(完整版)整数指数幂练习(含答案)人教版

合集下载

人教版八年级数学上册 整数的指数幂同步练习题

人教版八年级数学上册 整数的指数幂同步练习题

整数的指数幂同步练习题1.同底数幂的运算性质 n m n m a a a +=⋅2. 同底数幂的运算性质推广:p n m p n m p n m p n m a a a a a a a a +++++=⋅=⋅⋅ ;3.n m m m m m m n m a a a a a a ⋅++==⋅= )(4.多重乘方:[]pn m a )(=mnp a5.积的乘方:n n n n n n n c b a abc b a ab ab ab ab =⋅=⋅=)(;)(1.计算:122)()(+-⋅-⋅p p p x x x (P 为正整数)343)()(a a a -⋅-⋅-)2()2(322-⋅-⨯n (n 为正整数)2.计算:①32)(a -②[]43)(m - ③32)(m a - ④23)(m a --3.计算:①[]24)2(b a +②545)2(z y x - ③31212)()(+-⋅n n m m④32(x y)(x y)()y x -⋅-⋅- ⑤232132)()()()(x x x x x n m n m ⋅⋅-⋅-⑥32324443342)()()2()()()()(3a a a a a a a ⋅-⋅-+⋅--⋅⑦344321044)(52)(2)2(x x x x x ⋅+-⋅+-4.计算: ①88)165()513(⨯ ②200120014)25.0(⨯-5、①63232251)31(27y b a by by a ÷-⋅②)3()]()([2222b a b a b a ab a ab -÷---③222212)103()102()106.3(⨯÷⨯-÷⨯-6、已知5a a a n m =⋅,9212b b b n m =⋅+-,求m ,n 的值。

7、已知m 、n 均为正整数,且3m +n 是10的倍数,求证:3m+4+n 也是10的倍数。

(完整版)指数与指数幂的运算习题(含答案),推荐文档

(完整版)指数与指数幂的运算习题(含答案),推荐文档

2 2 2 ⎝ ⎝ ⎭⎭指数与指数幂的运算 习题(含答案)一、单选题1.已知 x ,y 为正实数,则 A . 2lnx+lny =2lnx +2lny B . 2ln (x+y )=2lnx •2lny C . 2lnx•lny =2lnx +2lnyD . 2ln (xy )=2lnx •2lny12.化简[( ‒ 2)6]2 ‒ ( ‒ 1)0的结果为A . −9B . 7C . −10D . 93. 若 > 0,且 , 为整数,则下列各式中正确的是A . a m ÷ a n = anB . a m ⋅ a n = a mnC . () =+D . 1 ÷ a n = a 0 ‒ n4. 若 a >1,b >0,且 a b +a -b =2,则 a b -a -b 的值为( )A .B . 2 或-2C . -2D . 25.3‒ 27的值为(). A.9B. ‒ 9C.‒ 3D.3a 3x + a ‒ 3x26.若 = A . 2 ‒ 1 C . 2 + 1‒ 1,则 a x + a ‒ x 等于B . 2 ‒ 2 D . + 1log 3x , x > 0 ⎛ ⎛ 1 ⎫⎫7.已知函数 f (x )= { 2x , x ≤ 0,则 f f 9 ⎪⎪ 等于( )A . 4B . - 1 41C . -4D . 4 18.设 a = log 3,b = 20.3, c = log 2 ,则( )3A . a > b > cB . a > c > bC . c > a > b (1)9.设 y 1=40.9,y 2=80.48,y 3= 2 -1.5,则( ) A . y 3>y 1>y 2 B . y 2>y 1>y 3 C . y 1>y 2>y 3 D . y 1>y 3>y 2 10.有下列各式:D . b > a > c2 2n a n 3 x4+ y 36 (-5)2m ‒ 2n4 163 x3 x 227 - - ① = a ;②若 a ∈R ,则(a 2-a +1)0=1;4③ = x 3+ y ;④ 35 = .其中正确的个数是( ) A . 0 B . 1 C . 2D .311.化简(a 2-2+a -2)÷(a 2-a -2)的结果为( ) A . 1B . -1C .a 2 -1a 2 +1a 2 +1D .a 2 -112. 下列各式计算正确的是( )A . (-1)0=1B . 21a 2·a 2=a2 1 1 C . 43=8D . a 3÷ a - 3= a 313. 已知a m =4,a n =3,则 的值为( )2A.33B. 6 C . 2D . 2二、填空题化简 ⋅(x > 0) 的结果是.14.x ⋅ 15. 设函数 f (x ) = a x + (k -1)a -x + k 2 ( a > 0, a ≠ 1 )是定义域为 R 的奇函数.(1) 求 k 值;(2) 若 f (1) > 0 ,求使不等式 f (x 2 + x ) + f (t - 2x ) > 0 恒成立的t 的取值范围;(3)若 f (1) = 3 ,设 g (x ) = a 2x + a -2x - 2mf (x ) , g (x ) 在[1, +∞) 上的最小值为-1,2求m 的值.12⎛ 1 ⎫ - 16.计算: 83 ÷ ⎪ = .⎝ 4 ⎭ ⎛ 8 ⎫- 13 - ⎛ - 3 ⎫0+ =17. log 3 +⎝ 125 ⎪⎭ .⎝ 5 ⎪⎭2 518. (2a -3b 3 ) ⋅ (-3a -1b ) ÷ (4a -4b 3)(a > 0, b > 0) =.19.若2x + 2-x = 5 ,则8x + 8-x =.6 x23 a - 33 b- ⎛ 8 9 2 ( ‒ 8) (3) ;20. 0.064 13- - 1 ⎫0 + ⎡(-2)3 ⎤- 34 +16 ⎪ ⎣ ⎦⎝ ⎭- 34 + 0.0112 =⎛ 1 ⎫0 21. 计算: lg4 + lg25 + - ⎪ ⎝ ⎭=.22. 直线y = 2a 与函数 y = a x -1 (a > 0且a ≠ 1)的图象有且仅有两个公共点,则实数 a 的取值范围是.1 + log 12 - (0.7)0+ 0.25-1 =。

