R r =---g 21()()2R r L R r =--+-22()416L L R r ⎡⎤=---+⎢⎥⎣⎦.∵02L R r <-<, ∴S 在4LR r -=时取最大值为216L .∴花圃面积最大时R -r 的值为4L,最大面积为224164L L ⨯=.(2)∵当4LR r -=时,S 取大值, ∴1604044L R r -===(m),40401050R r =+=+=(m),∴180[2()]180(160240)240()60L R r R r θπππ---⨯===+.6.【答案】1927. 【解析】1111111-3=224A B C S =⨯⨯△222A B C 2111-3=333S =⨯⨯△3331-3=4416A B C S =⨯⨯△…8888157191-3==998127A B C S =⨯⨯△2131-3=111(1)AnBnCn n nS n n n =⨯⨯-+++△三、解答题 7.【答案与解析】解:(1)Rt △AEB 中,∵AC =BC ,∴CE =12AB . ∴CB =CE .∴∠CEB =∠CBE .∵∠CEF =∠CBF =90°,∴∠BEF=∠EBF.∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°.∴∠FED=∠EDF.∴EF=FD.∴BF=FD.(2)由(1)得BF=FD,而BC=CA,∴CF∥AD,即AE∥CF.若AC∥EF,则AC=EF,∴BC=BF.∴BA=BD,∠A=45°.∴当0°<∠A<45°或45°<∠A<90°时,四边形ACFE为梯形.(3)作GH⊥BD,垂足为H,则GH∥AB.∵DG=14DA,∴DH=14DB.又F为BD的中点,∴H为DF的中点.∴GH为DF的中垂线.∴∠GDF=∠GFD.∵点G在ED上,∴∠EFD≥∠GFD.∵∠EFD+∠FDE+∠DEF=180°,∴∠GFD+∠FDE+∠DEF≤180°.∴3∠EDF≤180°.∴∠EDF≤60°.又∠A+∠EDF=90°,∴30°≤∠A<90°.∴30°≤∠A<90°时,DE上存在点G,满足条件DG=14 DA,8.【答案与解析】(1)证法一:∵△ABD与△ACE均为等边三角形,∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE.∴△ADC≌△ABE.证法二:∵△ABD与△ACE均为等边三角形,∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.∴△ADC可由△ABE绕着点A按顺时针方向旋转60°得到.∴△ABE ≌△ADC .②120°,90°,72°. (2)①360n°. ②证法一:依题意,知∠BAD 和∠CAE 都是正n 边形的内角,AB =AD ,AE =AC , ∴∠BAD =∠CAE =(2)180n n-°.∴∠BAD -∠DAE =∠CAE -∠DAE , 即∠BAE =∠DAC . ∴△ABE ≌△ADC . ∴∠ABE =∠ADC .∵∠ADC+∠ODA =180°, ∴∠ABO+∠ODA =180°.∴∠ABO+∠ODA+∠DAB+∠BOC =360°. ∴∠BOC+∠DAB =180°. ∴∠BOC =180°-∠DAB =(2)180360180n n n--=°°°. 证法二:延长BA 交CO 于F ,证∠BOC =∠DAF =180°-∠BAD .证法三:连接CE .证∠BOC =180°-∠CAE .9.【答案与解析】解:(1)作DF ⊥BC ,F 为垂足.当CP =3时,四边形ADFB 是矩形,则CF =3. ∴点P 与点F 重合.又∵BF ⊥FD ,∴此时点E 与点B 重合.(2)(i)当点P 在BF 上(不与B ,F 重合)时,(见图(a))∵∠EPB+∠DPF =90°,∠EPB+∠PEB =90°, ∴∠DPF =∠PEB .∴Rt △PEB ∽△ARt △DPF .∴BE FPBP FD=. ① 又∵ BE =y ,BP =12-x ,FP =x-3,FD =a ,代入①式,得312y x x a-=- ∴1(12)(3)y x x a =--,整理, 得21(1536)(312)y x x x a=-+<< ②(ii)当点P 在CF 上(不与C ,F 重合)时,(见上图(b))同理可求得BE FPBP FD=. 由FP =3-x 得21(1536)(03)y x x x a=-+<<.∴ 221(1536)(03)1(1536)(312).x x x ay x x a⎧--+<<⎪⎪=⎨⎪--+<<⎪⎩(3)解法一:当点E 与A 重合时,y =EB =a ,此时点P 在线段BF 上. 由②式得21(1536)a x x a=--+. 