超级好的AspenEnergyAnalyzer教程

合集下载

KLEA Network Analyzer Energy Analyzer 使用手册说明书

KLEA Network Analyzer Energy Analyzer 使用手册说明书

K L E AEnergy AnalyzerManual操作手冊手冊目錄章節 1 產品資訊 (10)1.1警告標示 (10)1.2 注意事項 (10)1.3 收貨與清點注意事項 (11)1.4 KLEA 電力分析錶 (11)1.5 KleaCom軟體 (12)1.6 KLEA 前面版資訊 (13)章節 2 安裝程序 (15)2.1 安裝前準備事項 (15)2.2嵌入安裝 (15)2.3 接線圖 (19)2.3.1 三相四線 (3P4W) (19)2.3.2 三相三線 (3P3W) (20)2.3.3 三相Aron接線 (20)2.4產品尺寸 (21)章節 3 選單 (23)3.1 “第一次開機” 設定 (23)3.1.1 選擇語言 (23)3.1.2日期 (24)3.1.3時間 (25)3.1.4 CT比值(CTR) (25)3.1.5 PT比值(VTR) (27)3.1.6接線方式 (27)3.1.7開始 (28)3.2 開始畫面 (28)3.2.1設定值 (29)3.2.1.1 設定選單 (29)3.2.1.1.1 系統選單 (30)3.2.1.1.1.1 CT比值 (30)3.2.1.1.1.2 PT比值 (31)3.2.1.1.1.3 接線方式 (31)3.2.1.1.1.4 需量區間 (32)3.2.1.1.1.5 功率單位 (32)3.2.1.1.2 設備選單 (33)3.2.1.1.2.1 語言 (33)3.2.1.1.2.2 對比 (34)3.2.1.1.2.3 新密碼 (34)3.2.1.1.2.4 背光模式選擇 (35)3.2.1.1.2.5 背光時間設定 (35)3.2.1.1.3 功率選單 (35)3.2.1.1.3.1 T1_1 啟始時間 (36)3.2.1.1.3.2 T1_2 啟始時間 (36)3.2.1.1.3.3 T1_3 啟始時間 (37)3.2.1.1.3.4 每日啟算時間 (38)3.2.1.1.3.5 每月啟算日期 (38)3.2.1.1.3.6 T1 kWh (38)3.2.1.1.3.7 T1 kWh E. (38)3.2.1.1.3.8 T1 kVArh I. (38)3.2.1.1.3.9 T1 kVArh C. (38)3.2.1.1.3.10 T1_1 kWh (38)3.2.1.1.3.11 T1_1 kWh E (38)3.2.1.1.3.12 T1_1 kVArh I. (38)3.2.1.1.3.13 T1_1 kVArh C. (38)3.2.1.1.3.14 T1_2 kWh (39)3.2.1.1.3.15 T1_2 kWh E (39)3.2.1.1.3.16 T1_2 kVArh I. (39)3.2.1.1.3.17 T1_2 kVArh C. (39)3.2.1.1.3.18 T1_3 kWh (39)3.2.1.1.3.19 T1_3 kWh E (39)3.2.1.1.3.20 T1_3 kVArh I. (39)3.2.1.1.3.21 T1_3 kVArh C. (39)3.2.1.1.3.22 T2 kWh (39)3.2.1.1.3.23 T2 kWh E. (39)3.2.1.1.3.24 T2 kVArh I. (39)3.2.1.1.3.25 T2 kVArh C. (40)3.2.1.1.4 數位輸入選單 (40)3.2.1.1.4.1 輸入1 選單 (41)3.2.1.1.4.1.1 模式 (41)3.2.1.1.4.1.2 延遲 (42)3.2.1.1.4.2 輸入2 選單 (42)3.2.1.1.4.3 輸入 3 選單 (選配) (42)3.2.1.1.4.4 輸入 4 選單 (選配) (43)3.2.1.1.4.5 輸入 5 選單 (選配) (43)3.2.1.1.4.6 輸入 6 選單 (選配) (43)3.2.1.1.4.7 輸入 7 選單 (選配) (43)3.2.1.1.5 數位輸出選單 (43)3.2.1.1.5.1 輸出1 選單 (44)3.2.1.1.5.2 輸出2 選單 (46)3.2.1.1.5.3 輸出3 選單 (選配) (46)3.2.1.1.5.4 輸出4 選單 (選配) (46)3.2.1.1.5.5 輸出5 選單 (選配) (46)3.2.1.1.5.6 輸出6 選單 (選配) (46)3.2.1.1.5.7 輸出7 選單 (選配) (46)3.2.1.1.6 類比輸出選單 (選配) (46)3.2.1.1.6.1 輸出1 選單 (47)3.2.1.1.6.1.1 輸入模式 (48)3.2.1.1.6.1.2 輸出接線 (49)3.2.1.1.6.1.3 最小值 (50)3.2.1.1.6.1.4 最大值 (50)3.2.1.1.6.1.5 加乘器 (50)3.2.1.1.6.2 輸出2 選單 (52)3.2.1.1.6.3 輸出3 選單 (53)3.2.1.1.6.4 輸出4 選單 (53)3.2.1.1.7 通訊功能選單 (53)3.2.1.1.7.1 通迅速度選單 (53)3.2.1.1.7.2 通訊 ID (54)3.2.1.1.8 警報設定選單 (54)3.2.1.1.8.1 V(L-N) 選單 (54)3.2.1.1.8.2 V(L-L) 選單 (56)3.2.1.1.8.3 電流選單 (56)3.2.1.1.8.4 P 選單 (56)3.2.1.1.8.5 Q 選單 (56)3.2.1.1.8.6 S 選單 (57)3.2.1.1.8.7 CosØ 選單 (57)3.2.1.1.8.8 PF 選單 (57)3.2.1.1.8.9 IN 選單 (57)3.2.1.1.8.10 頻率選單 (57)3.2.1.1.8.11 溫度選單 (57)3.2.1.1.8.12 電壓諧波選單 (58)3.2.1.1.8.13 電流諧波選單 (59)3.2.1.1.9 清除選單 (59)3.2.1.2 日期/時間選單 (61)3.2.1.3 系統資訊選單 (61)3.2.1.4 密碼選單 (62)3.2.1.5 重開機選單 (62)3.2.1.6 出廠設定 (63)3.2.2 量測選單 (63)3.2.2.1 即時數值選單 (64)3.2.2.2 需量選單 (65)3.2.2.2.1 目前月份選單 (66)3.2.2.2.1.1 電流選單 (67)3.2.2.2.1.2 實功率選單 (68)3.2.2.2.1.3 虛功率選單 (68)3.2.2.2.1.4 視在功率選單 (68)3.2.2.2.2 上一個月選單 (68)3.2.2.2.3 上兩個月選單 (68)3.2.2.2.4 上三個月選單 (68)3.2.2.3 相量圖選單 (69)3.2.2.4 波形圖選單 (69)3.2.2.5 諧波選單 (70)3.2.2.5.1 諧波表選單 (70)3.2.2.5.2 諧波柱狀圖選單 (71)3.2.3 電錶選單 (71)3.2.3.1 費率 1 選單 (71)3.2.3.1.1 Imp. Active 選單 (輸入實功率選單) (72)3.2.3.1.2 Exp. Active 選單 (輸出功率選單) (73)3.2.3.1.3 Ind. Reactive 選單 (電感性虛功選單) (73)3.2.3.1.4 Cap. Reactive 選單 (電容性虛功選單) (73)3.2.3.2 T1 Rate1 選單 (74)3.2.3.3 T1 Rate2 選單 (74)3.2.3.4 T1 Rate3 選單 (75)3.2.3.5 費率 2 選單 (75)3.2.3.6 數位輸入選單 (76)3.2.4 警報選單 (77)3.2.4.1 Phase1 選單 (78)3.2.4.2 Phase2 選單 (78)3.2.4.3 Phase3 選單 (78)3.2.4.4 其他選單 (79)3.2.5 分析選單 (79)3.2.5.1 最小值選單 (80)3.2.5.1.1 每小時選單 (80)3.2.5.1.1.1 Phase1 選單 (80)3.2.5.1.1.2 Phase2 選單 (80)3.2.5.1.1.3 Phase3 選單 (80)3.2.5.1.1.4 其他 (81)3.2.5.1.2 每日選單 (81)3.2.5.1.3 每月選單 (81)3.2.5.2 最大值選單 (81)3.2.5.3 平均值選單 (81)3.2.5.4 電能選單 (81)3.2.5.4.1 每小時選單 (82)3.2.5.4.2 每日選單 (82)3.2.5.4.3 每月選單 (82)章節 4 通訊協定 (84)4.1 RS485 接線圖 (84)4.2 電腦連線 (84)4.3 訊號格式與 MODBUS-RTU協定 數據形式 (85)4.4 MODBUS-RTU 協定實現功能 (85)4.5 KLEA 資料與設定參數 (86)4.5.1 量測與計算數據 (86)4.5.1.1 警報標示 (103)4.5.2 KLEA 設定參數 (105)4.5.3 歸檔(歷史)記錄 (112)4.5.3.1 每小時歸檔數據 (114)4.5.3.2 每天歸檔數據 (115)4.5.3.3 每月歸檔數據 (115)4.5.4歸零 (116)出廠原始設定 (118)技術規格 (122)圖型目錄Figure 1-1 KLEA 面板顯示 (13)Figure 2-1 將KLEA嵌入盤面開孔中 (15)Figure 2-2 固定KLEA於盤面上 (16)Figure 