人教版初中数学整数指数幂(2)目标提升训练(含答案)

人教版初中数学整数指数幂(2)目标提升训练(含答案)

16.2.3 整数指数幂第2课时一跃教材知能提炼【题组练习1】1. 0.000 976用科学记数法表示为( )A .0.976×10-3B .9.76×10-3C .9.76×10-4D .97.6×10-52.银原子的直径为0.0003微米,用科学记数表示为( )A . 4103⨯微米B . 4103-⨯微米C . 3103-⨯微米D . 3103.0-⨯微米3. 用四舍五入法,对0.007 099 1取近似值,若要求保留三个有效数字,•并用科学记数法表示,则该数的近似值为( )A .7.10×10-2B .7.1×10-2C .7.10×10-3D .7.09×10-3 4.用科学记数法表示下列各数:(1)0.003052=_______;(2)0.000 024=_____________; (3)-0.000 63=__________.5. 自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为__________.【知识点1小结】绝对值小于1的数科学记数法的规律为:从左边第一个不为0的数字算起,前面有几个0(含小数点前面的零)指数n 就是零的个数,注意不能忘记指数n 前面的负号.【题组练习2】6 用小数表示-3×10-2,结果为( ) A .-0.03 B .-0.003 C .0.03 D .0.0037 把数1.54×10-6化成小数是_________.8 用小数表示下列各数:(1)2×10-5=_______;(2)1.031×10-4=_______;(3)-3.14×10-7=________. 6.A 7. 0.0000154 8. (1)0.000 02 (2)0.000 103 1 (3)-0.000 000 314【知识点2小结】对于±10na -⨯(110a ≤<,n 为正整数)科学记数法,写成小数的规律为:将小数点向左移动n 位。