整理得2215360x x a -++=. ③∵在线段BC 上能找到两个不同的点P 1与P 2满足条件, ∴方程③有两个不相等的正实根.∴△=(-15)2-4×(36+a 2)>0. 解得2814a <. 又∵a >0, ∴902a <<. 解法二:当点E 与A 重合时,∵∠APD =90°,∴点P 在以AD 为直径的圆上.设圆心为M ,则M 为AD 的中点. ∵在线段BC 上能找到两个不同的点P 1与P 2满足条件, ∴线段BC 与⊙M 相交.即圆心M 到BC 的距离d 满足02ADd <<. ④ 又∵AD ∥BC , ∴d =a . ∴由④式得902a <<. 10.【答案与解析】解:(1)EF =EB .证明:如图(d),以E 为圆心,EA 为半径画弧交直线m 于点M ,连接EM .∴EM =EA ,∴∠EMA =∠EAM . ∵BC =k ·AB ,k =1, ∴BC =AB .∴∠CAB =∠ACB .∵m ∥n ,∴∠MAC =∠ACB ,∠FAB =∠ABC .∴∠MAC=∠CAB.∴∠CAB=∠EMA.∵∠BEF=∠ABC,∴∠BEF=∠FAB.∵∠AHF=∠EHB,∴∠AFE=∠ABE.∴△AEB≌△MEF.∴EF=EB.探索思路:如上图(a),∵BC=k·AB,k=1,∴BC=AB.∴∠CAB=∠ACB.∵m∥n,∴∠MAC=∠ACB.添加条件:∠ABC=90°.证明:如图(e),在直线m上截取AM=AB,连接ME.∵ BC=k·AB,k=1,∴ BC=AB.∵∠ABC=90°,∴∠CAB=∠ACB=45°.∵ m∥n,∴∠MAE=∠ACB=∠CAB=45°,∠FAB=90°.∵ AE=AE,∴△MAE∽△BAE.∴ EM=EB,∠AME=∠ABE.∵∠BEF=∠ABC=90°,∴∠FAB+∠BEF=180°.又∵∠ABE+∠EFA=180°,∴∠EMF=∠EFA.∴ EM=EF.∴ EF=EB.(2)EF=1k EB.说明:如图(f),过点E作EM⊥m,EN⊥AB,垂足为M,N.∴∠EMF=∠ENA=∠ENB=90°.∵ m∥n,∠ABC=90°,∴∠MAB=90°.∴四边形MENA为矩形.∴ ME=NA,∠MEN=90°.∵∠BEF=∠ABC=90°.∴∠MEF=∠NEB.∴△MEF∽△NEB.∴ME EF EN EB=,∴AN EF EN EB=在Rt△ANE和Rt△ABC中,tanEN BCBAC kAN AB∠===,∴1EF EBk=.。

一元二次方程的应用—巩固练习(提高)

一元二次方程的应用—巩固练习(提高)

一元二次方程的应用—巩固练习(提高)【巩固练习】一、选择题1.(2015•江岸区校级模拟)新年里,一个小组有若干人,若每人给小组的其它成员赠送一张贺年卡,则全组送贺卡共72张,此小组人数为()A. 7 B.8C.9D.102.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元,下列所列方程中正确的是 ( ) A.168(1+a%)2=128 B.168(1-a%)2=128 C.168(1-2a%)2=128 D.168(1-a2%)=128 3.从一块长30cm,宽12cm的长方形薄铁片的四个角上,截去四个相同的小正方形,余下部分的面积为296cm2,则截去小正方形的边长为 ( )A.1 cm B.2 cm C.3 cm D.4 cm4.甲、乙两人分别骑车从A、B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进.乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟,已知乙比甲每小时多行驶4千米,则甲、乙两人骑车的速度分别为()千米/时.A.2,6 B.12,16 C.16,20 D.20,245.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为 ( )A.20%B.30% C.50% D.120%6.从盛满20升纯酒精的容器里倒出若干升,然后用水注满,再倒出同样升数的混合液后,这时容器里剩下纯酒精5升.则每次倒出溶液的升数为()A.5 B.6 C.8 D.10二、填空题7.某公司在2009年的盈利额为200万元,预计2011年盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为________万元.8.有一间长20 m,宽15 m的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的一半,四周未铺地毯的留空宽度相同,则留空的宽度为________.9.一块矩形耕地大小尺寸如图1所示,要在这块地上沿东西、南北方向分别挖3条和4条水渠.如果水渠的宽相等,而且要保证余下的可耕地面积为8700m2,那么水渠应挖的宽度是米.10.