动态压差平衡阀

动态压差平衡阀
动态压差平衡阀

调节阀压差的确定

调节阀压差得确定 一、概述 在化工过程控制系统中9带调节阀得控制回路随处可见?在确定调节阀压差得过程中■必须考虑系统对调节阀操作性能得影响,否则,即使计算出得调节阀压差再精确,最终确定得调节阀也就是无法满足过程控制要求得。 从自动控制得角度来讲,调节阀应该具有较大得压差。这样选出来得调节阀,其实际工作性能比较接近试验工作性能(即理想工作性能),即调节阀得调节品质较好,过程容易控制。但就是,容易造成确定得调节阀压差偏大,最终选用得调节阀口径偏小。一旦管系压降比讣算值大或相当,调节阀就无法起到正常得调节作用。实际操作中,出现调节阀已处于全开位置,所通过得流量达不到所期望得数值;或者通过调节阀得流量为正常流量值时,调节阀已处于9 0 %开度附近?己处于通常调节阀开度上限,若负荷稍有提高■调节阀将很难起到调节作用。这就就是调节阀压差取值过大得结果。 从丄艺系统得角度来讲■调节阀应该具有较小得压差?这样选出来得调节阀,可以避免出现上述问题,或者调节阀处于泵或压缩机出口时能耗较低。但就是■这样做得结果往往就是选用得调节阀口径偏大,山于调节阀压差在管系总压降中所占比例过小,调节阀得工作特性发生了严重畸变,调节阀得调节品质不好?过程难于控制。实际操作中,出现通过调节阀得流量为正常流量值时,调节阀已处于1 0%开度附近■已处于通常调节阀得开度下限,若负荷稍有变化,调节阀将难以起到调节作用,这种悄况在低负荷开车时尤为明显。这就就是调节阀压差取值过小得结果?同时,调节阀口径偏大,既就是调节阀能力得浪费,使调节阀费用增高;而且调节阀长期处于小开度运行?流体对阀芯与阀座得冲蚀作用严重,缩短调节阀得使用寿命。 正确确定调节阀得压差就就是要解决好上述两方面得矛盾?使根据工艺条件所选出得调节阀能够满足过程控制要求,达到调节品质好、节能降耗乂经济合理。 关于调节阀压差得确定,常见两种观点。其一认为根据系统前后总压差估算就可以了;其二认为根据管系走向计算出调节阀前后压力即可计算出调节阀得压差。这两种方法对于估算国内初步设计阶段得调节阀就是可以得,但用于详细设计或施丄图设讣阶段得调节阀选型就是错误得■常常造成所选得调节阀口径偏大或偏小得问题?正确得做法就是对调节阀所在管系进行水力学计算后,结合系统前后总压差,在不使调节阀工作特性发生畸变得圧差范W 内合理地确定调节阀压差。 有人会问?一般控制条件在流程确定之后即要提出,而管道专业得配管图往往滞后?而且配管时还需要调节阀得有关尺寸,怎样在提调节阀控制条件时先进行管系得水力学计算呢?怎样进行管系得水力学计算,再结合系统前后总压差,最终在合理范ffl内确定调节阀压差,这就就是本文要解决得问题。 二.调节阀得有关概念 为了让大家对调节阀压差确定过程有一个清楚得认识,我们需要a温一下与调节阀有关得一些基本概念。 I、调节阀得工作原理

控制阀选择要点_选好工作压差和重视关闭压差

控制阀选择要点—选好工作压差和重视关闭压差 李宝华 摘要:工业过程控制阀是一种根据用户操作条件(过程数据)而量身定制的系列产品,有多种类型,不同的应用场合有各自适合的解决方案,合理地进行控制阀选择才能更好地发挥其在过程控制中的终端控制作用。控制阀的选择要点有流量计算、噪声预估、适用类型、阀体材料、关闭要求和阀座泄漏量、流量特性、端面连接、密封及填料、相关附件、安全应用,等等,这些要点一直备受关注。本文试对控制阀选择要点中的选型计算所依据的关键过程数据-工作压差和关闭压差进行探讨。 关键词:控制阀;选择要点;关键过程数据;工作压差;关闭压差。 引言 工业过程控制阀()是自动控制的终端控制元件,是工业现场使用最多 的执行器。控制阀组件或控制阀装置简称控制阀(又称调节阀),是一种根据用户操作条件(过程数据)而量身定制的系列产品。控制阀有多种类型,不同的应用场合有各自适合的解决方案,合理地进行控制阀选择才能更好地发挥其在过程控制中的终端控制作用。控制阀的选择主要表现在结构类型、作用方式、流量特性和流通口径等方面,其选择要点有流量计算、噪声预估、适用类型、阀体材料、关闭要求和阀座泄漏量、流量特性、端面连接、密封及填料、相关附件、安全应用,等等,这些要点一直备受关注。本文试对控制阀选择要点中的选型计算所依据的关键过程数据工作压差和关闭压差进行探讨。 控制阀的选择 控制阀的选择包括:根据工艺条件,选择合适的结构和类型;根据工艺对象的特点,选择合适的流量特性;根据工艺参数,选择阀门口径;根据工艺压力和选用阀门情况,选择合适的执行机构;根据工艺过程的要求,选择合适的辅助装置。选择的基点是控制阀的适用性和经济性,量身定制、最优组合。 控制阀的选择顺序为:确认选择条件、根据工艺条件初选阀的型式、选择和计算流量系数、选择流量特性、确定相关结构和执行机构、作用方式组合选择、确定所需的附件。 控制阀的选择的考虑因素有:被调介质的种类、温度、压力、密度、粘度、腐蚀性;控制阀入口压力范围与出口压力范围;介质的流量范围;进出口管道材质与尺寸、连接方式;执行机构的类型与要求;噪音水平;安全方面的考虑。 控制阀的选择中决定控制阀结构和类型的因素有:控制阀的压力等级、工作压差、流通能力、调节频率、控制性能、可调比、噪音、振动、气蚀、腐蚀、冲刷、可维修性、经济性。 在控制阀众多选择条件中,控制阀的工作压差和关闭压差是关键的过程数据,工作压差(或称为调节压差)主导着流量系数(流通能力)的计算选择和影响着流量特性的选择;关闭压差主导着执行机构的输出力矩(扭矩)的计算选择和影响着型式的选择,关系着控制阀的紧密关闭;此外,两者都用于确定控制阀的结构和类型。因此,在控制阀计算选择时一定要选好工作压差和重视关闭压差。 图1 控制阀的选择图2 控制阀数据表(局部)

