后钢板弹簧悬架的结构设计

合集下载

后悬架钢板弹簧课程设计

后悬架钢板弹簧课程设计

后悬架钢板弹簧课程设计一、课程目标知识目标:1. 学生能理解后悬架钢板弹簧的基本概念、结构与功能。

2. 学生能掌握后悬架钢板弹簧的力学原理及其在汽车行驶中的作用。

3. 学生能了解后悬架钢板弹簧的材料、加工工艺及维护保养知识。

技能目标:1. 学生能运用所学知识,分析后悬架钢板弹簧的力学性能,并进行简单的计算。

2. 学生能通过实际操作,掌握后悬架钢板弹簧的拆装、检查与调整方法。

3. 学生能运用创新思维,设计简单的后悬架钢板弹簧改进方案。

情感态度价值观目标:1. 学生通过学习后悬架钢板弹簧,培养对汽车工程技术的兴趣和热爱,增强职业责任感。

2. 学生在学习过程中,养成团队合作、积极探索、勇于创新的精神。

3. 学生能认识到后悬架钢板弹簧在汽车安全和舒适性方面的重要性,提高安全意识。

课程性质:本课程为汽车维修与检测专业课程,侧重于理论与实践相结合,强调实际操作能力的培养。

学生特点:学生为中职二年级学生,具有一定的汽车基础知识,动手能力较强,对汽车维修感兴趣。

教学要求:结合学生特点和课程性质,采用任务驱动、案例教学等方法,注重培养学生的实践能力和创新精神。

将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 后悬架钢板弹簧的基本概念与结构- 悬架系统的作用与分类- 钢板弹簧的结构与特点- 钢板弹簧的材料与加工工艺2. 后悬架钢板弹簧的力学原理- 弹簧刚度、挠度与预载荷- 钢板弹簧的力学性能分析- 钢板弹簧在汽车行驶中的作用3. 后悬架钢板弹簧的拆装、检查与调整- 拆装工具与操作方法- 钢板弹簧的检查与判断- 钢板弹簧的调整与维护4. 后悬架钢板弹簧的改进与创新- 钢板弹簧设计参数的优化- 新材料、新工艺的应用- 钢板弹簧改进方案的设计与实施教学内容安排与进度:第一周:后悬架钢板弹簧的基本概念与结构第二周:后悬架钢板弹簧的力学原理第三周:后悬架钢板弹簧的拆装、检查与调整第四周:后悬架钢板弹簧的改进与创新本教学内容根据课程目标,结合教材章节进行组织,保证科学性和系统性。