有一个两位数,它的十位数字与个位数字之和是8,如果把十位数字与个位数字调换后,所得的两位数乘原来的两位数就得1855,则原来的两位数是.11.某省十分重视治理水土流失问题,2011年治理水土流失的面积为400 km2,为了逐年加大治理力度,计划今、明两年治理水土流失的面积都比前一年增长一个相同的百分数,到2013年年底,使这三年治理水土流失的面积达1324 km2,则该省今、明两年治理水土流失的面积平均每年增长的百分数是.12.(2014•贵阳)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=秒时,S1=2S2.三、解答题13.如图所示,有长为40m的篱笆,一面利用墙(墙长15m),围成长方形花圃.设花圃的长BC为xm,花圃的面积能围成182m2吗?此时BC多长?14.(2015•广元)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.15.如图所示,AO=OB=50cm,OC是一条射线,OC⊥AB,一只蚂蚁由A点以2cm/s的速度向B爬行,同时另一只蚂蚁由O点以3 cm/s的速度沿OC方向爬行,是否存在这样的时刻,使两只蚂蚁与O点组成的三角形的面积为450cm2?【答案与解析】一、选择题 1.【答案】C ;【解析】解:设这个小组有x 人,则根据题意可列方程为:(x ﹣1)x=72, 解得:x 1=9,x 2=﹣8(舍去). 故选C .2.【答案】B ;【解析】168元降价a%后的价格为168(1-a%)元,再降价a%后为168(1-a%)(1-a%)元.根据题意可列方程168(1-a%)2=128.3.【答案】D ;【解析】设截去小正方形的边长为x ,则30×12-4x 2=296,∴ x 2=16,x 1=-4(舍去),x 2=4. 4.【答案】C ;【解析】设甲的速度为x 千米/时,则乙的速度为(x+4)千米/时.根据题意,得解之,得x 1=16,x 2=-2.经检验:x 1=16,x 2=-2都是原方程的根,但x 2=-2不合题意,舍去. ∴当x=16时,x+4=20.5.【答案】A ;【解析】设新品种花生亩产量的增长率为x .1216(),=0.2=205x x =-舍去%. 6.【答案】D ;【解析】第一次倒出的是纯酒精,而第二次倒出的就不是纯酒精了.若设每次倒出x 升,则第一次倒出纯酒精x 升,第二次倒出纯酒精(2020x-·x )升.根据20升纯酒精减去两次倒出的纯酒精,就等于容器内剩下的纯酒精的升数. 20-x -2020x-·x =5. 二、填空题 7.【答案】220. 【解析】方法一,设增长的百分率为x ,则2010年盈利额为200(1+x)万元,2011年的盈利额为200(1+x)2万元,依题意得200(1+x)2=242.解得x 1=10%,x 2=-2.1(舍去),∴ 200(1+x)=200(1+10%)=220.方法二,设2010年的盈利额为x 万元,则2010年增长的百分率为200100%200x -⨯, 2011年增长的百分率为242100%x x -⨯,由增长率相同可列方程200242200x xx--=,解得x1=220,x2=-220(舍去) 8.【答案】2.5m.【解析】设留空的宽度为x m,则1(152)(202)20152x x--=⨯⨯,解得x1=15(舍去),252x=.9.【答案】1m.【解析】如图2所示设水渠的宽度为xm,即可耕土地的长为(120-4x)m,宽为(78-3x)m.(120-4x)(78-3x)=8700,即x2-56x+55=0,解得x1=1,x2=55.当x=55时,3×55=165>78,(不合题意,舍去).∴ x=1.答:水渠应挖1m宽.10.【答案】35或53.【解析】设原两位数的十位数字为x,则个位数字是(8-x),由题意得[10x+(8-x)]·[10(8-x)+x]=1855.化简得x2-8x+15=0,解之得:x1=3,x2=5.经检验,x1=3,x2=5都符合题意.答:原两位数是35或53.11.【答案】10%.【解析】设该省今、明两年治理水土流失的面积每年增长的百分数为x,依题意得:400+400(1+x)+400(1+x)2=1324.即100x2+300x-31=0.解得x1=0.1=10%,x2=-3.1(不合题意,舍去).答:今、明两年治理水土流失的面积每年增长的百分数为10%.12.【答案】6.【解析】∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,∴AD=BD=CD=8cm,又∵AP=t,则S1=AP•BD=×8×t=8t,PD=8﹣t,∵PE∥BC,∴△APE∽△ADC,∴,∴PE=AP=t,∴S2=PD•PE=(8﹣t)•t,∵S1=2S2,∴8t=2(8﹣t)•t,解得:t=6.