八年级上册数学人教版课时练《 整数指数幂》 试题试卷 含答案解析

八年级上册数学人教版课时练《 整数指数幂》 试题试卷 含答案解析

人教版八年级上册数学《15.2.3整数指数幂》课时练一、选择题1.据《经济日报》2019年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(91nm 10m -=),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法表示为()A .92810-´mB .82.810-´mC .92810´m D .82.810´m2.近似数0.33万用科学记数法表示为()A .3.3×10-2B .3.300×103C .3.3×103D .0.33×1043.下列各数中,属于科学记数法表示的有()A .520.710´B .50.710´C .52006.710-´D .32.0710-´4.1nm(纳米)=0.000000001m ,则2.5纳米用科学记数法表示为()A .2.5×10-8mB .2.5×10-9mC .2.5×10-10mD .0.25×10-9m5.人体中成熟的红细胞的平均直径为0.0000077m ,用科学记数法表示为()A .7.7×10-5mB .77×10-6mC .77×10-5mD .7.7×10-6m6.下列运算正确的是()A .041-=B .11(3)3--=C .2(2)4m n m n ---=D .111()a b a b ---+=+7.下列各式中,计算正确的是()A .133-=-B .339-=-C .2139-=D .030=8.已知0,0,ab a b ¹+¹,则111()a b ---+应等于()A .a b +B .1ab C .ab a b +D .a b ab+二、填空题9.用小数表示下列各数:(1)10-4=(2)2.1×10-5=10.用科学记数法表示0.000695为____________.11.用小数表示下列各数:①10-5=,②-3.6×10-5=.12.计算下列各式:12314-+×=;2321()2x y --=.三、简答题13.化简下列各式,使结果只含有正整数指数幂(1)2331(2)(3)m n m n ----×(2)2331(2)(3)m n m n ----¸14.计算下列各式:(1)222132323(2)(3)63x y x y x y x y ---×-×(2)223345(3)6a b a b a b -----×-参考答案1.B2.C 3.D 4.B 5.D6.C 7.C 8.C9.(1)0.0004,(2)0.000021.10.6.95×10−411.①0.00001,②-0.000036.12.32;464x y 13.(1)233123311446(2)(3)(23)()()6m n m n m m n n m nmn ---------×=-´××××=-=-(2)52331233152222(2)(3)(23)()()33m m n m n m m n n m n n --------¸=-¸××׸=-=-14.(1)原式37222131231231372(2)(3)6(3)233x y x y x y x y x y x y ------=×-××=-××=-(2)原式。

人教版初二数学上册整数指数幂练习题精选36

人教版初二数学上册整数指数幂练习题精选36

a-3÷a5(a-1b3)3a-1b2•(a2b-3)-2902-2x-3x3y-1(x-3y)3(3a2b2c-1)-1÷(a-1b2)3(4×10-4)×(7.5×105) (7×10-3)2÷(10-5)4二、用科学记数法表示下列各数。

0.000009 0.0035 0.00564 0.003140.00005 0.0049 0.0888 0.000917a-5÷a2(a-2b3)3a-3b2•(a3b-2)-3405-1b-3x2y-1(x-3y2)2(3a3bc-1)-2÷(a-2b2)2(8×10-5)×(6.4×106) (3×10-5)3÷(10-3)2二、用科学记数法表示下列各数。

0.0002 0.022 0.000768 0.004780.0009 0.0043 0.00831 0.000964a0×a5(a-3b3)3a-3b3•(a2b-1)-12702-1a0x3y-2(x-1y)3(2a3bc-3)-2÷(a-2b3)3(1×10-9)×(7.6×107) (6×10-6)3÷(10-6)3二、用科学记数法表示下列各数。

0.0007 0.000063 0.00271 0.007590.0009 0.0065 0.00058 0.0135a-3×a5(a-1b2)2a-3b2•(a3b-3)-1204-2y-3x3y-1(x-1y3)3(3a3b3c-3)-2÷(a-3b)3(8×10-4)×(6.9×104) (3×10-4)3÷(10-5)3二、用科学记数法表示下列各数。

0.000008 0.000048 0.0574 0.008530.00005 0.0072 0.000874 0.000535a-1×a2(a-2b2)2a-1b2•(a2b-1)01302-1x0x2y-3(x-3y3)2(2abc-3)-3÷(a-1b)3(3×10-7)×(6.9×107) (6×10-2)2÷(10-6)3二、用科学记数法表示下列各数。