微型汽车后钢板弹簧悬架设计

微型汽车后钢板弹簧悬架设计

微型汽车后钢板弹簧悬架设计引言:随着城市化进程的不断加剧,城市交通拥堵问题越来越严重。

因此,市场对于小型和经济型微型汽车的需求也越来越大。

在微型汽车的设计中,悬架系统是一个非常重要的组成部分,它直接影响到汽车的行驶稳定性、舒适性和操控性。

本文将对微型汽车的后钢板弹簧悬架进行设计和优化。

1.简介后钢板弹簧悬架是一种常见的汽车悬架系统,它由钢板弹簧、减震器和连接件组成。

该悬架系统具有结构简单、制造成本低、可靠性高等优点,因此在微型汽车中广泛应用。

2.悬架系统设计参数在设计后钢板弹簧悬架系统时,需要考虑以下几个主要参数:a.轴距:轴距是指前后轮轴中心之间的距离。

较大的轴距可以提高汽车的稳定性,但同时会增加车身长度,影响车辆的机动性。

b.弹簧刚度:弹簧刚度是指弹簧对重力或外力施加的力与弹簧位移之间的关系。

合适的弹簧刚度可以保证汽车在行驶过程中的平稳性和舒适性。

c.减震器:减震器的作用是减少车辆行驶过程中的颠簸和震动,提高悬架系统的舒适性。

在选择减震器时,需要考虑减震器的压缩和回弹力、摩擦阻尼等因素。

d.响应频率:响应频率是指悬架系统在受到外力激励时产生的周期性振动的频率。

合适的响应频率可以提高悬架系统对不同路面的适应性,减少车辆在行驶过程中的颠簸和震动。

3.悬架系统优化为了优化后钢板弹簧悬架系统的设计,可以采取以下几个策略:a.优化弹簧刚度:通过调整弹簧的材料和参数,可以实现弹簧刚度的优化。

优化后的弹簧可以提供更好的悬架支撑能力和稳定性。

b.配置合适的减震器:根据车辆的重量和行驶需求,选择合适的减震器。

减震器的性能直接影响到悬架系统的舒适性和稳定性。

c.调整悬架系统的参数:通过调整悬架系统的参数,如轴距、悬架点位置等,可以实现悬架系统的优化。

优化后的悬架系统可以提高车辆的操控性和稳定性。

4.结论后钢板弹簧悬架是微型汽车中常用的悬架系统之一,它具有结构简单、制造成本低等优点。

在设计后钢板弹簧悬架系统时,需要考虑轴距、弹簧刚度、减震器等参数,并进行优化,以提高汽车的行驶稳定性、舒适性和操控性。

为微型汽车设计后钢板弹簧悬架

为微型汽车设计后钢板弹簧悬架

为微型汽车设计后钢板弹簧悬架Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】第二题:为 110 微型汽车设计后钢板弹簧悬架 一、确定钢板弹簧叶片断面尺寸、片数有关钢板弹簧的刚度、强度等,可按等截面简支梁的计算公式计算,但需引入挠度增大系数δ加以修正。

因此,可根据修正后的简支梁公式计算钢板弹簧所需要的总惯性矩0J 。

对于对称钢板弹簧30[()]/(48)J L ks c E δ=-式中,s 为U 形螺栓中心距()mm ;k 为考虑U 形螺栓夹紧弹簧后的无效长度系数(刚性夹紧:取0.5k =,挠性夹紧:取0k =);c 为钢板弹簧垂直刚度(/)N mm ,/w c c F f =;δ为挠度增大系数(先确定与主片等长的重叠片数1n ,再估计一个总片数0n ,求得10/n n η=,然后用 1.5/[1.04(10.5)]δη=+初定δ);E 为材料的弹性模量()MPa 。

取值计算:题目已知骑马螺栓中心距70s mm = 取刚性夹紧时的无效长度系数0.5k =题目已知满载时偏频(1.5~1.7)n Hz =,取 1.6n Hz =,根据公式5/n =2255()()97.661.6c f mm n ===;后钢板弹簧载荷02()/2(7350690)/23330w u F G G N =-=-=;故后钢板弹簧垂直刚度/3330/97.6634.1/w c c F f N mm ===确定与主片等长重叠片数11n =,估计总片数010n =(多片钢板弹簧一般片数在6~14片之间选取),则10/1/10n n η==,挠度增大系数1.51.5/[1.04(11/20)] 1.092δ=⨯+=取弹性模量522.110/E N mm =⨯题目已知钢板弹簧长度(1000~1100)L mm =,取1050L mm = 带入可求得:204859.15J N mm =⋅钢板弹簧总截面系数:[()]/(4[])w w W F L ks σ≥-式中,[]w σ为许用弯曲应力。