2-3 Loosening of Terminal Block Screws (16)Figure 2-4 Inserting Cable into the Terminal Block (17)Figure 2-5 Fixing the Cable to the Terminal Block (17)Figure 2-6 KLEA Star (WYE) Connection Diagram (19)Figure 2-7 KLEA 3 Phase Delta Connection Diagram (20)Figure 2-8 KLEA Aron Connection Diagram (20)Figure 2-9 Dimensions (21)Figure 3-1 First Power-on Settings (23)Figure 3-2 Dil / Language (23)Figure 3-3 Date (24)Figure 3-4 Example for Setting the Date (24)Figure 3-5 Current Transformer Ratio (25)Figure 3-6 Entering Values to the Virtual Keyboard (26)Figure 3-7 Voltage Transformer Ratio (27)Figure 3-8 Connection Types (27)Figure 3-9 Start (28)Figure 3-10 Startup Screen (28)Figure 3-11 Settings Menu (29)Figure 3-12 KLEA Save Query (30)Figure 3-13 Network Menu (30)Figure 3-14 Setting Current Transformer Ratio (30)Figure 3-15 Setting Voltage Transformer Ratio (31)Figure 3-16 Connection (31)Figure 3-17 Demand Period (32)Figure 3-18 Power Unit Setup (32)Figure 3-19 Device Menu (33)Figure 3-20 Language Selection (33)Figure 3-21 Options for Contrast (34)Figure 3-22 Entering New Password (34)Figure 3-23 Setting Display on Time (35)Figure 3-24 Energy Menu (35)Figure 3-25 T1_1 start time (36)Figure 3-26 T1_2 start time (37)Figure 3-27 T1_3 start time (37)Figure 3-28 Digital Input Menu (40)Figure 3-29 Digital Input Menu (With IO option) (40)Figure 3-30 Mode Selection (41)Figure 3-31 Digital Input1 Counter (41)Figure 3-32 Delay (42)Figure 3-33 Tariff 1 or Tariff 2 ctivation (42)Figure 3-34 Digital Output Menu (43)Figure 3-35 Digital Output Menu (optional digital I/O model (43)Figure 3-36 Output1 Menu (44)Figure 3-37 Analog Output Menu (46)Figure 3-38 Output1 (47)Figure 3-39 Input mode (48)Figure 3-40 Output connection (49)Figure 3-41 Vout1 -> ON ; Iout1 -> OFF (49)Figure 3-42 Vout1 -> OFF; Iout1 -> ON (49)Figure 3-43 Multiplier (50)Figure 3-44 Communication Menu (53)Figure 3-45 Setting Baud Rate (53)Figure 3-46 Slave Id (54)Figure 3-47 Alarm Menu (54)Figure 3-48 V(L-N) Menu (54)Figure 3-49 Alarm Relay Setup (55)Figure 3-50 Alarm Time Setting (55)Figure 3-51 Hysteresis Setting (56)Figure 3-52 Alarm Example (56)Figure 3-53 Setting for No Alarm (57)Figure 3-54 Invalid Limits message (58)Figure 3-55 Harmonics Menu (58)Figure 3-56 THDV High Limit Setting (58)Figure 3-57 V3 - V21 Harmonic High Limit (59)Figure 3-58 Clear Menu (59)Figure 3-59 Before Clear (60)Figure 3-60 After Clear (60)Figure 3-61 Initial Value, After Clear Process (60)Figure 3-62 Date / Time Menu (61)Figure 3-63 System Info (61)Figure 3-64 Password (62)Figure 3-65 Restart (62)Figure 3-66 Default Settings Command (63)Figure 3-67 Measure Menu (63)Figure 3-68 Instantaneous Menu (64)Figure 3-69 Connecting the K-L ends of Current Correctly (65)Figure 3-70 Demand Menu (65)Figure 3-71 Demand Example (65)Figure 3-72 Current Month Menu (66)Figure 3-73 Example of Current Month Menu (66)Figure 3-74 Current Menu (67)Figure 3-75 Phasor Diagram Menu (69)Figure 3-76 Signals Menu (69)Figure 3-77 Harmonics Menu (70)Figure 3-78 Harmonics in Table Format (70)Figure 3-79 Harmonics in Graphical Format (71)Figure 3-80 Tariff 1 enu (71)Figure 3-81 Imp. Active Energy Page (72)Figure 3-82 Example for Start of Hour (72)Figure 3-83 Example for Start of Day (72)Figure 3-84 Example for Start of Month (73)Figure 3-85 T1 Rate1 Menu (74)Figure 3-86 T1 Rate2 Menu (74)Figure 3-87 T1 Rate3 Menu (75)Figure 3-88 Tariff 2 enu (75)Figure 3-89 Digital Input Menu (Optional Digital I/O model) (76)Figure 3-90 Alarms Menu (77)Figure 3-91 Phase1 Menu (78)Figure 3-92 Other Menu (79)Figure 3-93 Analysis Menu (79)Figure 3-94 Minimum Menu (80)Figure 3-95 Hourly Menu (80)Figure 3-96 Energy Menu (81)Figure 4-1 RS485 Wiring Diagram (84)Figure 4-2 Connection of KLEA to a PC (84)表格目錄Table 4-1 Message Format (85)Table 4-2 int (32 bit) data type (85)Table 4-3 Implemented functions for MODBUS RTU Protocol (85)Table 4-4 Read-only Data (87)Table 4-5 Setting Parameters (106)Table 4-6 Description List (111)Table 4-7 Archive (History) Record Table (112)Table 4-8 Clear Address Table (116)Energy Analyzer章節 1產品資訊章節 1 產品資訊1.1 警告標示注意:當您看到此符號,表示這是重要的資訊,必須在操作前將這些資訊納入考量。