人教版八年级数学上册15.2.3整数指数幂精选练习2.docx

人教版八年级数学上册15.2.3整数指数幂精选练习2.docx

初中数学试卷 桑水出品15.2.3 整数指数幂一、选择题1.下列计算中,正确的是( )A .0a =1B .23-=-9C .5.6×210-=560D .21()5-=25 2.下列式子中与()2a -计算结果相同的是( )()()12224244. . . . A a B a a C a a D a a --÷-g g --3. 111()x y ---+=( )A .x y =B .1x y +C .xy x y +D .x y xy+ 4.已知m a ,0≠是正整数,下列各式中,错误的是( ) A m m aa 1=- B m m a a )1(=- C m m a a -=- D 1)(--=m m a a 5.下列计算中,正确的是 ( )A .22112()2m n m m n n -----+=++B .212()m n m n --=C .339(2)8x x --=D .11(4)4x x --=6.在:①()110=-,②()111-=-,③22313aa =-, ④()()235x x x -=-÷-中,其中正确的式子有( )A 、1个B 、2个C 、3个D 、 4个7.将11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的结果是 ( ) A .0(2)-<11()6-<2(3)- B .11()6-<0(2)-<2(3)- C .2(3)-<0(2)-<11()6- D .0(2)-<2(3)-<11()6- 8.n 正整数,且n n ---=-2)2(则n 是( )A 、偶数B 、奇数C 、正偶数D 、负奇数二、填空题9.填空:=-25 ,=⎪⎭⎫ ⎝⎛--321 . 10.计算:3-a = ,21-⎪⎭⎫ ⎝⎛-a = . 11.()=-31322b a b a ,()=--2223x b a .12.计算(-3-2)2的结果是_________.13.计算2323()a b a b --÷= .14.将式子32213--yx b a 化为不含负整数指数的形式是 . 15.化简:))()((2211---+-+y x y x y x =______________.16.若63=-n x ,则=n x 6.17.已知:57,37==n m ,则=-n m 27________________.18.已知:9432278321=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛--x x , 则x=____________. 三、解答题19.(2013曲靖)计算:12-+|﹣|+()0.20.计算(1)()()22223y x yx -- (2)()()32121223---y x yz x(3)()()232212353z xy z y x --- (4)()()232232----n m n m21.已知2=x a ,求()()12233---++xx x x a a a a 的值.22.已知0)1(22=-++-b a b ,求32--b a 的值.23.拓展延伸【例题】阅读第(1)题的解题过程,再做第(2)题:(1)已知13x x -+=,求33x x -+的值.解:因为1222()29x x x x --+=++=所以227x x -+=所以332211()()()73318x x x x x x x x ----+=++-+=⨯-=;(2)已知13x x -+=,求55x x -+的值.一、选择题1.D2.D3.C4.C5.D6. B7. A8.B二、填空题 9.251、8- 10.31a 、2a 11.a b 68、464xa b 12.811 13.64b a 14.2323ax y b 15.441y x - 16.361 17.59 18.58 三、解答题19.2 20.(1)102x y (2)2472z y x (3)848925y x z (4)244mn 21.()()()()[]()()[]()()34652222122331223312233=++=++=++---------x x x x x x x x a a a a a a a a 22.⎩⎨⎧=-+=-0102b a b 解得⎩⎨⎧=-=21b a 则 ()81213232=⨯-=----b a 23.()()()12337181223355=-⨯=+-++=+----x x x x x x x x。

人教版数学八年级上册(新)15.2《整数指数幂》(第3课时)同步测试含答案

人教版数学八年级上册(新)15.2《整数指数幂》(第3课时)同步测试含答案

整数指数幂例1:计算下列各式,并把结果化为只含有正整数指数幂的形式:①()321b a -; ② ()32222---⋅b a b a例2:用科学记数法表示下列各数:0.000012;0.00001例3:计算:4122b b a b a b a ÷--⋅⎪⎭⎫ ⎝⎛例4:先化简,再求值:()242442+⋅-+-x x x x ,其中5=x .A 档(巩固专练)1.计算:(1)810÷810= ;(2)10-2= ;(3)101031-⨯⎪⎭⎫ ⎝⎛= 。