后钢板弹簧悬架的结构设计

后钢板弹簧悬架的结构设计

1 引言1.1 汽车工业的发展几千年来人们一直生活在马车时代。

马拖着车厢在乡村田埂上颠簸行驶,在城市的大街小巷中踢踏的慢跑。

人们的生活节奏缓慢,既沉重又舒展。

18世纪,瓦特打破了这种平静,蒸汽机的发明掀起了工业革命的浪潮。

随后,法国人尼克.卡歌楼特将蒸汽机装在马车上,第一辆“动力车”诞生了。

1885年德国人卡尔.奔驰将汽油机装在车上,就出现了“汽车”。

在19世纪末到20世纪初,蒸汽车、电动车、汽油车相互竞争,形成三足鼎立之势。

汽油机不干净而且危险,于是电动汽车的销量占据上风,但是在以后的20年间,电动汽车由于速度慢、行程短等缺点,渐渐的被淘汰。

而汽油机慢慢的变成了最可靠和最方便的发动机,这样汽车才成为主导的交通工具。

自1886年世界上第一辆汽车诞生以来,汽车已经历了120多年的发展来历程。

随着科学技术日益发展,汽车的各项性能也日臻完善。

现代汽车已经成为世界各国国民经济和社会生活中不可缺少的交通运输工具。

在汽车发展的短短一百多年的历史中,出现了三次革命。

第一次革命是19世纪末发生在欧洲的汽车手工制作革命。

随着蒸汽机、汽油机、柴油机等动力机械的出现,人们开始将这些机械装在马车上,就诞生了各种各样的汽车。

那时的汽车都是一件一件的用手工制作,在一个作坊里或一个小车间里,就可以生产一部汽车。

这种单一的生产模式使得汽车生产成本昂贵,所以汽车只是富豪们的享受品。

即便在汽车制造完全机械化的今天,欧洲人还保留着这种生产模式,并生产出像“劳斯莱斯”这样的超豪华车。

汽车的第二次工业革命是汽车的大规模生产。

1914年,亨利.福特发明了生产线,流水线大大地降低了汽车的安装时间和成本。

福特汽车公司生产出价廉物美的T型车,这是汽车走向大众的起点。

流水线的发明不仅是汽车历史上的一次革命,也给人类带来了工业历史上的一次革命。

汽车的第三次革命是20世纪70年代发生在日本的精益生产。

20世纪60年代,日本实现了经济腾飞,汽车行业也随之发展。

钢板弹簧悬架设计

钢板弹簧悬架设计

钢板弹簧悬架设计钢板弹簧悬架通过多块钢板弹簧叠加组成,每块钢板弹簧都有不同的长度和宽度,这样可以在受力时,弹簧可以按照不同的程度进行弯曲,以实现对车身的支撑和减震效果。