化工设计 教学大纲

化工设计 教学大纲

课程代码:09188170 课程名称:化工设计学分:4 周学时:6面向对象:本科生预修课程要求:化工原理、化工热力学、化学反应工程、工程制图、化工设备基础、化工仪表及自动化、无机化学、有机化学一、课程介绍(100-150字)(一)中文简介:本课程通过面向设计项目的实践教学过程,学习化学工程的现代设计方法与工具,了解化工设计的工作程序、内容、设计文档编制方法,实践经历设计一个化工厂的全过程,并初步掌握化工专业计算机仿真设计工具软件,以及基本的化工仿真设计方法,培养综合运用专业基础理论解决具体工程问题的能力。

(二)英文简介Through a practical study process of project-oriented, the students will learn modern methods and tools of chemical engineering design, understand the working procedure, contents and documentation, practically experience the whole process of designing a chemical plant by simulation, get familiar of the computer software and basic skills for chemical engineering simulation design, and receive an integrated training on the ability to solve engineering problems by application of the principles and theories they have learnt.二、教学目标(一)学习目标1、对化工设计阶段的划分,各设计阶段的工作内容和设计文档有一个总体的了解;2、能够在设计工作中自主地综合运用化学、热力学、单元操作、化学工艺学、化学反应工程、化工机械与设备、化工仪表与自动控制等专业基础知识;3、初步掌握一种通用和四种化工专业CAD工具软件,以及基本的化工CAD方法;4、学会团队工作方法;5、完成模拟项目的设计。

超级好的Aspen-Energy-Analyzer教程.

超级好的Aspen-Energy-Analyzer教程.

Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 进入Select步骤,Simulation File to Import为 你的Plus所在目录,点浏览找到所需的Simu
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 修改完毕,点击右下角Next
Plus对所选Simu进行整个流程的扫描,自动找出
相应的物流、装置等,请耐心等待,不要做任何
操作,避免死机。
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 扫描成功后弹出该窗口,选择所需要的物流后, 点Next
Aspen Energy Analyzer V7.2介绍
能量目标
所需换热 设备数
Aspen Energy Analyzer V7.2介绍
4.查看与调整
点击“Range Targets”得最小温差与公用工程耗费之间 的关系曲线。可调节右下角按钮使曲线更加明显
Aspen Energy Analyzer V7.2介绍
4.查看与调整
这样好看多了,若你想恢复原来的模样,可以点击右下角 按钮,两次
Aspen Energy Analyzer V7.2介绍
4.查看与调整
热容流率 CP/(kW/℃) 22 18 20 50
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入
记得输入名称,每股物流至少输入流股的入口温度、 出口温度、热容流率和热负荷四个参数中的三个
Aspen Energy Analyzer V7.2介绍
Tips:冷源热源物流至少各设置一股
Aspen Energy Analyzer V7.2介绍

天津大学Aspen Energy Analyzer-使用!!!

天津大学Aspen Energy Analyzer-使用!!!

1.输入工艺流股数据
2.选择公用工程
3.设定△Tmin=20℃,得到夹点位置
夹点处热物流的温度为90℃,冷物流的温度为70℃
4. 按夹点技术设计换热网络——手动设计方案
热端(夹点上方)的设计
夹点上方 H1 150 1 夹点 90
CP
2.0
Q
120
C1 C2
125 H
100
118
70 70
2.5 3.0
化工过程热集成
——Aspen Energy Analyzer
§1 Aspen Energy Analyzer
Aspen Energy Analyzer(能量分析器)是
AspenTech公司旗下的产品,是进行换热网络
优化设计的一个功能强大的概念设计包,提供
了夹点分析和换热网络优化设计的环境,是
Aspen在工程应用上的一个重要工具。
HI Project
§1.2 Aspen Energy Analyzer简介
右击Case1选择Recommended Designs
§1.2 Aspen Energy Analyzer简介
Recommend Designs参数设置窗口
——设置每股物流的最大分离数和最大设计方案数
§1.2 Aspen Energy Analyzer简介
§1.2 Aspen Energy Analyzer简介
从Hysys流程中导入数据 从Aspen流程中导入数据
工 具 介 绍
从Excel中导入数据 打开目标查看窗口 打开复合曲线窗口
打开总复合曲线窗口 打开公用工程复合曲线窗口
打开换热网络网格图窗口
光盘5-Aspen Energy Analyzer