压差平衡阀

压差平衡阀 压差平衡阀,亦称自力式压差控制阀,是一种不需外来能源依靠被调 介质自身压力变化进行自动调节的阀门,适用于分户计量或自动控制系统中。压差平衡阀为双瓣结构,阀杆不平衡力 河北平衡阀门制造有限公司压差平衡阀 小,结构紧凑,用于供热(空调)水系列中,恒定被控制系统的压差,并 有以下的特点: 1、恒定被控制系统压差; 2、支持被控系统内部自主调节; 3、吸收外网压差波动; 4、采用先进的无级调压结构,控制压差可调比可达25:1; 5、具备自动消除堵塞功能; 6、法兰尺寸符合中灰铸铁法兰尺寸。 压差平衡阀的使用方法: 1、介质流动方向应与阀体箭头方向一致; 2、压差平衡阀应安装在回水管上,阀上接导压管,导压管的另一端与供水管连接,建议在导压管供水端安装1/2"球阀,以便启动消除堵塞功能; 3、在导压管前的供水管上应安装过滤网,避免水质太差造成该阀失去自动调节功能; 4、供水管和该阀前的回水管应分别装设压力表,便于调节控制压差; 5、如发现该系统流量过大或过小,可能的原因是管道元件安装时的杂物卡阻在阀塞上,可将1/2"球阀关闭3—5分钟,这时如果是较轻堵塞,即可自动消除,如还不能消除,则要拆开阀门检查消除堵塞物; 6、控制压差调节方法:逆时针方向调节调压阀杆,观察压差。 [1]压差平衡阀选型说明: 按式KV=G/式中(G-M3/h),根据最大流量和可能的最小工作压差计算所需的最大KV值,应小于阀门的最大KV值;根据最小流量和可能的最大 工作压差计算所需的最小KV值,应大于阀门的最小KV值,如G=3-10M/h,

△P"最大=200KPa,△P"最小=20KPa,KV最大=10/=25,KV最小=3/=,选择DN50即符合要求,建议尽量不变径选用阀门。 压差平衡阀的用途: 为何室内安装自控装置必须安装压差平衡阀原因如下: 1.如果不安装压差平衡阀,近端用户由于压差过大,当近端用户室内温度达到设置值时,由于感温包的膨胀推力是有限的使恒温阀无法关断,使近端用户室内温度超标。 2.如果不安装压差平衡阀,近端用户压差过大,远端用户压差小,外网压差不平衡,造成近端和远端用户室内温度产生时序,如果采用间接性供暖方式,由于时序过长造成远端用户还未达到用户需求时就到了供暖的间歇时间,使远端用户无法达到供暖要求,如变频变流量调节时由于时序过长远端用户还未达到用户需求时即到了热源循环水泵的转数调小的时候,使变频装置无法发挥应有的功效。 3.如果不安装压差平衡阀当各用户调节时会相互干扰,如果一个或几个恒温阀调节时,会引起所有的恒温阀无谓的动作。 4.如果不安装压差平衡阀,室内温度达到需求时由于近端用户压差过大,会导致恒温阀产生噪音,影响舒适度。 5.如果不安装压差平衡阀,感温包长时间在高压差工资下还会简短恒温阀的使用寿命。

动态压差平衡阀的工作原理及使用方法

动态压差平衡阀的工作原理及使用方法 发布时间:2010-5-27 编辑:wenjie 来源:直接进论坛 动态压差平衡阀,亦称自力式压差控制阀、差压控制器、压差平衡阀等,它是用压差作用来调节阀门的开度,利用阀芯的压降变化来弥补管路阻力的变化,从而使在工况变化时能保持压差基本不变,它的原理是在一定的流量范围内,可以有效地控制被控系统的压差恒定,即当系统的压差增大时,通过阀门的自动关小动作,它能保证被控系统压差增大反之,当压差减小时,阀门自动开大,压差仍保持恒定。 动态压差平衡阀的工作原理: 该阀由阀体,阀盖,阀芯弹簧,控制导管,调压器组成,阀门安装在供热管路的回水管上,阀门上的工作腔通过控制管与供水管连接。消除外网压力波动引起的流量偏差,当供水压力P1增大,则供水压差P1-P3增大,感压膜带动阀芯下移关小阀口,使P2增大,从而维持P1-P2的恒定。当供水压力P1减小则感压膜带动阀芯上移,P2减小,使P1-P2恒定不变。无论管路中压力怎样变化,动态压差平衡阀均可维持施加于被控对象压差和流量恒定。 动态压差平衡阀的使用方法: 1、介质流动方向应与阀体箭头方向一致; 2、该阀应安装在回水管上,阀上接导压管,导压管的另一端与供水管连接,建议在导压管供水端安装1/2"球阀,以便启动消除堵塞功能; 3、在导压管前的供水管上应安装过滤网,避免水质太差造成该阀失去自动调节功能; 4、供水管和该阀前的回水管应分别装设压力表,便于调节控制压差; 5、如发现该系统流量过大或过小,可能的原因是管道元件安装时的杂物卡阻在阀塞上,可将1/2"球阀关闭3—5分钟,这时如果是较轻堵塞,即可自动消除,如还不能消除,则要拆开阀门[1]检查消除堵塞物; 6、控制压差调节方法:逆时针方向调节调压阀杆,观察压差。