三、解答题13. 【答案与解析】设BC长为xm(0<x≤15)时,花圃的面积为182m2,则401822xx-=g.即x 2-40x+364=0,b 2-4ac =1600-4×364=144>0.∴ 能围成面积为182m 2的花圃.解得x 1=14,x 2=26(不合题意,舍去).答:花圃的面积能围成182m 2,此时BC 长14m .14. 【答案与解析】 解:(1)设剪成的较短的这段为xcm ,较长的这段就为(40﹣x )cm ,由题意,得 ()2+()2=58,解得:x 1=12,x 2=28,当x=12时,较长的为40﹣12=28cm ,当x=28时,较长的为40﹣28=12<28(舍去). 答:李明应该把铁丝剪成12cm 和28cm 的两段; (2)李明的说法正确.理由如下:设剪成的较短的这段为mcm ,较长的这段就为(40﹣m )cm ,由题意,得 ()2+()2=48,变形为:m 2﹣40m+416=0,∵△=(﹣40)2﹣4×416=﹣64<0, ∴原方程无实数根,∴李明的说法正确,这两个正方形的面积之和不可能等于48cm 2. 15. 【答案与解析】(1)当蚂蚁在AO 段时,设离开A 点t s 后两只蚂蚁与O 点组成的三角形的面积是450cm 2.根据题意,得(502)34502t t-=g .整理得:2251500t t -+=, 解得t 1=10,t 2=15. (2)当蚂蚁爬完AO 这段距离用了50252s =后,开始由O 向B 爬行,设从O 点开始x s 后组成的 三角形的面积是450 cm 2,根据题意,得:23(25)4502x x +=g ,整理得x 2+25x-150=0,解得x 1=5,x 2=-30(舍去). 当x =5时,x+25=30.这时蚂蚁已由A 点爬了30s .答:分别在10s ,15s ,30s 时,两只蚂蚁与O 点组成的三角形的面积是450cm 2.。

最新中考数学总复习:多边形与平行四边形-- 巩固练习(提高)(含答案解析)

最新中考数学总复习:多边形与平行四边形-- 巩固练习(提高)(含答案解析)

中考总复习:多边形与平行四边形-巩固练习(提高)【巩固练习】一、选择题1.如图,四边形ABED和四边形AFCD都是平行四边形,AF和DE相交成直角,AG=3cm,DG=4cm,□ABED 的面积是,则四边形ABCD的周长为()A.49cm B.43cm C.41cm D.46cm2.如图,在△ABC中,已知AB=AC=5,BC=4,点E、F是中线AD上的两点,则图中阴影部分的面积是:( ) A. ; B.2; C.3; D.4.3. 已知点A(2,0)、点B(,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限 C.第三象限 D.第四象限4.(2011·安徽)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上,若P到BD的距离为32,则点P的个数为( )A.1 B.2 C.3 D.45.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB 相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的是().A.①②③④B.①③④C.②③④ D.①②④6.(2014•杭州模拟)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB的面积是16.则以上结论正确的是()A.①②③B.①②④C.①③④D.②④二、填空题7. 如图,口ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为________.8.(2015春•淅川县期末)若工人师傅用正三角形、正十边形与正n边形这三种正多边形能够铺成平整的地面,则n的值为.9. 如图,平行四边形ABCD中,∠ABC=60°,AB=4,AD=8,点E、F分别是边BC、AD边的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是__________.10.(2011•梅州)凸n边形的对角线的条数记作a n(n≥4),例如:a4=2,那么:①a5=_____;②a6-a5=____ ;③a n+1-a n=____.(n≥4,用n含的代数式表示)11.