Aspen One Suit V11.0安装教程及软件介绍

Aspen One Suit V11.0安装教程及软件介绍

1,首先Sentinel RMS License Manager 8.5.1双击setup.exe,安装Sentinel RMS License Manager 8.5.1右键我的电脑属性高级系统设置,环境变量,创建系统环境变量变量名LSHOST变量值:你的电脑名称2,复制Tools文件夹到Sentinel RMS License Manager安装目录下默认路径C:\Program Files (x86)\Common Files\SafeNet Sentinel右键管理员身份运行WlmAdmin.exe,选择Subnet Servers,下拉列表中右键你的电脑名称依次选择Add Feature——>From a File——>To Server and its File浏览打开Crack文件夹里的aspen.slf,安装许可!友情提醒,一共是3130个许可,安装非常缓慢,我这里用了8分钟~~3,右键管理员身份运行Setup.exe,选择Install aspenONE Products 选择要安装的产品以及软件安装位置,开始安装软件,如图:许可证界面选择默认即可,配置Broker Service account账号(密码自定义设置)提供具有管理员权限用户组的账户以及密码,这个你可以选择系统当前的用户名和密码最后点击下一步,开始安装软件,软件全部安装大概需要1个小时~·4,安装完成后,重启电脑,Enjoy创建无缝,集成的工程工作流程。

使用aspenONE Engineering为您的工程团队提供支持–这是世界上最全面的解决方案,可优化设计和运营绩效。

行业领先的流程模拟解决方案Aspen Plus和Aspen HYSYS集成了一流的工具,可在整个组织内创建强大的协作环境。

使用Aspen HYSYS建模和优化任何碳氢化合物工艺。

Aspen HYSYS是一个易于使用的流程建模环境,可优化概念设计和操作。

ASPEN ENERGY ANALYZER-化工过程热集成仿真学习课件.ppt

ASPEN ENERGY ANALYZER-化工过程热集成仿真学习课件.ppt
1. 能量目标 2. 换热单元数目标 3. 换热网络面积目标 4. 经济目标
精品
Energy Target — 能量目标
能量目标就是指以系统能量的最大回收为目标, 即最小热公用工程和最小冷公用工程。 能量目标随夹点温差而变。夹点温差确定后,
所分析系统的能量目标为一确定值。 若夹点温差增大,加热公用工程和冷却公用
QE
QH
H
精品
夹点的意义和设计原则
Q2 Q
+ Q2 + Q
+Q + Q1
1.夹点是冷热复合温焓线中传热温
差最小处,此处热通量为零。
2.夹点之上是热端,只有换热和加
热公用工程,为需要热量的热阱, 不应设置任何冷公用工程。
Q1
3.夹点之下是冷端,只有换热和冷 却公用工程,为热量多余的热源, 不应设置任何热公用工程。
设备投资费用目标 —根据换热单元数目标
和换热面积目标求取
假定:换热单元数目标为Umin,且换热面积平均分配
在各单元中 C N U min [a b( A / U min )c ]
总年度费用目标 CT C E B C N / R
B — 年运行时间; R — 设备折旧年限 精品
最优夹点温差Tmin的确定
精品
最大能量回收网络的 换热单元数目标
如果要使系统能量最大回收,需将系统分成夹点 之上和夹点之下两个独立网络设计:
夹点之上: U min ,1 N1 L1 S1 夹点之下: U min ,2 N 2 L2 S2
U min U min ,1 U min ,2
如果有热量穿过夹点传递,则会使公用工程量 增加(不满足能量最大回收),此时夹点上下 就不再是独立网络了。

夹点技术(下)换热网络设计详细教程(附Aspen源程序文件)

夹点技术(下)换热网络设计详细教程(附Aspen源程序文件)本教程以丙烯环氧化工段为例对换热网络的夹点设计过程进行详细说明,模拟的源文件来源于某一届化工设计大赛国赛特等奖作品。

本教程重在过程,夹点的原理已在本人的夹点技术原理与应用一文进行了详细介绍,因此本文不再进行解释说明。

另本教程参考了熊杰明老师及包宗宏老师的相关书籍,大家有什么不懂可以买来参考。

有兴趣学习的同学可以在本文文末获取Aspen源程序文件。

下面正式开始介绍使用Aspen Energy Analyzer进行换热网络设计的过程。

1、修改单位在进行设计之前,根据需要我们可以对单位进行修改,修改的方法具体为T ools/Preference/Variables/Variables/Units/Available Unit Sets页面下选用或者修改单位集。

本例采用默认的单位集。

2、数据导入本例采用直接从Aspen plus的模拟文件导入的方法,具体过程如下:(1)首先新建一个热集成文件,即点击Creat New HI Case创建新文件,出现如图的界面图1 新建文件其中上面的图标表示的含义从左往右依次是:从Hysys流程中导入数据、从Aspen流程中导入数据、从Excel中导入数据、打开目标查看窗口、打开复合曲线窗口、打开总复合曲线窗口、打开公用工程复合曲线窗口、打开换热网络网格图窗口。

(2)从Aspen流程中导入数据图2 从Aspen流程中导入数据图3 数据导入在左侧的Steps栏中,是导入的具体步骤,每一步都有相应的提示,从上往下步骤依次为选择文件类型,公用工程文件,模拟文件,经济文件、设定详细的选项、选择流程、改变公用工程或添加公用工程、选择加热器的公用工程、选择冷却器的公用工程、选择换热器的经济数据。

在右下角中的Tips中会提示你提供的模拟文件必须收敛,没有错误等等,有兴趣的可以将此提示看看,此处不再详细介绍。

点击“Next”,选择文件的路径。

AspenOneSuitV11.0安装教程及软件介绍

AspenOneSuitV11.0安装教程及软件介绍1,⾸先Sentinel RMS License Manager 8.5.1双击setup.exe,安装Sentinel RMS License Manager 8.5.1右键我的电脑属性⾼级系统设置,环境变量,创建系统环境变量变量名LSHOST变量值:你的电脑名称2,复制Tools⽂件夹到Sentinel RMS License Manager安装⽬录下默认路径C:\Program Files (x86)\Common Files\SafeNet Sentinel右键管理员⾝份运⾏WlmAdmin.exe,选择Subnet Servers,下拉列表中右键你的电脑名称依次选择Add Feature——>From a File——>To Server and its File浏览打开Crack⽂件夹⾥的aspen.slf,安装许可!友情提醒,⼀共是3130个许可,安装⾮常缓慢,我这⾥⽤了8分钟~~3,右键管理员⾝份运⾏Setup.exe,选择Install aspenONE Products 选择要安装的产品以及软件安装位置,开始安装软件,如图:许可证界⾯选择默认即可,配置Broker Service account账号(密码⾃定义设置)提供具有管理员权限⽤户组的账户以及密码,这个你可以选择系统当前的⽤户名和密码最后点击下⼀步,开始安装软件,软件全部安装⼤概需要1个⼩时~·4,安装完成后,重启电脑,Enjoy创建⽆缝,集成的⼯程⼯作流程。