钢板弹簧悬架的设计原理是通过弹性变形将震动能量转化成弹性势能,从而实现车身的平稳行驶。

钢板弹簧悬架结构特点主要有以下几点:首先,由于钢板弹簧是由多块钢板叠加组成,所以它的刚度可以根据具体需要进行调节。

通过增加或减少钢板的数量和厚度,可以改变弹簧的刚度,从而实现对车身的支撑调节。

其次,钢板弹簧相对于螺旋弹簧来说,其自重相对较轻。

这可以减少车身的总重量,并且对节约燃油也有积极的影响。

再次,钢板弹簧的制造成本相对较低,容易进行批量生产,从而在汽车制造业中得到广泛应用。

钢板弹簧悬架的优点是:首先,由于钢板弹簧可以根据需要进行调整,所以它适用于不同类型和大小的车辆。

不同的车型可以选择不同的弹簧刚度,以适应各种道路条件和驾驶方式。

其次,钢板弹簧悬架可以提供较为平稳的悬挂效果,对车身的支撑能力较强,可以减少路面颠簸对驾驶员和乘客的影响。

此外,钢板弹簧悬架还具有较高的耐久性和可靠性,能够适应各种恶劣的路况和环境。

然而,钢板弹簧悬架也存在一些缺点。

首先,由于钢板弹簧的结构相对较大,所以需要占用较多的空间。

这在一些小型车辆中可能会受到限制。

其次,虽然钢板弹簧悬架可以提供较好的支撑和减震效果,但相对于其他悬挂系统来说,它的舒适性稍逊一筹。

在一些高端豪华车型中,往往采用更为复杂的悬挂系统,以提供更好的驾驶舒适性。

总结起来,钢板弹簧悬架是一种常见的汽车悬挂系统设计。

它通过多块钢板叠加组成,可以提供较为坚硬的支撑,并且具有调整刚度、轻量化和低成本的优点。

然而,它的空间占用较大和相对较低的舒适性是其缺点。

在实际应用中,钢板弹簧悬架可以根据具体需求进行选择和调整,以满足不同车型的悬挂需求。

汽车钢板弹簧悬架设计

汽车钢板弹簧悬架设计

汽车钢板弹簧悬架设计1.弹簧选用汽车钢板弹簧主要由弹簧片组成,弹簧片之间通过铆钉连接。

在选用弹簧片时,需要根据车辆的重量和使用环境来确定合适的弹簧片数量和材料。

弹簧片的数量越多,弹簧刚度就越高,对于重负荷的车辆,需要选择刚度较高的弹簧片。

弹簧片的材料可以选择高强度钢板,以提高弹簧的寿命和可靠性。

2.弹簧布局汽车钢板弹簧的布局主要包括前后轴的弹簧组织和布置。

为了保证车辆的稳定性和悬挂的平衡性,前后轴的弹簧刚度需要相对均衡,可以根据车辆设计的重心位置和工况来确定各个轴的刚度比例。

同时,在弹簧的布置上,需要考虑到弹簧的有效作用长度,以及与减震器和车架的配合情况,确保弹簧在工作时能够正常运动。

3.减震器选用汽车钢板弹簧悬架中的减震器起到控制弹簧振动和提高行驶平稳性的作用。

减震器的选用需要根据车辆的重量和行驶条件来确定。

一般而言,重负荷的车辆需要选择刚度较高的减震器,而轻负荷的车辆可以选择较为柔软的减震器。

常见的减震器有液压减震器、气压减震器和双作用减震器等。

在实际应用中,需要根据车辆的需求和预算来选择合适的减震器。

4.悬挂系统调校在汽车钢板弹簧悬架的设计中,调校是一个关键的环节。

通过调整弹簧刚度、减震器阻尼、弹簧预紧力等参数,可以实现悬挂系统的理想性能。

悬挂系统的调校需要根据车辆的用途和乘客的需求来进行,例如,运载车辆和越野车辆需要更硬的悬挂系统来增加稳定性和通过性,而乘用车和豪华车则需要更柔软的悬挂系统来提高乘坐舒适性。

在进行悬挂系统的调校时,需要进行一系列的试验和数据分析,以确定最佳的参数组合。

物理试验和计算机仿真是常用的手段。

通过调整参数和验证,最终确定悬挂系统的设计。

总之,汽车钢板弹簧悬架设计需要考虑弹簧选用、弹簧布局、减震器选用和悬挂系统调校等方面。

通过合理的设计和调校,可以实现符合车辆需求和乘客舒适性要求的悬挂系统。

某皮卡车少片变截面钢板弹簧后悬架设计讲解

某皮卡车少片变截面钢板弹簧后悬架设计讲解

目录1方案论证 (1)1.1悬架结构形式分析 (3)1.1.1 非独立悬架和独立悬架 (3)1.1.2前悬架方案的选择 (4)1.1.3 比较选型 (4)1.2少片变截面钢板板簧结构分析 (5)1.2.1抛物线形叶片弹簧 (5)1.2.2梯形变厚断面弹簧 (8)1.3钢板弹簧的布置方案 (9)2悬架主要部件 (11)2.1钢板弹簧的形式 (11)2.1.1叶片断面形状 (11)2.1.2叶片端部形状 (12)2.2 板簧两端与车架的连接 (12)2.2.1连接的结构形式 (12)2.2.2板簧卷耳与衬套 (13)2.3减震器 (14)2.3.1减振器的作用 (14)2.3.2减振器的结构: (15)2.3.3 减振器工作原理: (15)2.3.4减震器的选择 (15)3 悬架的设计计算 (17)3.1弹性元件的计算 (17)3.2优化设计 (20)3.3变截面钢板弹簧校核 (25)3.3.1校核刚度 (25)3.3.2 弹簧的最大应力点及最大应力 (26)3.4 钢板弹簧总成在自由状态下的弧高及曲率半径 (27)3.5 钢板弹簧各片自由状态下曲率半径的确定 (28)3.6钢板弹簧总成弧高的核算 (29)3.7钢板弹簧强度验算 (29)3.7.1驱动时计算应力 (29)3.7.2.汽车通过不平路面时钢板弹簧的强度 (30)3.8钢板弹簧卷耳和弹簧销的强度核算 (30)3.8.1卷耳应力的验算 (30)3.8.2钢板弹簧销的验算 (31)3.8.3 U形螺栓强度验算 (32)3.9减振器性能参数的选择 (33)3.9.1 相对阻尼系数ψ (33)3.9.2 减振器阻尼系数 的确定 (34)F的确定 (35)3.9.3 最大卸荷力3.9.4计算结果以及减震器的选择 (35)4 CATIA实体建模 (37)4.1CATIA简介 (37)4.2实体建模 (38)4.2.1钢板弹簧的绘制 (38)4.2.2盖板的实体图 (39)4.3主要零件实体图 (39)4.4装配 (42)5 结束语 ................................................................................................ 错误!未定义书签。

钢板弹簧悬架系统设计规范--完整版

钢板弹簧悬架系统设计规范--完整版

1 范围本规范适用于传统结构的非独立悬架系统,主要针对钢板弹簧和液力筒式减振器等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。