①如图(1),四边形ABCD中,AB∥E1F1∥CD,AD∥BC,则图中共有________个平行四边形;②如图(2),四边形ABCD中,AB∥E1F1∥E2F2∥CD,AD∥BC,则图中共有________个平行四边形;③如图(3),四边形ABCD中,AB∥E1F1∥E2F2∥E3F3∥CD,AD∥BC,则图中共有________个平行四边形;一般地,若四边形ABCD中,E1,E2,E3,…,都是AD上的点,F1,F2,F3,…,都是BC上的点,且AB∥E1F1∥E2F2∥E3F3∥…∥∥CD,AD∥BC,则图中共有________平行四边形.12.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为___________.三、解答题13.问题再现:现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题、今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.问题提出:如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决、从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+(82)1808-⨯•y=360,整理得:2x+3y=8,我们可以找到惟一一组适合方程的正整数解为12 xy=⎧⎨=⎩.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:_______;结论2:_______.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广:请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:_______;验证3:_______;结论3:_______.14. 如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补.(1)求∠C的度数;(2)若BC>CD且AB=AD,请在图上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由;(3)若CD=6,BC=8,S四边形ABCD=49,求AB的值.15. (2015春•苏州校级期末)如图,正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF、CF.(1)如图①,当点P在CB延长线上时,求证:四边形PCFE是平行四边形.(2)如图②,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由.16.(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k ,使得∠EFD=k ∠AEF ?若存在,求出k 的值;若不存在,请说明理由. ②连接CF ,当CE 2-CF 2取最大值时,求tan ∠DCF 的值.【答案与解析】 一.选择题 1.【答案】D. 2.【答案】A.3.【答案】C . 4.【答案】B.【解析】如图所示,作AE ⊥BD 于E ,CF ⊥BD 于F ,由题意得AE =12BD =22AB =2>32,∴在边AB 和AD上各存在一个点P 到BD 的距离为32.∵AB =AD ,∠BAD =90°,∴∠ADB =45°.又∠ADC =90°,∴∠CDF =45°.∴CF =22CD =22×2=1<32,∴在边BC 和CD 上不存在符合题意的点P .综上所述.5.【答案】A.【解析】先证 ΔADF≌ΔABC,可得DF=AC=AE.∵DF ∥AE 且DF=AE ∴四边形ADFE 为平行四边形,即①②③④是正确的. 6.【答案】D .【解析】①∵∠ACB=90°,DE ⊥BC , ∴∠ACD=∠CDE=90°, ∴AC ∥DE , ∵CE ∥AD ,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③正确;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.二.填空题7.【答案】7.【解析】由题意知x+y+z=8,a+(y+a)+(z+x)=22,所以a=7.8.【答案】十五.【解析】正三边形和正十边形内角分别为60°、144°,正n边形的内角应为360°﹣60°﹣144°=156°,所以正n边形为正十五边形.故答案为:十五.9.【答案】4+4.10.【答案】5;4;n-1.【解析】①五边形有5条对角线;②六边形有9条对角线,9-5=4;③n边形有(3)2n n-条对角线,n+1边形有(1)(2)2n n+-条对角线,a n+1-a n=(1)(2)2n n+--(3)2n n-=n-1.11.【答案】①3 ;②6 ;③10,.12.【答案】n(n+1).【解析】∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).