使⽤aspenONE Engineering为您的⼯程团队提供⽀持–这是世界上最全⾯的解决⽅案,可优化设计和运营绩效。

⾏业领先的流程模拟解决⽅案Aspen Plus和Aspen HYSYS集成了⼀流的⼯具,可在整个组织内创建强⼤的协作环境。

使⽤Aspen HYSYS建模和优化任何碳氢化合物⼯艺。

aspenV10以上版本换热网络设计教程

aspenV10以上版本换热网络设计教程一、Aspen导入1.打开一个Aspen 模拟好的源文件2.激活Energy Saving3.等计算完后,打开Energy Saving页面4.启动Aspen Energy Analyzer点击Yes:之后就进入Aspen Energy Analyzer软件页面:5.计算最小温差设置最小传热温差范围和步长,点击Calculate:通过成本和最低传热温差图得最低点,并将最低点输入左下角DTmin:6.目标查看窗口数字1:物流名称,不需要的可以删除,比如流量太小或能量太少数字2:冷热物流符号,蓝色代表冷物流,红色代表热物流,箭头弯的代表有相变,点击弯箭头可显示该物流的区间能量变化数据。

数字3和4:代表进出口温度数字5:热容流率数字6:该物流总的能量数字8:该物流质量流量数字9:该物流比热7.自动设计换热网络右击Scenario1选择Recommended Designs:8.Recommend Designs参数设置窗口9.自动设计方案无法正常运行如果出现温差太小的问题,如图:则双击对应的流股,点击“Delete All”:再次点击“Recommend Designs”,可以显示自动设计的三个方案如左上侧。

各方案比较:分析三个方案的数据——可比较总费用、换热器面积、换热单元数、设备投资费用、冷热公用工程费用、操作费用,还可查看各参数目标值。

一般以年度总费用最小为目标,则选择方案。

由于新版本推荐出来的方案都带有黄色换热器,说明该换热方案不可行,点击下方或在该方案名称上右键“Enter Retrofit mode”,黄色换热器就会消失。

点击下方或在该方案名称上右键“enter Retrofit mode”会跳出现“options”对话框,可以直接关掉,也可以点击“Enter Retrofit Environment”:如果点击“Enter Retrofit Environment”,则左上方显示该方案在新的Scenario1 1目录内,可以对其编辑,进一步优化。