2 规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本规范。

QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件QCn 29035-1991 汽车钢板弹簧技术条件QC/T 517-1999 汽车钢板弹簧用U形螺栓及螺母技术条件GB/T 4783-1984 汽车悬挂系统的固有频率和阻尼比测定方法3 符号、代号、术语及其定义GB 3730.1-2001 汽车和挂车类型的术语和定义GB/T 3730.2-1996 道路车辆质量词汇和代码GB/T 3730.3-1992 汽车和挂车的术语及其定义车辆尺寸QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件GB/T 12549-2013 汽车操纵稳定性术语及其定义GB 7258-2017 机动车运行安全技术条件GB 13094-2017 客车结构安全要求QC/T 480-1999 汽车操纵稳定性指标限值与评价方法QC/T 474-2011 客车平顺性评价指标及限值GB/T 12428-2005 客车装载质量计算方法GB 1589-2016 道路车辆外廓尺寸、轴荷及质量限值GB/T 918.1-1989 道路车辆分类与代码机动车JTT 325-2013 营运客车类型划分及等级评定凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。

4 悬架系统设计对整车性能的影响悬架是构成汽车的总成之一,一般由弹性元件(弹簧)、导向机构(杆系或钢板弹簧)、减振装置(减振器)等组成,把车架(或车身)与车桥(或车轮)弹性地连接起来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 引言1.1 汽车工业的发展几千年来人们一直生活在马车时代。