调节阀压差的确定

调节阀压差的确定 一、概述 在化工过程控制系统中,带调节阀的控制回路随处可见。在确定调节阀压差的过程中,必须考虑系统对调节阀操作性能的影响,否则,即使计算出的调节阀压差再精确,最终确定的调节阀也是无法满足过程控制要求的。 从自动控制的角度来讲,调节阀应该具有较大的压差。这样选出来的调节阀,其实际工 有人会问,一般控制条件在流程确定之后即要提出,而管道专业的配管图往往滞后,而且配管时还需要调节阀的有关尺寸,怎样在提调节阀控制条件时先进行管系的水力学计算呢?怎样进行管系的水力学计算,再结合系统前后总压差,最终在合理范围内确定调节阀压差,这就是本文要解决的问题。 二、调节阀的有关概念 为了让大家对调节阀压差确定过程有一个清楚的认识,我们需要重温一下与调节阀有关的一些基本概念。 1、调节阀的工作原理 如图1所示,根据柏努力方程,流体流经调节阀前后1-1和2-2截面间的能量守恒关系如下式所示。 ) 1(222 2 222111------+++=++f h g U rg P H g U rg P H

由于H 1=H 2,U 1=U 2,则有: 在流体阻力计算时,还有: 则有: 2 1当调节阀单位相对开度变化引起的相对流量变化是一个常数时,称调节阀具有直线流量特性。其数学表达式为: 其积分式为: 代入边界条件l=0时, Q=Qmin; l=lmax 时, Q=Qmin 。得: )2(2 1-------= rg P P h f 2)10(max max ------=l l kd Q Q d )11(max max -------+=常数l l k Q Q max min 1Q Q k - =max min Q Q = 常数

压差旁通阀的选择计算

压差旁通阀的选择计算

为保证空调冷冻水系统中冷水机组的流量基本恒定;冷冻水泵运行工况稳定,一般采用的方法是:负荷侧设计为变流量,控制末端设备的水流量,即采用电动二通阀作为末端设备的调节装置以控制流入末端设备的冷冻水流量。在冷源侧设置压差旁通控制装置以保证冷源部分冷冻水流量保持恒定,但是在实际工程中,由于设计人员往往忽视了调节阀选择计算的重要性,在设计过程中,一般只是简单的在冷水机组与用户侧设置了旁通管,其旁通管管径的确定以及旁通调节阀的选择未经详细计算,这样做在实际运行中冷水机组流量的稳定性往往与设计有较大差距,旁通装置一般无法达到预期的效果,为将来的运行管理带来了不必要的麻烦,本文就压差调节阀的选择计算方法并结合实际工程作一简要分析。 一压差调节装置的工作原理 压差调节装置由压差控制器、电动执行机构、调节阀、测压管以及旁通管道等组成,其工作原理是压差控制器通过测压管对空调系统的

供回水管的压差进行检测,根据其结果与设定压差值的比较,输出控制信号由电动执行机构通过控制阀杆的行程或转角改变调节阀的开度,从而控制供水管与回水管之间旁通管道的冷冻水流量,最终保证系统的压差恒定在设定的压差值。当系统运行压差高于设定压差时,压差控制器输出信号,使电动调节阀打开或开度加大,旁通管路水量增加,使系统压差趋于设定值;当系统压差低于设定压差时,电动调节阀开度减小,旁通流量减小,使系统压差维持在设定值。 二选择调节阀应考虑的因素 调节阀的口径是选择计算时最重要的因素之一,调节阀选型如果太小,在最大负荷时可能不能提供足够的流量,如果太大又可能经常处于小开度状态,调节阀的开启度过小会导致阀塞的频繁振荡和过渡磨损,并且系统不稳定而且增加 了工程造价。 通过计算得到的调节阀应在10%-90%的开启度区间进行调节,同时还应避免使用低于

压差平衡阀的作用原理是什么

压差平衡阀的作用原理是什么? 压差平衡阀,亦称自力式压差控制阀,是一种不需外来能源依靠被调介质自身压力变化进行自动调节的阀门,适用于分户计量或自动控制系统中。 压差平衡阀为双瓣结构,结构紧凑,用于供热(空调)水系列中,恒定被控制系统的压差,并有以下的特点: 1、恒定被控制系统压差; 2、支持被控系统内部自主调节; 3、吸收外网压差波动; 4、采用先进的无级调压结构,控制压差可调比可达25:1; 5、具备自动消除堵塞功能; 6、法兰尺寸符合GB4216.2中灰铸铁法兰尺寸。 压差平衡阀的使用方法: 1、介质流动方向应与阀体箭头方向一致; 2、压差平衡阀应安装在回水管上,阀上接导压管,导压管的另一端与供水管连接,建议在导压管供水端安装1/2"球阀,以便启动消除堵塞功能; 3、在导压管前的供水管上应安装过滤网,避免水质太差造成该阀失去自动调节功能; 4、供水管和该阀前的回水管应分别装设压力表,便于调节控制压差; 5、如发现该系统流量过大或过小,可能的原因是管道元件安装时