ASpen换热器教程

Jump Start: Activated Energy Analysis in Aspen Plus®and Aspen HYSYS®A Brief Tutorial (and supplement to training and online documentation)Jack Zhang, Product Management, Aspen Technology, Inc.Katherine Hird, Product Marketing, Aspen Technology, Inc.Table of Contents Introduction (1)Setting Up an Energy Analysis Project (2)Generating Process Revamp Solutions (10)Performing Multiple Revamp Solutions (12)Introducing Heat Exchanger Changes to Process Flowsheet (14)Analyzing and Fine-Tuning Heat Integration Results (16)Viewing Heat Exchanger Network Diagram and Composite Curves (17)Adding and Comparing Multiple Heat Integration Projects (19)Obtaining Heat Transfer Coefficients from Activated EDR (20)Filtering Streams by Pinch (22)Conclusions (23)Additional Resources (23)IntroductionIn today’s business climate, profitability is of pinnacle importance. One of the challenges facing industrial plants in reaching profitability is the minimization of annual costs related to utility consumption. In order to achieve a reductionin utility costs, many plants choose to perform an integration of heat exchanger networks. The specific network of heat exchangers that make best use of the available in-house heating and cooling is constructed using pinch calculations. However, these calculations can be daunting for simple plant setups with little equipment, and only increase in difficulty with a higher sophistication of plant design.To respond to this challenge, Aspen Technology has introduced an innovative approach to reduce energy use and greenhouse gas outputs in its Activated Energy Analysis offering. Activated Energy Analysis works inside of Aspen HYSYS and Aspen Plus, with no need to operate another program concurrently.Using Activated Energy Analysis, a summary of annual process energy and greenhouse gas consumptions and expenditures, along with potential savings through process upgrades and redesign, are provided. Activated Energy Analysis generates extensive revamp scenarios that can be implemented to reduce fresh utility dependence, and shows details relevant to the optimization including required capital cost, annual reduction in utility cost, and payback period for investment.The basic steps towards best utilizing Activated Energy Analysis will be described in this guide, as will advanced techniques. Some features denoted in this guide are only available in the V8.8 or later release of Activated Energy Analysis, but all basic workflow is included in Activated Energy Analysis V8.0 and higher.As a reminder, it is free for current AspenTech customers to upgrade to the latest version of the aspenONE® Engineering suite. Simply contact AspenTech support via to do so.This document is not meant to be used as a stand-alone reference document. AspenTech recommends that a range of other resources be referenced to give the user a comprehensive view of how to use Activated Energy Analysis. These may include:•AspenTech support website ()•AspenTech courseware available in on-line and in-person versions•AspenTech business consultants•Additional Jump Start Guides, available on a variety of related topicsThis guide covers how to utilize Activated Energy Analysis to analyze and optimize energy in Aspen Plus and Aspen HYSYS. It assumes that the user has Aspen HYSYS or Aspen Plus V8.0 or higher installed on her or his computer and a functional process design completed.Setting Up an Energy Analysis ProjectAfter completing a process design in Aspen HYSYS or Aspen Plus, the maximum energy saving opportunity can be achieved through Activated Energy Analysis. Begin this process by clicking any empty blue space on the Energy Panel found in the Activation Dashboard. Clicking on the empty space, as demonstrated in Figure 1a, will bring up the energy configuration page, as shown in Figure 1b.Figure 1a.Utilizing the Energy Panel to launch the energy configuration page.Figure 1b. The energy configuration page to specify parameters.The energy configuration page provides areas to specify parameters of the project before activating energy analysis. Areas that can be customized include: process type, approach temperature, carbon fee, and scope, as well as the utility assignments table. The process type can be customized by clicking the drop down menu and selecting the correct process type, as shown in Figure 2a. Approach temperature is defaulted based on the process type, but this value and the carbon fee value can be customized by entering specified amounts, as seen in Figure 2b. The desired flowsheets and sub-flowsheets included in Activated Energy Analysis can be specified by selecting the “Define Scope” button and using the check boxes on the “Energy Analysis Scope” window that appears, select the regions of the flowsheet that should be analyzed as seen in Figure 2c. In this example, only the Preheat Train (TPL1) was chosen to be analyzed.Figure 2a.Specifying process type parameters utilizing the energy configuration form.Figure 2b.Specifying approach temperature and carbon fee in the energy configuration form.Figure 2c.Specifying the energy analysis scope using the energy analysis form.Once the parameters for your analysis have been set, run the targeting step utilizing Activated Energy Analysis. This can be completed in a few different ways. The first way is to select the “Analyze Energy Savings” button at the bottom of the Energy Configuration Page, as shown in Figure 3. Additionally, this step can be run by either scrolling or clicking on the “off” button at the bottom right corner of the blue Energy Panel of the Activation Dashboard, also shown in Figure 3.Figure 3. Launching Activated Energy Analysis through the energy analysis form or Energy Panel.Once Activated Energy Analysis is turned on, it will go through a series of calculation steps, outlined on the top of blue energy panel as “Loading Analysis” and “Calculating…”, shown in Figure 3. Once these steps are completed, the available energy savings of the process are reported. An overall report of the available energy savings is displayed on the blue Energy Panel of the Activation Dashboard, as highlighted in Figure 4.Figure 4. An overview of potential energy savings highlighted in the energy panel and the Savings Summary form.The number reported on the left hand side of the Energy Panel is the potential amount of energy that could be saved and the number reported on the right hand side is the percent, as compared to the current energy expenditures, that the energy could be reduced. These values are calculated using the difference between the actual utility consumption onthe flowsheet and the utilities target, calculated by pinch technology. More detailed savings are reported in the “Savings Summary” tab shown in Figure 4. The savings summary tab can be shown as both the duty and cost savings by selecting the corresponding radio button. The savings are displayed for the total, heating and cooling utilities, and the carbon emissions. The graphs at the top of the “Savings Summary” tab display the current actual utility, or carbon of the process, compared to the target, or ideal utility or carbon emission of the process. The table below highlights each of these parameters in table format to numerically organize potential savings.For ease of use, the user can right click on the Energy Analysis tab and select “New Vertical Tab Group” to view the Energy Analysis results side-by-side with simulation. This new feature is shown in Figure 5 below.Figure 5. The energy analysis form can be viewed side-by-side with the simulation for ease of use.Click on the utilities tab under the Energy Analysis parent tab to view more detailed information of each utility’s target and consumption amounts. Figure 6 shows the information presented in the Utilities tab.Figure 6. Utilities tab displays detailed utilities information for activated energy analysis.The utilities are listed with the hot utilities at the top of the table and the cold utilities listed at the bottom. This table displays information about the actual and target consumption and savings potential for each utility. The energy cost savings in both absolute and relative terms are also listed for each utility, along with the approach temperature, which can be customized by entering a value into the table. Additionally, there is a column with a “Status” for each utility. This column indicates if the utilities are sufficient to calculate the heating and cooling target.The “Carbon Emissions” tab displays a table with more detailed information about the carbon emissions of each utility in the process, as shown in Figure 7.Figure 7. Carbon Emissions tab displays detailed carbon emission information for activated energy analysis.It displays the information about the actual and target carbon emissions and savings potential associated