马拖着车厢在乡村田埂上颠簸行驶,在城市的大街小巷中踢踏的慢跑。

人们的生活节奏缓慢,既沉重又舒展。

18世纪,瓦特打破了这种平静,蒸汽机的发明掀起了工业革命的浪潮。

随后,法国人尼克.卡歌楼特将蒸汽机装在马车上,第一辆“动力车”诞生了。

1885年德国人卡尔.奔驰将汽油机装在车上,就出现了“汽车”。

在19世纪末到20世纪初,蒸汽车、电动车、汽油车相互竞争,形成三足鼎立之势。

汽油机不干净而且危险,于是电动汽车的销量占据上风,但是在以后的20年间,电动汽车由于速度慢、行程短等缺点,渐渐的被淘汰。

而汽油机慢慢的变成了最可靠和最方便的发动机,这样汽车才成为主导的交通工具。

自1886年世界上第一辆汽车诞生以来,汽车已经历了120多年的发展来历程。

随着科学技术日益发展,汽车的各项性能也日臻完善。

现代汽车已经成为世界各国国民经济和社会生活中不可缺少的交通运输工具。

在汽车发展的短短一百多年的历史中,出现了三次革命。

第一次革命是19世纪末发生在欧洲的汽车手工制作革命。

随着蒸汽机、汽油机、柴油机等动力机械的出现,人们开始将这些机械装在马车上,就诞生了各种各样的汽车。

那时的汽车都是一件一件的用手工制作,在一个作坊里或一个小车间里,就可以生产一部汽车。

这种单一的生产模式使得汽车生产成本昂贵,所以汽车只是富豪们的享受品。

即便在汽车制造完全机械化的今天,欧洲人还保留着这种生产模式,并生产出像“劳斯莱斯”这样的超豪华车。

汽车的第二次工业革命是汽车的大规模生产。

1914年,亨利.福特发明了生产线,流水线大大地降低了汽车的安装时间和成本。

福特汽车公司生产出价廉物美的T型车,这是汽车走向大众的起点。

流水线的发明不仅是汽车历史上的一次革命,也给人类带来了工业历史上的一次革命。

汽车的第三次革命是20世纪70年代发生在日本的精益生产。

20世纪60年代,日本实现了经济腾飞,汽车行业也随之发展。

到70年代,日本一下子自成为世界上第二汽车生产大国。

80年代,其产量还一度超过美国。

汽车是国民经济的支柱产业。

汽车带动着很多行业的发展,如加油站、公路等。

汽车发展到今天,已经不再是简单的交通运输工具,而且成为一种时尚。

公路上奔驰着各种各样的汽车,车展上厂家不断推出独具风情的款式。

现在汽车发展的格局变换非常快。

全球汽车公司不断更新汽车款式、提高汽车性能,不断将生产和采购向发展中国家转移,以降低成本,追求利润。

汽车界正在萌发一场新的革命,这次革命的核心还比较模糊。

无疑的谁走在这场浪潮的前沿,谁就将傲立于世界汽车之林[1]。

1.2 汽车的构造汽车通常由发动机、底盘、车身和电气设备4部分组成。

发动机的作用是使输进气缸的燃料燃烧而发出动力。

现代汽车广泛应用往复式活塞式内燃机,它一般由机体、曲柄连杆机构、配气机构、燃料供给系统、冷却系统、润滑系统、点火系统、启动系统等部分组成。

底盘接受发动机的动力,使汽车产生运动,并保证汽车按照驾驶员的操作正常行驶。

底盘由下列部分组成:传动系统:将发动机的动力传给车轮。

传动系统包括离合器、变速器、传动轴、主减速器及差速器、传动轴等部分。

行驶系统:使汽车各总成及部件安装在合适的位置,对全车起支撑作用和对路面起附着作用,缓和道路冲击和振动。

它包括支撑全车的承载式车身及副车架、前悬架、前轮、后悬架、后轮等部分。

转向系统:使汽车按驾驶员选定的方向行驶。

它由带转向盘的转向器及转向传动装置组成,有的汽车还有转向助力装置。

制动系统:是汽车减速或停车,并可保证驾驶员离去后汽车可靠的停驻。

它包括前轮制动器、后轮制动器以及控制装置和供能装置。

车身是驾驶员的工作场所,也是装载乘客和货物的地方。

它包括车前板制件、车身本体、还包括货车的驾驶室和货箱以及某些汽车上的专用作业设备。

电气设备包括电源组、发动机启动系统和点火系统、汽车照明和信号装置、仪表、导航系统、电视、音响等电子设备、微机处理、中央计算机及各种人工智能的操作装置等[2]。

1.3 汽车悬架系统的作用、组成与分类1.3.1 汽车悬架系统的作用悬架是车身与车轮之间的一切传力连接装置的总称。

悬架的主要职能有三个:1)连接车体和车轮,并用适度的刚性支撑车轮;2)吸收来自路面的冲击,提高乘坐舒适性;3)有助于行驶中车体的稳定,提高操纵性能。

悬架系统的这些作用是紧密相连的,但又是相互矛盾的,比如提高舒适性,那么车辆稳定性就会降低。

所以悬架系统的设计就是要争取达到最佳的平衡状态[3]。

由实践得知,悬架对汽车的行驶平顺性、稳定性、通过性、燃油经济性等多种使用性能都有影响,因此在选择悬架参数及布置导向机构时,应注意满足这些性能的要求。

在悬架设计中应满足这些性能的要求,其要点如下:1)保证汽车有良好的行驶平顺性。

为此,汽车应有较低的振动频率。

2)有合适的减振性能。

它应与悬架的弹性特性很好的匹配,保证车身和车轮在共振区的振幅小,振动衰减快。

3)保证汽车有良好的操纵稳定性。

导向机构在车轮跳动时,应不使主销定位参数变化过大,车轮运动与导向机构运动应协调,不出现摆振现象。

转向时整车应有一些不足转向特性。

4)汽车制动和加速时能保持车身稳定,减少车身纵倾的可能性。

能可靠的传递车身与车轮间的一切力和力矩,零部件质量轻并有足够的强度和寿命[4]。

1.3.2 汽车悬架系统的组成汽车悬架尽管有各中不同的结构形式,但一般都是由弹性元件、减振器和导向机构三部分组成。

弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。

其种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。

由于汽车行驶的路面不可能绝对平坦,路面作用于车轮上的垂直反力往往是冲击性的,特别是在坏路面上高速行驶时这种冲击力将达到很大的数值。

冲击力传到车身时,可能引起汽车机件的早期损坏;传给乘员和货物时,将使乘员感到极不舒适,货物也可能受到损伤。

为了缓和冲击,在汽车行驶系中,除了采用弹性的充气轮胎之外,还应采用弹性元件来缓和振动。

持续的振动易使乘员感到不舒适和疲劳。

故悬架系统还应具有减振作用,以使振动衰减,振幅减小,为此,在许多形式的悬架系统中都设有专门的减振器。

即减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。

导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。

种类有单杆式或多连杆式的。

钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。

有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性[5]。

悬架系统只要求具备上述各个功能,在结构上并非一定要设置这些单独的装置。

例如CA1092所采用的钢板弹簧,除了作为弹性元件起缓冲作用外,它在汽车上纵向安置,并且一端与车架做固定铰链连接时,就可担负起决定车轮运动轨迹的任务,因而就没有必要再设置其它导向机构。