三.综合题13.【解析】用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角,根据题意,可得方程:60a+120b=360.整理得:a+2b=6,可以找到两组适合方程的正整数解为22ab=⎧⎨=⎩和41ab=⎧⎨=⎩结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角.根据题意,可得方程:60m+90n+120c=360,整理得:2m+3n+4c=12,可以找到惟一一组适合方程的正整数解为121 mnc=⎧⎪=⎨⎪=⎩结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌.(说明:本题答案不惟一,符合要求即可.)14.【解析】(1)∵∠ABC与∠ADC互补,∴∠ABC+∠ADC=180°.∵∠A=90°,∴∠C=360°-90°-180°=90°;(2)过点A作AE⊥BC,垂足为E.则线段AE把四边形ABCD分成△ABE和四边形AECD两部分,把△ABE以A点为旋转中心,逆时针旋转90°,则被分成的两部分重新拼成一个正方形.过点A作AF∥BC交CD的延长线于F,∵∠ABC+∠ADC=180°,又∠ADF+∠ADC=180°, ∴∠ABC=∠ADF .∵AD=AB ,∠AEC=∠AFD=90°,∴△ABE ≌△ADF . ∴AE=AF .∴四边形AECF 是正方形; (3)解法1:连接BD ,∵∠C=90°,CD=6,BC=8,Rt △BCD 中,BD=2286+=10 又∵S 四边形ABCD =49,∴S △ABD =49-24=25. 过点A 作AM ⊥BD 垂足为M , ∴S △ABD =12×BD ×AM=25.∴AM=5. 又∵∠BAD=90°,∴△ABM ∽△DAM .∴AM BM =MDAM.设BM=x ,则MD=10-x , ∴5x=105x -.解得x=5.∴AB=52.解法2:连接BD ,∠A=90°.设AB=x ,AD=y ,则x 2+y 2=102,① ∵12xy=25,∴xy=50.② 由①,②得:(x-y )2=0. ∴x=y .2x 2=100.∴x=52.15.【解析】(1)证明:∵四边形ABCD 是正方形, ∴AB=BC ,∠ABC=∠PBA=90° 在△PBA 和△FBC 中,,∴△PBA ≌△FBC (SAS ),∴PA=FC ,∠PAB=∠FCB .∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FCP=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)解:结论:四边形EPCF是平行四边形,理由是:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°在△PBA和△FBC中,,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠FCB+∠BFC=90°,∠EPB+∠APB=90°,∴∠BPE=∠FCB,∴EP∥FC,∴四边形EPCF是平行四边形.16. 【解析】(1)∵α=60°,BC=10,∴sinα=CEBC,即sin60°=10CE=32,解得CE=53;(2)①存在k=3,使得∠EFD=k∠AEF.理由如下:连接CF并延长交BA的延长线于点G,∵F为AD的中点,∴AF=FD,在平行四边形ABCD中,AB∥CD,∴∠G=∠DCF ,在△AFG 和△CFD 中,G DCF AFG DFC AF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△DFC (AAS ), ∴CF=GF ,AG=CD , ∵CE ⊥AB ,∴EF=GF (直角三角形斜边上的中线等于斜边的一半), ∴∠AEF=∠G ,∵AB=5,BC=10,点F 是AD 的中点, ∴AG=5,AF=12AD=12BC=5, ∴AG=AF ,∴∠AFG=∠G ,在△EFG 中,∠EFC=∠AEF+∠G=2∠AEF , 又∵∠CFD=∠AFG (对顶角相等), ∴∠CFD=∠AEF ,∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF , 因此,存在正整数k=3,使得∠EFD=3∠AEF ; ②设BE=x ,∵AG=CD=AB=5, ∴EG=AE+AG=5-x+5=10-x ,在Rt △BCE 中,CE 2=BC 2-BE 2=100-x 2,在Rt △CEG 中,CG 2=EG 2+CE 2=(10-x )2+100-x 2=200-20x , ∵CF=GF (①中已证),∴CF 2=(12CG )2=14CG 2=14(200-20x )=50-5x ,∴CE 2-CF 2=100-x 2-50+5x=-x 2+5x+50=-(x-52)2+50+254,∴当x=52,即点E 是AB 的中点时,CE 2-CF 2取最大值,此时,EG=10-x=10-52=152,CE=2100x -=251004-=5152, 所以,tan ∠DCF=tan ∠G=CEEG =5152152=153.