的杂物卡阻在阀塞上,可将1/2"球阀关闭3—5分钟,这时如果是较轻堵塞,即可自动消除,如还不能消除,则要拆开阀门检查消除堵塞物; 6、控制压差调节方法:逆时针方向调节调压阀杆,观察压差。 压差平衡阀选型说明: 按式KV=G/式中(G-M3/h),根据最大流量和可能的最小工作压差计算所需的最大KV值,应小于阀门的最大KV值;根据最小流量和可能的最大工作压差计算所需的最小KV值,应大于阀门的最小KV值,如G=3-10M/h,△P"最大=200KPa,△P"最小=20KPa,KV最大=10/=25,KV最小=3/=2.12,选择DN50即符合要求,建议尽量不变径选用阀门。 压差平衡阀的用途: 为何室内安装自控装置必须安装压差平衡阀原因如下: 1.如果不安装压差平衡阀,近端用户由于压差过大,当近端用户室内温度达到设置值时,由于感温包的膨胀推力是有限的使恒温阀无法关断,使近端用户室内温度超标。 2.如果不安装压差平衡阀,近端用户压差过大,远端用户压差小,外网压差不平衡,造成近端和远端用户室内温度产生时序,如果采用间接性供暖方式,由于时序过长造成远端用户还未达到用户需求时就到了供暖的间歇时间,使远端用户无法达到供暖要求,如变频变流量调节时由于时序过长远端用户还未达到用户需求时即到了热源循环水泵的转数调小的时候,使变频装置无法发挥应有的功效。 3.如果不安装压差平衡阀当各用户调节时会相互干扰,如果一个

调节阀的流量计算

调节阀的流量计算 调节阀的流量系数Kv,是调节阀的重要参数,它反映调节阀通过流体的能力,也就是调节阀的容量。根据调节阀流量系数Kv的计算,就可以确定选择调节阀的口径。为了正确选择调节阀的口径,必须正确计算出调节阀的额定流量系数Kv值。调节阀额定流量系数Kv的定义是:在规定条件下,即阀的两端压差为10Pa,流体的密度为lg/cm,额定行程时流经调节阀以m/h或t/h的流量数。 1.一般液体的Kv值计算 a.非阻塞流 判别式:△P<FL(P1-FFPV) 计算公式:Kv=10QL 式中: FL-压力恢复系数,见附表 FF-流体临界压力比系数,FF=- PV-阀入口温度下,介质的饱和蒸汽压(绝对压力),kPa PC-流体热力学临界压力(绝对压力),kPa QL-液体流量m/h ρ-液体密度g/cm P1-阀前压力(绝对压力)kPa P2-阀后压力(绝对压力)kPa b.阻塞流 判别式:△P≥FL(P1-FFPV) 计算公式:Kv=10QL 式中:各字符含义及单位同前 2.气体的Kv值计算 a.一般气体 当P2>时

当P2≤时 式中: Qg-标准状态下气体流量Nm/h Pm-(P1+P2)/2(P1、P2为绝对压力)kPa △P=P1-P2 G -气体比重(空气G=1) t -气体温度℃ b.高压气体(PN>10MPa) 当P2>时 当P2≤时 式中:Z-气体压缩系数,可查GB/T 2624-81《流量测量节流装置的设计安装和使用》 3.低雷诺数修正(高粘度液体KV值的计算) 液体粘度过高或流速过低时,由于雷诺数下降,改变了流经调节阀流体的流动状态,在Rev<2300时流体处于低速层流,这样按原来公式计算出的KV值,误差较大,必须进行修正。此时计算公式应为: 式中:Φ―粘度修正系数,由Rev查FR-Rev曲线求得;QL-液体流量 m/h 对于单座阀、套筒阀、角阀等只有一个流路的阀 对于双座阀、蝶阀等具有二个平行流路的阀 式中:Kv′―不考虑粘度修正时计算的流量系 ν ―流体运动粘度mm/s FR -Rev关系曲线 FR-Rev关系图 4.水蒸气的Kv值的计算

平衡阀调试方法

平衡阀调试手册欧文托普阀门系统(北京)有限公司

欧文托普静态平衡阀介绍 静态平衡阀亦称手动平衡阀,数字锁定平衡阀,它的作用对象是系统的阻力,能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部分负荷的流量需求,起到平衡输配的作用。 手动平衡阀的作用对象是系统的阻力,基本功能:消除环路剩余压头限定环路 水流量。 门的实际流量。

平衡阀测量流量原理:从流体力学观点看,平衡阀相当于一个局部阻力可以改变的节流元件,以压缩液体为例,由流量方程式可得: Q=K v·△P?(1-1) Q—流经平衡阀的流量(m3/h) K v—阀门系数 △P?—阀前、阀后压差(kg./cm2) 式(1-1 际流量。

欧文托普静态平衡阀调试方法 为保证暖通空调系统的最佳运行,必须在初调试时对系统进行静态水力平衡联调,保证在系统调试合格后各个末端设备的流量同时达到设计流量,即系统能均衡 地输送足够的水量到各个末端设备。 通过欧文托普公司的专用流量测量仪表“OV-DMC2”,并采取一定的步骤,可以在所有的静态水力平衡阀只调节一次的情况下实现系统的静态水力平衡,欧文托普 端 时 具

欧文托普“OV-DMC2”测量仪表使用说明 1、欧文托普“OV-DMC2”测量仪表为整 套仪表和测量工具的总称。平时可装在 专用的工具箱里,保护仪表,同时也方 便携带。 2、打开工 所以, 最多的组件单独列了出来,如左图。 绝大多数静态平衡阀的调试工作都 可以依靠这些组件的正常工作来完 成的。

下面我们来认识一下这些组件到底是干什么用的。 测试 仪 器, 整套 仪表 的核 心组件 压力传 感器 双色导 压管及 压力探 接,将压 力探针与 压力导管 的另一头 注意红管对应高压端“+”,连接,带黑色开关的一般连于蓝