此外,一般钢板弹簧是多片叠成的,它本身即具有一定的减振能力,因而对减振要求不高时,在采用钢板弹簧作为弹性元件的悬架系统中,就可以不装减振器(一般中型货车的后悬架和重型货车悬架中都不装减振器)[6]。

1.3.3 汽车悬架系统的分类现代汽车悬架的发展十分快,崭新的悬架装置不断出现。

其分类方法有很多种。

根据汽车导向机构的不同悬架可分为独立悬架和非独立悬架。

非独立悬架:其特点是两侧车轮安装于一个整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮,当车轮上下跳动时定位参数变化小。

若采用钢板弹簧作弹性元件,它可兼起导向作用,使结构大为简化,降低成本。

目前广泛应用于货车和大客车上,有些轿车后悬架也有采用的。

非独立悬架由于非簧载质量比较大,高速行驶时悬架受到冲击载荷比较大,平顺性较差。

其常见的形式有:1)纵置板簧式非独立悬架;2)螺旋弹簧非独立悬架;3)空气弹簧非独立悬架;4)汽油弹簧非独立悬架等。

独立悬架:随着高速公路网的发展,促使汽车速度不断提高,使得非独立悬架已不能满足汽车行驶平顺性和操纵稳定性等方面提出的要求。

因此,在汽车悬架系统中采用独立悬架已备受关注,尤其是在轿车的前悬架中一无例外地采用了独立悬架[7]。

独立悬架的结构特点是两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮,独立悬架所采用的车桥是断开式的。

这样使得发动机可放低安装,有利于降低汽车重心,并使结构紧凑。

独立悬架允许前轮有大的跳动空间,有利于转向,便于选择软的弹簧元件使平顺性得到改善。

同时独立悬架非簧载质量小,可提高汽车车轮的附着性。

独立悬架中多采用螺旋弹簧和扭杆弹簧作为弹性元件,钢板弹簧和其他形式的弹簧用得较少。

独立悬架的结构类型很多,主要可按车轮运动形式分为以下四类:1)车轮在汽车横向平面内摆动的悬架(横臂式独立悬架);2)车轮在汽车纵向平面内摆动的悬架(纵臂式独立悬架);3)车轮沿主销移动的悬架,其中包括:烛式悬架和麦弗逊式悬架;4)车轮在汽车的斜向平面内摆动摆动的悬架(单臂式独立悬架)。

上面讲述的是传统的悬架系统,其刚度和阻尼是按经验或优化设计的方法确定的,根据这些参数设计的方法悬架结构,在汽车行驶过程中,其性能是不变的,也是无法进行调节的,也就是说,传统的悬架系统只能保证在一定的道路状态和行驶速度下达到性能最佳。

从而使汽车行驶平顺性、安全性受到一定的影响。

故称传统的悬架系统为被动悬架。

随着高速公路网的发展和路面条件的改善,人们希望汽车不仅有很高的行驶速度,而且还要有很好的行驶平顺性、安全性和乘坐舒适性。

因而在20世纪60年代,国外提出了悬架系统可根据汽车[8]。

1.4 该项研究的目的与意义本次毕业设计的题目为:汽车后悬架系统设计。

悬架是现代汽车上的重要总成之一,它把车架(或承载式车身)与车轴(或与车轮)弹性的连接起来.其主要任务是传递作用在车轮与车架(或承载式车身)之间的一切力和力矩,并且缓和不平路面传给车架(或承载式车身)的冲击载荷,衰减由冲击载荷引起的承载系统的震动,以保证汽车的正常行驶。

悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。

由此可见悬架系统在现代汽车上是重要的总成之一。

汽车悬架往往被列为重要部件编入轿车的技术规格表,作为衡量汽车质量的指标之一。

随着汽车技术的发展,人们对悬架的性能提出了更高的要求,因此悬架的发展成为一种必然受到人们的重视,本课题即在对悬架知识的了解掌握的基础上,对汽车后悬架进行设计。

1.5 国内外研究现状、发展动态随着汽车行业的发展,人们对汽车的综合性能提出了更高的要求,特别是操纵性、舒适性、通过性、安全性等,故而对其悬架系统的性能也提出更高的要求:(1)保证汽车有良好的行驶平顺性。

相关文档
最新文档