(4)(-0.1)0= ;(5)020031⎪⎭⎫ ⎝⎛= ; (6)2-2= ; (7)221-⎪⎭⎫ ⎝⎛= 。

2.计算:(1)()()202010101010-⨯-+⨯;(2)()()44062242222410--⎡⎤-⨯-⨯÷-÷⨯÷⎣⎦(3)16÷(—2)3—(31)-1+(3-1)03.用小数表示下列各数:(1)10-4= ; (2)2.1×10-5= ;(3)-10-3×(-2)= ; (4)(8×105)÷(-2×104)3= 。

4.计算(2mn 2)-3(mn -2)-5并且把结果化为只含有正整数指数幂的形式。

5.计算下列各式,并且把结果化为只含有正整数指数幂的形式:(1)(a -3)2(ab 2)-3; (2)(2mn 2)-2(m -2n -1)-3.6.一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.7.练习①用科学记数法表示:(1)0.000 03= ;(2)-0.000 0064= ;(3)0.000 0314= ;(4)2013 000= .②用科学记数法填空:(1)1秒是1微秒的1000000倍,则1微秒=_________秒;(2)1毫克=_________千克;(3)1微米=_________米; (4)1纳米=_________微米;(5)1平方厘米=_________平方米; (6)1毫升=_________立方米.B 档(提升精练)填空题1.用小数表示2.61×10-5=__________, =-0)14.3(π .2.(3x -2)0=1成立的条件是_________.3.用科学记数法表示0.000695并保留两个有效数字为_______.4.计算(-3-2)3的结果是_________.5.若x 2+x -2=5,则x 4+x -4的值为_________6.若-1,则x+x -1=__________.7.计算(-2a -5)2的结果是_________.8.若,152=-k 则k 的值是 .9.用正整数指数幂表示215a bc --= .10.若0235=--y x ,则y x 351010÷ =选择题11.化简11)(--+y x 为( )A 、y x +1B 、y x 1+ C.、1+xy y D 、1+xy x 12.下列计算正确的是( )A 、1221-=÷-B 、xx x 214243=÷--C 、6326)2(x x =---D 、222743xx x =+-- 13.已知21=+-a a ,则22-+a a 等于( ) A 、2 B 、4 C 、 6 D 、814.化简111))((---++y x y x 的结果是( )A 、xyB 、xy 1C 、221y xD 、221yx + 15.国家质检总局出台了国内销售的纤维制品甲醛含量标准, 从2003年1月1 日起正式实施.该标准规定:针织内衣. 床上用品等直接接触皮肤的制品,甲醛含量应在百万分之七十五以下. 百万分之七十五用科学记数法表示应写成………( )A 、75×10-7;B 、75×10-6;C 、7.5×10-6;D 、7.5×10-516.在:①()110=-,②()111-=-,③22313a a =-, ④()()235x x x -=-÷-中,其中正确的式子有( )A 、1个B 、2个C 、3个D 、 4个17.002=-x 成立的条件是( )A 、x 为大于2的整数B 、x 为小于2的整数C 、x 为不等于2的整数D 、x 这不大于2的整数18.n 为正整数,且n n ---=-2)2(则n 是( )A 、偶数B 、奇数C 、正偶数D 、负奇数19.1642m n ÷÷等于( )A 、12--n mB 、122--n mC 、1232--n mD 、1242--n m20.