调节阀选型计算

?调节阀计算与选型指导(一) ?2010-12-09 来源:互联网作者:未知点击数:588 ?热门关键词:行业资讯 【全球调节阀网】 人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。自动控制系统一切先进的控制理论、巧秒的控制思想、复杂的控制策略都是通过执行器对被控对象进行作用的。 调节阀是生产过程自动化控制系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。调节阀直接与流体接触控制流体的压力或流量。正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制。 控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节。 正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征。选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。 二、调节阀的结构型式及其选择 常用的调节阀有座式阀和蝶阀两类。随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。 如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座调节阀和套筒调节阀,因为此类阀结构简单,阀芯形状易于加工,比较经济。如果此类阀不能满足工艺的综合要求,可根据具体的特殊要求选择相应结构型式的调节阀。现将各种型式常用调节阀的特点及适用场合介绍如: (1)单座调节阀(VP,JP):泄漏量小(额定K v值的0.01%)允许压差小,JP型阀并且有体积小、重量轻等特点,适用于一般流体,压差小、要求泄漏量小的场合。 (2)双座调节阀(VN):不平衡力小,允许压差大,流量系数大,泄漏量大(额定K值的0.1%),适用于要求流通能力大、压差大,对泄漏量要求不严格的场合。 (3)套简阀(VM.JM):稳定性好、允许压差大,容易更换、维修阀内部件,通用性强,更换套筒阀即可改变流通能力和流量特性,适用于压差大要求工作平稳、噪音低的场合。 (4)角形阀(VS):流路简单,便于自洁和清洗,受高速流体冲蚀较小,适用于高粘度,含颗粒等物质及闪蒸、汽蚀的介质;特别适用于直角连接的场合。 (5)偏心旋转阀(VZ):体积小,密封性好,泄漏量小,流通能力大,可调比宽R=100,允许压差大,适用于要求调节范围宽,流通能力大,稳定性好的场合。 (6)V型球阀(VV):流通能力大、可调比宽R=200~300,流量特性近似等百分比,v型口与阀座有剪切作用,适应用于纸浆、污水和含纤维、颗粒物的介质的控制。 (7)O型球阀(VO):结构紧凑,重量轻,流通能力大,密封性好,泄漏量近似零,调节范围宽R=100~200,流量特性为快开,适用于纸浆、污水和高粘度、含纤维、颗粒物的介质,要求严密切断的场合。 (8)隔膜调节阀(VT):流路简单,阻力小,采用耐腐蚀衬里和隔膜有很好的防腐性能,流量特性近似为快开,适用于常温、低压、高粘度、带悬浮颗粒的介质。 (9)蝶阀(VW):结构简单,体积小、重量轻,易于制成大口径,流路畅通,有自洁作用,流量特性近似等百分比,适用于大口径、大流量含悬浮颗粒的流体控制。

动态平衡阀和静态平衡阀的区别

动态平衡阀和静态平衡阀的区别 动态平衡阀分为流量(流量动态控制阀)和压差(自力式压差控制阀)控制两种,根 据实际需求选用。动态平衡阀用于解决各台末端因温控阀门频繁动作而引起的支路压差平衡问题。其和静态区别在于:静态平衡阀(也叫数字锁定平衡阀)需要通过专用智能仪表进行一次性调试后锁定,将系统的总水量控制在合理范围内,但是每次改动都需要通过仪表对阀进行再锁定,动态的是自力的不用这么麻烦的,依靠管网中被调介质自身的压力变化进行自动恒定流量,静态的在工程造价上要略微便宜些。 动态平衡阀的工作原理:通过改变平衡阀的阀芯的过流面积来适应阀门前后的变化,从而达到控制流量的目的。 动态平衡阀可安装在供水管上,也可安装在回水管上。当系统流体工作压力超过散热器允许工作压力时,为安全起见,动态平衡阀宜安装在供水管上。 静态平衡阀亦称平衡阀、手动平衡阀、数字锁定平衡阀、双位等,用于解决管路设计中存在的支路压差平衡问题。 静态平衡阀的工作原理是:通过改变阀芯与阀座的间隙(开度),来改变流经 阀门的流动阻力以达到调节流量的目的,其作用对象是系统的阻力,能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部份负荷的流量需求,起到热平衡的作用。 静态平衡阀既可安装在供水管上,也可以安装在回水管上,一般要安装在回水管上,尤其对于高温环路,为方便调试,更要装在回水管上,安装了平衡阀的供(回)水管不必再设截止阀。 无论静态平衡阀或动态平衡阀,自身都是阻抗元件,尤其是动态平衡阀,要求系统在选配水泵时必须考虑该平衡阀引起的附加扬程。

动态平衡阀与静态平衡阀的比较 平衡阀是在水力工况下,起到动态、静态平衡调节的阀门,如:静态平衡阀,动态平衡阀。 静态平衡阀亦称平衡阀、手动平衡阀、数字锁定平衡阀、双位调节阀等,它是通过改变阀芯与阀座的间隙(开度),来改变流经阀门的流动阻力以达到调节流量的目的,其作用对象是系统的阻力,能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部份负荷的流量需求,起到热平衡的作用。 动态平衡阀分为动态流量平衡阀,自力式自身压差控制阀等。 动态流量平衡阀亦称:自力式流量控制阀、自力式平衡阀、定流量阀、自动平衡阀等,它是跟据系统工况(压差)变动而自动变化阻力系数,在一定的压差范围内,可以有效地控制通过的流量保持一个常值,即当阀门前后的压差增大时,通过阀门的自动关小的动作能够保持流量不增大,反之,当压差减小时,阀门自动开大,流量仍照保持恒定,但是,当压差小于或大于阀门的正常工作范围时,它毕竟不能提供额外的压头,此时阀门打到全开或全关位置流量仍然比设定流量低或高不能控制。 动态压差平衡阀,亦称自力式压差控制阀、差压控制器、稳压变量同步器、压差平衡阀等,它是用压差作用来调节阀门的开度,利用阀芯的压降变化来弥补管路阻力的变化,从而使在工况变化时能保持压差基本不变,它的原理是在一定的流量范围内,可以有效地控制被控系统的压差恒定,即当系统的压差增大时,通过阀门的自动关小动作,它能保证被控系统压差增大反之,当压差减小时,阀门自动开大,压差仍保持恒定。自力自身压差控制阀,在控制范围内自动阀塞为关闭状态,阀门两端压差超过预设定值,阀塞自动打开并在感压膜作用下自动调节开度,保持阀门两端压差相对恒定。 动态平衡阀分为流量(流量动态控制阀)和压差(自力式压差控制阀)控制两种,根据你的 需求选用(不过流量控制的要比压差的在价格上贵很多哦),他们和静态区别在于静态平衡阀(也叫做数字锁定平衡阀)需要通过专用智能仪表进行一次性调试后锁定,将系统的总水量控