with each utility. Additionally, the carbon emission cost savings in both absolute and relative terms are listed for each utility used in the process.The “Exchangers” tab on the Activated Energy Analysis form, shown in Figure 8 displays all the heat exchangers being analyzed in the process, including heaters, coolers, and process-process heat exchangers.Figure 8. Exchangers tab displays detailed exchanger information for activated energy analysis.This form displays the key information of the exchangers on the flowsheet. Hovering the mouse over the “Hot Side Fluid” and “Cold Side Fluid” text will display the hot side process pinch and cold side process pinch temperatures, respectively. The energy inefficiency of the process can be viewed through the recoverable duty column which gives the duty for each exchanger. This information is pertinent when deciding design change solutions later in the workflow.Note: For Aspen Plus users, only utilities defined in the Utilities Object Manager will be considered in the targeting process for utility switching. For Aspen HYSYS users, all utilities defined in the Process Utilities Manager will be considered. Undesired utilities need to be removed from the Process Utilities Manager in Aspen HYSYS if they are unavailable for selection.This table shows a listing of the heat exchangers included in the heat integration, each exchanger’s duty, temperatures, area, heat transfer coefficients, and hot and cold fluids. In version 8.4 or higher of Activated Energy Analysis, a column titled “Ideas for Changes” appears. In this column, if a light bulb appears, Activated Energy Analysis has detected a simple design change (i.e. changing the temperature of a heat exchanger inlet stream) that could lead to more efficient energy usage in the process. Additionally, heat transfer coefficients obtained from rigorous Aspen Exchanger Design and Rating models can be used to improve the accuracy of the heat exchangers being used in the heat integration model. See the Obtaining Heat Transfer Coefficients from the Activated EDR section later in this guide to learn more.Generating Process Revamp SolutionsTo help achieve the saving potential given by Activated Energy Analysis, revamp solutions can be generated fromthe “Design Changes” tab of the Activated Energy Analysis form, as shown in Figure 9. These solutions include the modification, addition, or relocation of heat exchangers in the process. For the addition and relocation of heat exchangers, the user can specify how many addition and relocation options they want presented, by selecting from the range of 1-5 for both change types in the “Design Changes” tab, as highlighted in Figure 9.Figure 9. The Design Changes tab specifying the number of retrofit solutions suggested.Revamp solutions are generated by clicking the “Find Design Changes” button which will launch the 3 types of design solutions to be produced, resulting in Figure 10.Figure 10.Selecting the “Find Design Changes” button will produce the available retrofit solutions.Once the retrofit analysis is complete, the table in the “Final Design Changes” tab is populated with retrofit solutions. The three types of retrofit options explored in more detail are:1. Modify Exchangers: This retrofit option will modify existing exchangers by adding surface areas to save energy. This option will produce one solution. The top gird shows the summary of this retrofit solution.2. Add Exchangers: This retrofit option will add a new heat exchanger to the existing heat exchanger network, one at a time. Users can select 1-5 solutions to be produced. The second grid in Figure 10 shows the possible solutions for this retrofit option, with each row representing a different solution or proposed heat exchanger to be added.3. Relocate Exchangers: This retrofit option will relocate one existing heat exchanger to a different location within the process. Users can select 1-5 solutions to be produced. The third grid in Figure 10 shows the possible solutions for this retrofit option, with each row representing a different solution or proposed heat exchanger to be added.The desired retrofit option can be chosen by clicking the hyperlink of the solution type, which will launch the details of the Energy Analysis Environment, as shown in Figure 11.Figure 11.The detailed Energy Analysis Environment.Select the radio button of the desired solution.Performing Multiple Revamp SolutionsMultiple heat exchanger operations can be performed at once (i.e. a heat exchanger addition following previous heat exchanger relocation) by opening the first revamp solution and then selecting the second revamp from the ribbon in the Energy Analysis environment.For example, if the heat exchanger addition solution is opened, the Energy Analysis Environment and form shown in Figure 12 opens. Clicking one of the retrofit options, highlighted in the ribbon, will add another second revamp solution to the previously existing solution.Figure 12. Performing Multiple Revamp SolutionsAfter instituting the second revamp solution, the scenario form will update. Figure 13 shows a scenario in which the process has added a new heat exchanger followed by the addition of a second heat exchanger.Figure 13. Multiple revamp solutions generatedThe top table in Figure 13 now includes four rows that display the specs for the base case design, the initial revamp, the process after two revamps, and the target. This table can be used to track energy savings as more revamps are included.Introducing Heat Exchanger Changes to Process FlowsheetThis section will demonstrate using Aspen HYSYS. The workflow shown is the same in Aspen Plus, and then save for simulation.Since Activated Energy Analysis is included in Aspen HYSYS and Aspen Plus, heat exchanger modifications, additions, or relocations can be added to the process flowsheet immediately after being created using the specifications provided. Figure 14 shows a crude preheat train modeled in Aspen HYSYS.Figure 14. Crude preheat train flowsheet in Aspen HYSYSAfter running Activated Energy Analysis to obtain a revamp solution, such as the heat exchanger addition case shown in Figure 15, use the “Location of Heat Exchanger” column in the design change table to determine where the new heat exchanger model should be placed on the flowsheet.Figure 15. Heat exchanger solution selection and locationThen, using the “Heat Exchanger Details” table found on the same form, locate the new load for the heat exchangers in the process. Highlighted in Figure 16, Design Load represents the new heat exchanger duties after adding a revamp scenario, while the base load was the load that existed for the initial simulation.Figure 16. New heat exchanger duty specificationsAdd a heat exchanger model to the flowsheet using the model palette in either Aspen HYSYS or Aspen Plus. Then, connect the appropriate streams as shown in Figure 15. Figure 17 shows the crude preheat train with the new heat exchanger addition. The shell side of the heat exchanger has been attached to the stream “PA_3_1”, which previously was a feed to E-113, and the tube side of the heat exchanger has been attached to the stream “crude46”, which was previously a feed to E-106.Figure 17. Crude preheat train flowsheet in Aspen HYSYS with heat exchanger additionThe updated duties for the heat exchangers listed in the table in Figure 16 were then input to all the corresponding heat exchanger models. After converging the simulation with the new heat exchanger duties, the flowsheet is then indicative of the revamp solution. The Activated Energy Analysis panel will update with new saving potentials if opened after updating the flowsheet.Analyzing and Fine-Tuning Heat Integration ResultsWhen finished generating revamp solutions for the process, the scenarios can be compared on one form by selecting the Compare Scenarios option from the ribbon.Figure 18. Comparing scenarios within a projectThe Result Comparison form allows for the quick comparison of revamp solutions for a given heat integration project. Viewing Heat Exchanger Network Diagram and Composite CurvesA copy of Aspen Energy Analyzer can be opened directly from within Activated Energy Analysis. This allows the user to see a detailed heat exchanger network (HEN) diagram and the composite curves used in generating the heat integration. The HEN diagram shows heat exchanger pairings, and approach temperatures for the streams.To access this feature, click the Details button from the ribbon, shown in Figure 19.Figure 19. Details option to open HEN diagram and composite curvesAspen Energy Analyzer then opens directly to the heat exchanger network diagram. An example HEN diagram is shown in Figure 20.Figure 20. HEN Diagram from Aspen Energy AnalyzerAt the bottom of the Aspen Energy Analyzer program, a tab labeled “Performance” is