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【巩固练习】1.在以下关于向量的命题中,不正确的是( ) A.若()()()0a x y b y x x y ==-≠,,,,、,则a ⊥bB.四边形ABCD 是菱形的充要条件是AB DC =,且AB AD =C.点G 是△ABC 的重心,则0GA GB CG ++=D.△ABC 中,AB 和CA 的夹角等于180°-A2.若a 、b 、c 为任意向量,m ∈R ,则下列等式不一定...成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +⋅=⋅+⋅C.m(a b +)=m a +m bD.()()a b c a b c ⋅⋅=⋅⋅3.设a 、b 、c 是任意的非零平面向量,且相互不共线,则 ①(a ·b )c -(c ·a )b =0 ②|a |-|b |<|a -b |③(b ·c )a -(c ·a )b 不与c 垂直④(3a +2b )(3a -2b )=9|a |2-4|b |2中,是真命题的有( ) A.①②B.②③C.③④D.②④4.如图所示,D 是△ABC 的边AB 上的中点,则向量CD =( )(A)12BC BA -+(B)12BC BA -- (C)12BC BA - (D)12BC BA +5.P 是△ABC 所在平面上一点,若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是△ABC 的( ) A.外心 B.内心 C.重心D.垂心6.已知平行四边形ABCD 中,AD =(3,7),AB =(-2,3),对角线AC ,BD 交于点O ,则CO 的坐标为( )A.(-21,5)B.(-21,-5)C.(21,-5)D.(21,5) 7.已知向量5(1,2),(2,4),||5,()2a b c a b c ==--=+⋅=若,则a 与c 的夹角为( )A.30°B.60°C.120°D.150°8.在△ABC 中,∠C=90°,(,1),(2,3),AB k AC ==则k 的值是( )A.5B.-5C.32 D.32- 9.已知a 、b 均为单位何量,它们的夹角为60°,那么|a + 3b |=( ) A.7 B.10 C.13 D.410.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则( ) A.a ⊥e B.a ⊥(a -e ) C.e ⊥(a -e ) D.(a +e )⊥(a -e ) 11.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=___. 12.已知向量(2,2),(5,).||a b k a b =-=+若不超过5,则k 的取值范围是_______.13.已知向量(2,3)a =,(,6)b x =,且//a b ,则=x .14.求与向量a →=-1)和b →=(1)的向量c →的坐标.15.在平面直角坐标系中,O为坐标原点,已知向量(1,2)a =-,又点(8,0),(,),(sin ,)(0)2A B n t C k t πθθ≤≤(1)若,AB a ⊥且||5||AB OA =,求向量OB ;(2)若向量AC 与向量a 共线,当4k >时,且sin t θ取最大值为4时,求OA OC ⋅.16.已知m R ∈,2(1, )a x m =-+,1 (1, )b m x =+, (,)xc m x m=-+. (Ⅰ)当1m =-时,求使不等式 1a c ⋅<成立的x 的取值范围; (Ⅱ)求使不等式 0a b ⋅>成立的x 的取值范围.【答案与解析】 1.【答案】C【解析】若点G 是△ABC 的重心,则有0GA GB GC ++=,而C 的结论是0GA GB CG ++=,显然是不成立的,选C.2.【答案】D【解析】因为()||||cos a b c a b c θ⋅⋅=⋅⋅,而()||||cos a b c b c a θ⋅⋅=⋅⋅;而c 方向与a 方向不一定同向.3.【答案】D【解析】①平面向量的数量积不满足结合律.故①假;②由向量的减法运算可知|a |、|b |、|a -b |恰为一个三角形的三条边长,由“两边之差小于第三边”,故②真;③因为[(b ·c )a -(c ·a )b ]·c =(b ·c )a ·c -(c ·a )b ·c =0,所以垂直.