空调冷冻水系统压差调节阀的选择计算

空调冷冻水系统压差调节阀的选择计算在中央空调管路中,对于冷水机组来说冷冻水流量的减小是相当危险的。在蒸发器设计中,通常一个恒定的水流量(或较小范围的波动)对于保证蒸发器管内水流速的均匀是重要的,如果流量减小,必然造成水流速不均匀,尤其是在一些转变(如封头)处更容易使流速减慢甚至殂成不流动的“死水”由于蒸发温度极低在蒸发器不断制冷的过程中,低流速水或“死水”极容易产生冻结的情况,从而对冷水机组造成破坏。因此,冷水机能的流量我们要求基本恒定的。但从另一方面,从末端设备的使用要求来看,用户则要求水系统作变化量运行以改变供冷(热)量的多少。这两者构成了一对矛盾,解决此矛盾最常用的方法是在供回水管上设置压差旁通阀,压差旁通阀工作原理是:在系统处于设计状态下,所有设备都满负荷运行时,压差旁通阀开度为零(无旁通水流量),这时压差控制器两端接口处的压力差(又称用户侧供,回水压差)P0即是控制器的设定压差值。当末端负荷变小后,末端的两通阀关小,供回水压差P0将会提高而超过设定值,在压差控制器的作用下,压差旁通阀将自动打开,由于压差旁通阀与用户侧水系统并联,它的开度加大将使供回水压差P0减小直至达到P0时才停止,部分水从旁通阀流过而直接进入回水管,与用户侧回水混合后进入水泵和冷水机组,这样通过冷水机组的水量是不变化的。水泵的运行有个高工作效率点,流量的变化使电机在高效率点处左右移动,但最终的结果,只要管路特性不变化,水泵会自动调节到高效率工作点,我们可以通过调节管路特性去改变水泵的工作效率点,这样也就是说,在流量的变化的时候,水泵要不断的改变自己的运行状态,这导致了电流不段的变化(变大或者变小),这对电机的运行都是有害的,变频泵的电机容易烧毁也就是这个结果,因此,在一般的情况下,最好能使水泵在一个稳定的状态运行,这就要求我们用旁通,无论上面的负荷怎样变化,水泵都能在稳定的流量下运行,而不会导致电机的电流不段变化,使电机的寿命降低! 为保证空调冷冻水系统中冷水机组的流量基本恒定;冷冻水泵运行工况稳定,一般采用的方法是:负荷侧设计为变流量,控制末端设备的水流量,即采用电动二通阀作为末端设备的调节装置以控制流入末端设备的冷冻水流量。在冷源侧设置压差旁通控制装置以保证冷源部分冷冻水流量保持恒定,但是在实际工程中,由于设计人员往往忽视了调节阀选择计算的重要性,在设计过程中,一般只是简单的在冷水机组与用户侧设置了旁通管,其旁通管管径的确定以及旁通调节阀的选择未经详细计算,这样做在实际运行中冷水机组流量的稳定性往往与设计有较大差距,旁通装置一般无法达到预期的效果,为将来的运行管理带来了不必要的麻烦,本文就压差调节阀的选择计算方法并结合实际工程作一简要分析。 一、压差调节装置的工作原理 压差调节装置由压差控制器、电动执行机构、调节阀、测压管以及旁通管道等组成,其工作原理是压差控制器通过测压管对空调系统的供回水管的压差进行检测,根据其结果与设定压差值的比较,输出控制信号由电动执行机构通过控制阀杆的行程或转角改变调节阀的开度,从而控制供水管与回水管之间旁通管道的冷冻水流量,最终保证系统的压差恒定在设定的压差值。当系统运行压差高于设定压差时,压差控制器输出信号,使电动调节阀打开或开度加大,旁通管路水量增加,使系统压差趋于设定值;当系统压差低于设定压差时,电动调节阀开度减小,旁通流量减小,使系统压差维持在设定值。 二、选择调节阀应考虑的因素

调节阀的口径计算

调节阀口径计算 1 口径计算原理 在不同的自控系统中,流量、介质、压力、温度等参数千差万别,而调节阀的流量系数又是在100KPa压差下,介质为常温水时测试的,怎样结合实际工作情况决定阀的口径呢?显然,不能以实际流量与阀流量系数比较(因为压差、介质等条件不同),而必须进行Kv值计算。把各种实际参数代入相应的Kv值计算公式中,算出Kv值,即把在不同的工作条件下所需要的流量转化为该条件下所需要的Kv值,于是根据计算出的Kv值与阀具有的Kv值比较,从而决定阀的口径,最后还应进行有关验算,进一步验证所选阀是否能满足工作要求。 2 口径计算步骤 从工艺提供有关参数数据到最后口径确定,一般需要以下几个步骤: (1)计算流量的确定。根据现有的生产能力、设备负荷及介质的状况,决定计算的最大工作流量Qmax和最小工作流量Qmin。 (2)计算压差的决定。根据系统特点选定S值,然后决定计算压差。 (3)Kv值计算。根据已决定的计算流量、计算压差及其它有关参数,求出最大工作流量时的Kvmax。 (4)初步决定调节阀口径,根据已计算的Kvmax,在所选用的产品型式系列中,选取大于Kv-max并与其接近的一档Kv值,得出口径。