若23.0-=a ,23--=b ,21()3c -=-,0)31(-=d ,则( ) A 、a <b <c <d B 、b <a <d <c C 、a <d <c <b D 、c <a <d <bC 档(跨越导练)计算,并使结果只含正整数指数幂: 1. 1203122006-⎪⎭⎫ ⎝⎛+- 2. 2313(2)a b a b -3. 2313()()a bc ---4. )()2(2422222b a b a b a ----÷-⋅5. a a a a a -+÷++--)()2(1226. 322224)2(3----⋅b a ab b a7. 2322212)()2(-----÷-m n m mn8. 20072007024)25.0()51(31)51()5131(⨯-+-+-÷⨯--9.已知a 、b 互为相反数,c 、d 互为倒数,12=-x ,2=y ,求22007)(y cd x b a --++ 的值.10.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求)21()())((21m m cd b a b a +-÷+-+-的值.11.若2010=a , 1510-=b 求b a 239÷的值.12.(1)据统计,全球每分钟约有8500000 t 污水排入江河湖海,这个排污量用科学记数法表示应为多少?(2)自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”.已知52个纳米长为0.000000052 m ,用科学记数法表示此数为多少米?13.阅读下列材料:关于x 的方程:121212111,;222,;333,;x c x c x x c cx c x c x x c cx c x c x x c c +=+==+=+==+=+==的解是的解是的解是 请观察上述方程与解的特征,比较关于x 的方程(0)m m x c m x c+=+≠与它们的关系,猜想它的解是什么?并加以验证整数指数幂参考答案例1:①()3663321a b b a b a ==--; ②()8888662232222a b b a b a b a b a b a ==⋅=⋅------ 例2:551000001.0,102.1000012.0--=⨯=例3:()()()()()()b a b ab b a b ab a a b a b b a a b a b a b a b a b a bb a b a b a b b a b a b a -=-+-=----=--=⋅--⋅=÷--⋅⎪⎭⎫ ⎝⎛222222222222244444444414412 例4:()242442+⋅-+-x x x x ()()()()()2212221222222-=+-=+⋅--=x x x x x x 当5=x 时,()21225252122122=-=-⨯=-xA 档(巩固专练)略B 档(提升精练)填空题1.用小数表示2.61×10-5=0.0000261, =-0)14.3(π 1.2.(3x -2)0=1成立的条件是32≠x . 3.用科学记数法表示0.000695并保留两个有效数字为4100.7⨯.4.计算(-3-2)3的结果是7291-. 5.若x 2+x -2=5,则x 4+x -4的值为 23 6.若1,则x+x -17.计算(-2a -5)2的结果是4a -10_.8.若,152=-k 则k 的值是 2 .9.用正整数指数幂表示215a bc --= ca b 25 . 10.若0235=--y x ,则y x 351010÷ = 100选择题11.C 12.D 13.A 14.B 15.D 16.B 17.A 18.B 19.D20.BC 档(跨越导练) 1-8 略9.4-10.1或9111.8112.(1)6105.8⨯(2)8102.5⨯ 13.略。