故③假;④(3a +2b )(3a -2b )=9·a ·a -4b ·b =9|a |2-4|b |2成立.故④真.4.【答案】A【解析】12CD CB BD BC BA =+=-+ 5.【答案】D【解析】∵PA PB PB PC PC PA ⋅=⋅=⋅,则由PA PB PB PC ⋅=⋅得()0,0,PB PC PA PB AC PB AC ⋅-=⋅=∴⊥即同理AB PC BC PA ⊥⊥,,即P 是垂心.6.【答案】B【解析】AD =(3,7),AB =(-2,3),(1,10)AC AB AD =+=, 则11(,5)22CO AC =-=-- 7.【答案】C【解析】a c θ设与的夹角为,∵(1,2),(2,4)a b ==--,∴2b a =-5()5cos 2a b c a c θ+⋅=-⋅=-⨯= 1cos 1202θθ=-∴=︒. 8.【答案】A【解析】∠C=90°,(,1),(2,3),AB k AC ==则(2,2)BC k =-∵∠C=90°∴02(2)605AC BC k k ⋅=∴-+=∴= 9.【答案】C【解析】已知a 、b 均为单位何量,它们的夹角为60°,那么12a b ⋅=∴|a +3b |2=226913a a b b +⋅+=.10.【答案】C【解析】已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e | 即 |a -t e |2≥|a -e |2∴22210t a et a e -⋅+⋅-≥即22(2)4(21)01010a e a e a e a e ∆=⋅-⋅-≤⋅-≤∴⋅-=即() 200a e e e a e ⋅-=∴⋅-=()11.【答案】23-【解析】向量(,12),(4,5),(,10)OA k OB OC k ===-, ∴ (4,7),(2,2)AB k AC k =--=--又A 、B 、C 三点共线,故(4-k ,-7)=λ(-2k ,-2),∴k=23- 12.【答案】[-6,2]【解析】(2,2),(5,).(3,2)||92a b k a b k a b k =-=+=++=++则( 2)29k ++(≤5 ∴62k -≤≤. 13.【答案】4=x【解析】∵//a b ,∴1221y x y x =,∴x 362=⋅,∴4=x . 14.【解析】法一:设()c x y →=,,则3a c x y ⋅=-,3b c x ⋅=+∵ a c b c →→→→=,,,∴ ||||||||a cb ca cb c→→→→→→→→⋅⋅=∴y x -=+ 即(2x y =+①又2c →=,∴ x 2+y 2=2 ②由①②得3131x y ⎧+=⎪⎪⎨-⎪=⎪⎩ 或3131x y ⎧+=-⎪⎪⎨-⎪=-⎪⎩(舍) ∴3131(,)c →+-=. 法二:从分析形的特征着手 ∵ |→a |=|→b |=2 →a ·→b =0∴ △AOB 为等腰直角三角形,如图 ∵ |→--OC |=2,∠AOC=∠BOC ∴ C 为AB 中点15.【解析】(1)(8,),820AB n t AB a n t =-⊥∴-+=,又2225||||,564(3)5OB AB n t t =∴⨯=-+=,得8t =±.(24,8)OB ∴=或(8,8)OB =-- (2)(sin 8,)AC k t θ=-AC 与a 向量共线, 2sin 16t k θ∴=-+232sin (2sin 16)sin 2(sin )4k t k k kθθθθ=-+=--+4,104k k ∴>∴>>,∴当sin 4k θ=时,sin t θ取最大值为32k由324k =,得8k =,此时,(4,8)6OC πθ==(8,0)(4,8)32OA OC ∴⋅=⋅=.16.【解析】(Ⅰ)当1m =-时,2(1, 1)a x =--, (1,)1xc x =-. 22(1)111x x a c x x x -⋅=-+=+--∵ 211a c x x ⋅=+-<,∴ 2211,1 1.x x x x ⎧+->-⎪⎨+-<⎪⎩解得 21x -<<-或01x <<.∴ 当1m =-时,使不等式 1a c ⋅<成立的x 的取值范围是{}2101x x x -<<-<<或.(Ⅱ)∵ 22(1)(1)()(1)0x m x m x m x x m a b m x x x+-++--⋅=-++==>, ∴ 当m<0时,(, 0)(1, )x m ∈+∞;当m=0时, (1, )x ∈+∞; 当01m <<时,(0, )(1, )x m ∈+∞;当m=1时,(0, 1 )(1, )x ∈+∞; 当m>1时,(0, 1 )(, )x m ∈+∞.。

相关文档
最新文档