(5)开度验算。 (6)实际可调比验算。一般要求实际可调比应大于10。 (7)压差校核(仅从开度、可调比上验算还不行,这样可能造成阀关不死,启不动,故我们增加此项)。 (8)上述验算合格,所选阀口径合格。若不合格,需重定口径(及Kv值),或另选其它阀,再验算至合格。 3 口径计算步骤中有关问题说明 1)最大工作流量的决定 为使调节阀满足调节的需要,计算时应考虑工艺生产能力、对象负荷变化、预期扩大生产等因素,但必须防止过多地考虑余量,使阀口径选大;否则,不仅会造成经济损失、系统能耗大,而且阀处小开度工作,使可调比减小,调节性能变坏,严重时还会引起振荡,使阀的寿命缩短,特别是高压调节阀,更要注意这一点。现实中,绝大部分口径选大都是此因素造成的。 2)计算压差的决定——口径计算的最关键因素 压差的确定是调节阀计算中的关键。在阀工作特性讨论中知道:S值越大,越接近理想特性,调节性能越好;S值越小,畸变越厉害,因而可调比减小,调节性能变坏。但从装置的经济性考虑时,S小,调节阀上压降变小,系统压降相应变小,这样可选较小行程的泵,即从经济性和节约能耗上考虑S值越小越好。综合的结果,一般取S=0.1~0.3(不是原来的0.3~0.6)。对高压系统应取小值,可小至S

动态平衡电动调节阀概述

动态平衡电动调节阀概述: SLDW动态平衡电动调节阀是动态平衡与电动调节一体化的产品,主要适用于暖通空调系统末端空调设备(如空调箱、新风机组、空气处理机)的温度控制,通过配置智能模块控制装置,可方便的对各环路的流量、温度进行自动控制,实现合理利用能量,节能降耗,智能化管理。应用此阀使末端设备只受标准控制信号的影响,而不受系统压力波动的影响,使系统调节更稳定、更节能,特别适用于系统负荷变化较大的变流量系统中。 产品优点 1.稳定:末端设备的流量变化不受系统压力波动的影响,流量变化不相互干扰。 2.节能:较传统的系统节能6-20%。 3.高效:大大地缩短了调试时间,系统运行具有高效率。 4.舒适:调控温度精度更高,比传统变流量系统更舒适。 产品特点 1.驱动器为直行程,互换性好。 2.流量特性曲线:线/等百分比 3.流量误差≤5% 4.工作温度:0--150℃ 材质与寿命 1.阀体:优质灰铸铁 2.内件:黄铜、不锈钢 3.弹簧:不锈钢 4.膜片:三元乙丙埋纤 5.寿命:十年以上 控制方式 1.智能调节型(最常用) 2.比例积分型 调节阀用于调节工业自动化过程控制领域中的介质流量、压力、温度、液位等工艺参数。根据自动化系统中的控制信号,自动调节阀门的开度,从而实现介质流量、压力、温度和液位的调节。调节阀通常由电动执行机构或气动执行机构与阀体两部分共同组成。直行程主要有直通单座式和直通双座式两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。角行程主要有:V型电动调节球阀、电动蝶阀、通风调节阀、偏心蝶阀等。流通能力Cv值是调节阀选型的主要参数之一,调节阀的流通能力的定义为:当调节阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调节阀的流量数,称为流通能力,也称流量系数,以Cv表示,单位为t/h,液体的Cv值按下式计算。根据流通能力Cv值大小查表,就可以确定调节阀的公称通径DN。在现代化工厂的自动控制

动态压差平衡型电动调节阀

动态压差平衡型电动调节阀 张家口帝达购物中心使用了宏田公司的蒸发式中央空调后,与原来集中式单风道系统比较(以每天运行12小时计):整个系统每天消耗电能约2856KW/h,消耗水量为24.5吨/天,每年运行按3个月计,共 计消耗电能25.7万KW.h左右,消耗水2682吨,每年的维修费用约1-2万元。该购物中心的工作人员讲,使用过去的系统,一直不能达到理想效果,夏季场内闷热难耐,几次改造均不理想。使用宏田的蒸发 式中央空调系统后,保留了原来的两台离心风机,改变了风道的用途,出口温度在18到21度之间,相对湿度60%左右,总运行动力为81KW,比原来减少142.5KW(还不包括停用每层角落7.5匹的分体空调

一、材质: 阀体球墨铸铁电动执行器外壳铝合金 阀套不锈钢阀芯黄铜 二、动态平衡电动调节阀技术参数: 产品型号阀门形式规格 压差范围 (KPa) 流量范围 (m0/h) 工作 压力 流量 误差 流体 温度A/D-EDRV1 二通 DN2530-3000.2-2.9 PN165% 0-100 ℃A/D-EDRV2DN3230-3000.5-4-7 A/D-EDRV3DN4030-3001-7-7 A/D-EDRV4DN5030-3002-12.1 A/D-EDRV8DN6530-3003-20.4 A/D-EDRV9DN8030-3005-30.8 A/D-EDRV10DN1OO30-30010-45.3 A/D-EDRV11DN12530-30015-70-7 A/D-EDRV12DN15030-30020-101.8 A/D-EDRV13DN20033-300 5.0-360 A/D-EDRV14DN25022-210 4.O-460 ※注: A-EDRV动态平衡电动调节阀配直行程电动执行器 D-EDRV动态平衡电动调节阀配角行程电动执行器三、动态平衡电动调节阀尺寸参数: 产品型号 阀门形 式 规格 外形及安装尺寸 (mm) L H1H2 D(φ)法 兰 G螺纹A/D-EDRV1 二通 丝口 DN2516026570G1 A/D-EDRV2DN3218027570G1-1/4 A/D-EDRV3DN4030029090G1-1/2 A/D-EDRV4DN5030029090G2 A/D-EDRV5 二通 法兰 DN32160220701OO A/D-EDRV6DN40200235110110 A/D-EDRV7DN50215230115125 A/D-EDRV8DN65230238120145 A/D-EDRV9DN80275275146160