人教版八年级数学上册15.2.3整数指数幂精选练习1

人教版八年级数学上册15.2.3整数指数幂精选练习1

初中数学试卷15.2.3 整数指数幂【知识回顾】1、27a a ÷= ;(-4×106)÷(2×103)=__________。

2、用科学记数法表示:-0.00002006= .3、计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________. 4、纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10-9米,已知某种植物孢子的直径为45000纳米,用科学记数法表示该孢子的直径为______米。

5、下列计算正确的是( )A 、m m m x x x 2=+B 、22=-n n x xC 、633x x x =⋅D 、326x x x =÷6、下列算式结果是-3的是( )A 、1)3(--B 、0)3(- C 、)3(-- D 、|3|--7、下列计算正确的是( ); A 、532532a a a =+ B 、248a a a = C 、27313=-)( D 、9336)2---=-a a ( 8、计算4222x x x x x x ⎛⎫-÷⎪-+-⎝⎭的结果是( ) A.12x + B.-12x + C.-1 D.1 9、苏州红十字会统计,2004年苏州是无偿鲜血者总量为12.4万人次,已连续6年保持全省第一。

12.4万这个数用科学记数法来表示是( )A .1.24×104B .1.24×105C .1.24×106D .12.4×10410、计算:(13-)0+(31)-1-2)5(--|-1| 11、计算,并把负指数化为正:21232)()2------n m mn (【拓展探究】12、已知a ,b 互为相反数,c ,d 互为倒数,e 是非零实数.求()02212e cd b a -++的值.13、阅读下列材料:∵11111323⎛⎫=- ⎪⨯⎝⎭, 111135235⎛⎫=- ⎪⨯⎝⎭, 111157257⎛⎫=- ⎪⨯⎝⎭, ……1111171921719⎛⎫=- ⎪⨯⎝⎭, ∴11111335571719++++⨯⨯⨯⨯L L =11111111111(1)()()()2323525721719-+-+-++-L =11111111(1)2335571719-+-+-++-L =119(1)21919-=. 解答下列问题:(1)在和式111133557+++⨯⨯⨯L L 中,第6项为______,第n 项是__________.(2)上述求和的想法是通过逆用________法则,将和式中的各分数转化为两个数之差,使得除首末两项外的中间各项可以_______,从而达到求和的目的.【答案】1、 a 5;-2×103;2、 -2.006×10-5;3、 -2;4、 -4.5×10-5;5、 C ;6、 D ;7、 C ;8、 B ;9、 B ;10、-2; 11、88mn ; 12、 ∵a ,b 是互为相反数,c ,d 是互为倒数,e 是非零实数.∴a+b=0,cd=1,e 0=1()02212e cd b a -++ =0+21-2 =23- 13、(1)11,1113(21)(21)n n ⨯-+; (2)分式减法,抵消。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整数指数幂练习题)一、课前预习 (5分钟训练-2309 -= -5 2D.3=-8 C.-2-(-3)=1.下列计算正确的是( )A.(-2)=-1 B.----n50312m=____________. a·2.填空:(1)a·aa=__________;(2)a··a=________;(4)a=________;(3)a---nm02134=_________. ÷a÷=_____________;(3)a=;(4)a÷3.填空:(1)a÷aa=__________;(2)aa_______________. 米,用科学记数法表示为4.某种细菌的长约为0.000 001 8)分钟训练二、课中强化(101?------1235351022C.(( )A.(a)=a=a) ) +(-π+3.14)-=2 D.a+a B.(a=a1.下列计算正确的是3a---(3)(=___________(a≠0);(2)(a=________(ab≠0).;=__________(ab≠0)))b)2.(1)(a b---121-11222=_______________(ab≠0).b);3.填空:(1)5(2)(3a=_______________xab------1222122253y).(x (2)()÷3÷. 5.计算:(1)ab··(ab(xy)); 4.计算:(1)( ()·); (2)(-3) yba当水滴不断地滴在一块石头.经测算,“6.我们常用水滴石穿”来说明一个人只要持之以恒地做某件事,就一定能成功结果保留三个厘米的小洞,那么平均每个月小洞的深度增加多少米上时,经过10年,石头上可形成一个深为1?() 有效数字,并用科学记数法表示)(30分钟训练三、课后巩固)0.000 251.据考证,单个雪花的质量在克左右,这个数用科学记数法表示为(----4 543 -2.5×10D.10 B.2.5×10 C.2.5×A.2.5×101-555 41096 2422 =-b 2.下面的计算不正确的是( )A.a+b÷a=a B.bb·c==2b-C.(bc)D.b÷(-bc)2b24x?1-q02ppq_______________.满足条件)有意义3.3,=4,()则=11,则3x(=_______________.4.要使2?x31-------22323p3233=_______________. )bx=___________(3)(a=;____________(4)(a=_______________;(2)x)b5.(1)(·x)÷a y2x2=____________________. ))·y互为相反数,则(5(5x6.若、232?3???----3022 22 ) 10)×.8.(7.计算:(计算:(9×)10(5×+(()·))-222--------22232233112+m.