selected. To access the composite curves for the heat integration, select the “Targets” tab adjacent to the “Performance” tab.Figure 21. Accessing composite curves and example composite curves chartAdding and Comparing Multiple Heat Integration ProjectsIn version 8.4 and higher of Activated Energy Analysis, if there are multiple sections of a flowsheet requiring separate analysis (for example, hierarchies), multiple heat integration projects can be completed, and then compared. To do this, while in the Energy Analysis environment, click the Add Project option from the ribbon, shown below, and then set up the new project using the same steps used for the initial project.Note: In order to best use the multiple project feature to study the impact of process changes on energy saving opportunities, the energy dashboard should be deactivated and multiple project analysis then carried out directly inside the Energy Analysis environment.After setting up multiple heat integration projects, they can be compared by clicking the “Compare Projects” button, also on the ribbon. This brings the user to a project comparison form where energy and greenhouse gas saving and reduction potentials can be viewed.Figure 22. Adding a heat integration projectFigure 23. Project comparison formObtaining Heat Transfer Coefficients from Activated EDRIn version 8.4 of Aspen HYSYS or Aspen Plus or higher, Activated EDR can be used to size rigorous heat exchangers. The heat exchanger parameters obtained from Activated EDR can be used to improve heat integration using Activated Energy Analysis on the Saving Potential form, in the Heat Exchanger Details table. The value for the overall heat transfer coefficient can either be calculated in Aspen Energy Analyzer by default, be taken from simulation, or specified directly by the user.Figure 24. Choosing heat exchanger parameter optionsSimulation values and default values remain the same unless heat exchangers are sized using Activated EDR. To do this, return to the Simulation environment, and click the blank area of the EDR Exchanger Feasibility panel from the Activation dashboard, as shown in Figure 25.Figure 25. Initializing Activated EDRThe Exchanger Summary Table will appear showing the heat exchangers and their status as either rigorous or available to convert, as shown in Figure 26. Click a “Convert to Rigorous” button next to a heat exchanger to make it a rigorous model.Figure 26. Converting a heat exchanger to RigorousAfter a heat exchanger has been sized, return to the Saving Potential form in the Energy Analysis environment, and choose “Simulation” on the dropdown. The heat transfer coefficient and heat exchanger area should change to the values obtained from rigorous sizing.(For more information on using Activated EDR or in Aspen HYSYS and Aspen Plus, refer to the Activated EDR webpage, available here.Filtering Streams by PinchIn version 8.4 or higher of Activated Energy Analysis, the Heat Exchanger Details table on the Saving Potential form can be reduced to show streams that are either above, below, or across the pinch line. This enables visualization of process stream location relative to the pinch point and aids in development of process changes that maximize energy saving opportunities. To do this, click the “Hot Side Fluid” or “Cold Side Fluid” column in the table, and then choose an option, as shown in Figure 27.Figure 27. Sorting heat exchanger details table by pinch locationAs shown, sorting this table to only show streams below the pinch reduces the table to that in Figure 28.Figure 28. Reduced heat exchanger details table sorted below the pinchConclusionsActivated Energy Analysis is a tool capable of calculating process energy reliance and greenhouse gas emission, as well as reducing these values through more cost effective utility selection and process revamp. Located within Aspen HYSYS and Aspen Plus, Activated Energy Analysis allows users to generate changes and then implement them directly to simulation to view performance. Activated Energy Analysis, when used in conjunction with the other members of the Activated Analysis family, becomes an even more powerful process optimization tool. Activated Analysis can be implemented to new processes or existing ones to dramatically improve performance.As a reminder, it is free for current AspenTech customers to upgrade to the latest version of the aspenONE® Engineering suite. Simply contact AspenTech support via to do so.Additional ResourcesPublic Website:/products/aspen-hysys.aspx/products/aspen-plus.aspx/Products/Activated-Energy-Analysis//products/aspen-hx-net.aspxSupporting Documents:Activated Energy Analysis Demo File in Aspen HYSYS - Crude Preheat TrainActivated Energy Analysis Demo File in Aspen Plus - Ethylene Separation ProcessOnline Training:/products/aspen-online-trainingAspenTech YouTube Channel:/user/aspentechnologyincAbout AspenTechAspenTech is a leading supplier of software that optimizes process manufacturing—for energy, chemicals, engineering and construction, and other industries that manufacture and produce products from a chemical process. With integrated aspenONE® solutions, process manufacturers can implement best practices for optimizing their engineering, manufacturing, and supply chain operations. As a result, AspenTech customers are better able to increase capacity, improve margins, reduce costs, and becomemore energy efficient. To see how the world’s leading process manufacturers rely on AspenTech to achieve their operational excellence goals, visit .Worldwide HeadquartersAspen Technology, Inc.20 Crosby DriveBedford, MA 01730United Statesphone: +1–781–221–6400fax: +1–781–221–6410info@Regional HeadquartersHouston, TX | USAphone: +1–281–584–1000São Paulo | Brazilphone: +55–11–3443–6261Reading | United Kingdomphone: +44–(0)–1189–226400 Singapore | Republic of Singapore phone: +65–6395–3900Manama | Bahrainphone: +973-13606-400For a complete list of offices, please visit aspen®© 2015 Aspen Technology, Inc. AspenTech®, aspenONE®, the aspenONE® logo, the Aspen leaf logo, and OPTIMIZE are trademarks。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 修改完毕,点击右下角Next
Tips:这两个选项是什么呢?在实际设计中有着不错的效果
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 进入Set步骤,一般不用设置,点击Next
Aspen Energy Analyzer V7.2介绍
超级好的 AspenEnergyAnalyzer
教程
2020年4月21日星期二
Aspen Energy Analyzer V7.2介绍
启动成功
Tips:打开后窗口是空白的,不用害怕,这不是打开错误
Aspen Energy Analyzer V7.2介nalyzer打开后窗口是空白的,需要通过 建立案例(Case)才能进行下一步的调整与修改。
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 直接输入: 在“HI Case”窗口中直接输入各流股的信
息;如将下表信息输入
物流 标号
H1 H2 C1 C2
物流名称
产品 反应器出口流股
进料 循环流股
初始温度 Ts/℃
220 270 50 160
终了温度 Tt/℃
60 160 210 210
第三步:点击Add…按钮
Aspen Energy Analyzer V7.2介绍
2.创建案例 创建成功后出现 HI Case 窗口
图中所示区域为工具栏
Aspen Energy Analyzer V7.2介绍
HI Case窗口工具介绍:
从Hysys流程中导入数据 从Aspen流程中导入数据 从Excel中导入数据 打开目标查看窗口 打开复合曲线窗口 打开总复合曲线窗口 打开公用工程复合曲线窗口 打开换热网络网格图窗口
Aspen Energy Analyzer V7.2介绍
4.查看与调整
图中可以看出,系统为我们推荐的点是大约3℃,也是为
何默认最小温差是3.10 ℃(明显与经验值不符合)
Aspen Energy Analyzer V7.2介绍
4.查看与调整
Tips:冷源热源物流至少各设置一股
点击图中”Utility Streams”设置公用工程的物流。 如图中选用了低压蒸汽作为热源,循环水作冷源。
下方报警表示热源设置错误;这是因为C1与C2需要 升温到210 ℃,低压蒸汽无法达到该温度。
Aspen Energy Analyzer V7.2介绍
将热源改为高压蒸汽后,下方报警消除。再输入最小 物流温差,直接输入基本完成。
Tips:在较复杂的换热系统的实际设计中,热源不只有一股, 一般包括多种压力下的蒸汽;冷源还可以是循环盐水等。
Aspen Energy Analyzer V7.2介绍
4.查看与调整
点击“打开目标查看窗口”得到“Targets”窗口,
可在下方选择需要查看的项目
Tips:夹点温度居然不
止一个,稍后讨论
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 进入Step 4 继续Next
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 第五步了,继续Next
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 第六步,你懂的
能量目标
夹点温度
所需换热 设备数
Aspen Energy Analyzer V7.2介绍
4.查看与调整
点击“Range Targets”得最小温差与公用工程耗费之间 的关系曲线。可调节右下角按钮使曲线更加明显
Aspen Energy Analyzer V7.2介绍
4.查看与调整
这样好看多了,若你想恢复原来的模样,可以点击右下角 按钮,两次
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 冷热物流数据的输入,分为从其它软件导入
,以及直接输入两种。
导入数据(以从Aspen Plus导入为例): 首先,你需要一个完善的Aspen Plus的工艺
流程,即运行成功且无错误。
Aspen Energy Analyzer V7.2介绍
热负荷 Q/kW
3520 1980 3200 2500
热容流率 CP/(kW/℃)
22 18 20 50
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入
记得输入名称,每股物流至少输入流股的入口温度 、出口温度、热容流率和热负荷四个参数中的三个
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 恭喜进入卡机环节
注意:Set步骤点击Next后,系统自动打开Aspen Plus对所选Simu进行整个流程的扫描,自动找出 相应的物流、装置等,请耐心等待,不要做任何 操作,避免死机。
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 扫描成功后弹出该窗口,选择所需要的物流后, 点Next
方法一:菜单栏FeaturesHI Case…
Aspen Energy Analyzer V7.2介绍
2.创建案例 方法二:第二栏中直接点击:Create new HI Case
Aspen Energy Analyzer V7.2介绍
2.创建案例 方法三:
第一步:点击Heat Integration Manager 第二步:点击HI Case
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 第七步,nice啊
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 Finish
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 数据输入成功后的HI Case窗口
3.冷热物流数据输入 点击 HI Case窗口工具栏中 ,得到Extraction
Wizard窗口,点击右下角 Next
Aspen Energy Analyzer V7.2介绍
3.冷热物流数据输入 进入Select步骤,Simulation File to Import为 你的Plus所在目录,点浏览找到所需的Simu
相关文档
最新文档