不同工况下选择平衡阀需注意的问题

1引言 在供热系统中,二次管网的情况千差万别。有流量恒定的二次管网,也有进行了节能改造的随季节温度变化可调节流量的二次管网;有进行了热计量改造的用户,也有没有改造的用户;有不断增加用户的管网,也有供热饱和、用户数恒定的管网。对于不同的工况,平衡阀种类的选择非常重要,只有选择了正确的平衡阀,才能达到水力平衡、增加热效率、节约能源的效果。 本文针对上述不同管网的工况,通过工程实例,分析平衡阀选择中需注意的问题,以 使用户达到最佳的供热效果。 2水力工况平衡的原理 水力工况指各管段的压力、流量及压差。 由公式⊿P=SG2 ⊿P—— —压差(阻力损失); S—— —管段或系统的阻力系数; G—— —管段或系统流量。 可知,流量和压力是相关参数。见图1。流量和压力的调控互为手段和目的。对于外网特性曲线⊿P=SG2,由于并联的近端支路S值都会小于设计值,造成总S值远小于设计值,即实际阻力低于设计阻力,循环水泵的工作点处于水泵特性曲线的右下侧,使实际水量偏大。水泵长期在小扬程大流量工况下运行,水泵在大轴功率、低效率点运行则电机经常超额定电流,这样就造成电能的浪费,严重时会发生烧毁电机的事故。 采暖系统的平衡调节就是用适当的平衡阀,增加近端阻力,使近端支路S值增大至设计值,总S值增大至设计值。使近端流量分配均匀合理,循环水泵的扬程和流量在设计工 不同工况下选择平衡阀需注意的问题 北京特泽热力工程设计有限责任公司康金松 【摘要】本文从理论上阐述了各种平衡阀适应的水力工况,明确了选择平衡阀的原则,并结合工程实例,通过对不同热力工况的深入分析,总结了安装平衡阀后,达到的节能和增效的效果。 【关键词】水力工况平衡阀节能 图1

动态流量平衡阀

动态流量平衡阀 目录 工作原理 技术特征 动态流量平衡阀的性能特点: 动态平衡阀及其在暖通空调工程中的应用 动态流量平衡阀的应用分析 动态流量平衡阀亦称:自力式流量控制阀、自力式平衡阀、定流量阀、自动平衡阀等,它是跟据系统工况(压差)变动而自动变化阻力系数,在一定的压差范围内,可以有效地控制通过的流量保持一个常值,即当阀门前后的压差增大时,通过阀门的自动关小的动作能够保持流量不增大,反之,当压差减小时,阀门自动开大,流量仍照保持恒定,但是,当压差小于或大于阀门的正常工作范围时,它毕竟不能提供额外的压头,此时阀门打到全开或全关位臵流量仍然比设定流量低或高不能控制。 [1]动态流量平衡阀的优点特性 动态流量平衡阀使阀胆能根据水系统不时的压差变化而变化,保证不会超过原先设定的水流量并吸收过量的压差,从而实现整个水系同压力和流量的自动平衡,因而,使用它的益处有: 对业主及施工单位:不需要进行系统调试:可以为您节约大量的时间,缩短竣工日期;不需要安装同程管理:可以为您增加使用的面积和空间、节约安装及材料费用; 方便使用:工程安装分期完工或设备分期使用都不会影响水系统平衡; 方便更改:当某些区域的水系统需要重新设计时,不会影响其它区域的水系统设计和平衡减少耗电量:由于整个水系统得到平衡,保证制冷机组(锅炉、换热器)及水泵以最佳的工作状态运行,具有明显的节能效果; 降低磨损和减少浪费:由于保证水流量不会超过原来设计,保障所有设备的耐用性,避免流量过大而造成的铜管损耗; 提高安全性:由于水系统的流量平衡是自动进行,杜绝了人为破坏性调节的可能性。 对设计人员:减轻了工作量:无需对整个管道进行繁琐的阻力计算,加快设计速度; 可以大胆使用异程式系统:节省管材、相应材料及安装费用,把平衡水力系统的工作交给动态流量平衡阀来完成;可以避免因水系统不平衡带来的其他许多麻烦 编辑本段工作原理 高度控制和高效的建筑环境需要系统设计工程师在设计中赋予新颖的设计理念。由于不断增长的、多种类的流体控制系统的使用,特别当结合了温度调节装臵和区域控制功能,致使静态平衡阀的使用不合时宜。 威廉姆森系列自动平衡阀结合了革新设计,并且具有最大灵活度来给水力平衡系统提供一个完全的解决方案,自动平衡阀最初设计威廉姆森系列阀是专为制冷和供热系统设计的平衡阀,利用自动控制阀胆,即使在压力波动情况下,亦可确保流量为设计流量,并保持恒定。 每一个阀出厂时已设定流量,其中的阀芯决定流量。阀体内安装多个阀芯,流量范围广〔2-730m3/h〕。阀上可安装压力检测孔,便于检验工作状况。需配对夹式法兰和垫圈。 编辑本段技术特征 阀体∶球墨铸铁、WCB、DN50以下为热锻黄铜 阀胆∶不锈钢,青铜表面镀镍处理 最大工作压力∶2.5MPa 最高介质温度∶130℃ 误差∶≤5% 压降范围∶14-220KPa,35-410KPa 连接∶DN50-DN600为对夹式、DN50以下为螺纹连接 动态流量平衡阀 编辑本段动态流量平衡阀的性能特点: 可按设计或实际要求设定流量,能自动消除系统的压差波动,保持流量不变。 克服系统冷热不均现象,提高供热(供冷)质量。 彻底解决近端压差大,远端压差小的矛盾。 减少系统循环水量,降低系统阻力。 减少设计工作量,不需要对管网进行繁琐的水力平衡计算。 降低调网难度,把复杂的调网工作简化为简单的流量分配。 免除多热源管网热源切换时的流量再分配工作。

相关文档
最新文档