的值求-已知3x( 3x计算.9.:(1)5xy·y; (2)6xyz÷-yz). 10.mm=3,m-1 -参考答案一、课前预习 (5分钟训练)1.下列计算正确的是( )9 D.3-= - C.-2-(3)=-5 A.(-2) =-1 B.-2=-8-203错;1,故A解析:A:任何一个非零数的零次幂都等于错;2+3=1,故C2-(-3)=-C:-11?-2,故=D错. D:3293答案:B=____________.---50312mna·a2.填空:(1)a·a=__________;(2)a··a=________;(4)a=________;(3)a--m+n336(3)a(4)a答案:(1)a (2)a=_________.---nm13402÷aa÷=_____________;(3)a3.填空:(1)a÷a=;(4)a=__________;(2)aa÷1-n2m2 (4)a 答案:(1)(3)a(2)a 3a4.某种细菌的长约为0.000 001 8米,用科学记数法表示为_______________.n(1≤a<10)的形式.用科学记数法可以表示比1大的数,引入负整数指10a×解析:科学记数法就是将一个数写成数幂后,也可表示比1小的数.1-6.0.000 001=1.8×10=1.8×0.000 001 8=1.8×1000000-6答案:1.8×10) 分钟训练二、课中强化(10)( 1.下列计算正确的是---552323 B.(a=a) A.(a )=a1?---0211 =a D.a+a -)+(π+3.14)C.( =-2 3--66111+1=-3)3)2. +1=(应为a-,B.应为a,D.不能加减,C.原式=(-A.解析:答案:Ca----12221=________(ab≠0).=___________(a≠0) ;(2)(a);(3)(2.(1)(a)b)=__________(ab≠0)b 解析:幂的乘方、积的乘方以及商的乘方,当指数扩大到全体整数范围时,在正整数范围内成立的一切性质在保证分母不为零的前提下都成立.4a1b答案:(1) (2) (3) 22aba---121 (2)(3a:(1)53.填空=_______________;b)=_______________(ab≠0).-2 -111--?2n. =5根据a=,得解析:(1)n225a5(2)根据积的乘方,等于积中每个因式乘方的积可得a11------??a111111=b)=3. )(ab(3a bb331a(2) 答案:(1)25b3ab-22;计算:(1)())·(4.ba-35. ÷3(2)(-3)1ab1?22()??()-n. 解析:(1)根据a=.b n aba2)(a aaa422))?(()?(.原式=bbb----853535. (2)(-÷33==-3-÷3)33=-3-x----211222y). ÷:(1)a计算)b··(ab);(2)((xy)(x5.y b-----1122122; )=(a)=a·a)(b解:(1)ab=b··(abb a22?2?2?1x x?y?x?xxy?xy yyy6.我-----?122221. =y·xy(xy)÷(xy)=·x(2)()·225们常用“水滴石穿”来说明一个人只要持之以恒地做某件事,就一定能成功.经测算,当水滴不断地滴在一块石头上时,经过10年,石头上可形成一个深为1厘米的小洞,那么平均每个月小洞的深度增加多少米?(结果保留三个有效数字,并用科学记数法表示)解析:用10年形成的小洞的深度÷时间即可得到结果,注意单位.米,个月,1厘米=10=120解:因为10年所以平均每个月小洞的深度增加------522232≈0.008 33-2×10). =8.33×10(×1010÷120=(1÷120)×10米=8.33×10)(30分钟训练三、课后巩固)1.据考证,单个雪花的质量在0.000 25克左右,这个数用科学记数法表示为(----4 4 3 510 10A.2.5× B.2.5×102.5×D.-10 C.2.5×n(1≤a<10)的形式. 10a×解析:科学记数法就是将一个较大或较小的数写成答案:B2.下面的计算不正确的是( )-3 -1-49610·b= B.b A.a ÷a=a 2b55 5 2422 ÷(-bc)=-C.(-bc)bD.bc=2b+b此题还要注意别与合并同类项混了.解析:运用幂的运算性质时一要注意符号问题,二要注意它们之间的区别,222. =bc原式=(-bc)中A、B、D都正确,而C:C 答案:1-qp2pq=_______________. )=11,则3.3=4,(3311-q2q2pp2=11.=16,3)解析:3=4=(3=)=(q33-q211=176. 3=3=16×p·原式176答案:24x?0_______________.满足条件()有意义,则x4.要使2?x0. 分子为解析:要使式子有意义,分母不为0,22. --4=0.∴x=∴x-2≠0,x2 -答案:x=1----3p23=_______________; xx5.(1)()=_______________;(2)x ÷·a---232323=_______________. bb))(3)(a=;____________(4)(a1--------22313ppp5. x3)=x÷x(=x -.(2)x)=(a)=a-·解析:(1)(a-----6432323962. )(3)(a.(4)(abb)b=ab=a---6642p9b(4)a答案:(1)a (2)xb (3)a y22x=____________________.·(5))6.若x、y互为相反数,则(50222y222x=1. ·(5)y=5)=5(x+y)=5x·5,所以解析:由x、y互为相反数得x+y=0(5x+2y=51 :答案232?3???--0222)·7.计算):(-(()+(. )22244?1?1?. 解析:原式=33--32).1010)×(5×8.计算:(9×-----23554. 1010)=45×=4.5×=4.5×=(9×解:原式5)×(1010××1010-----).-13322223(2)6xy -z÷(3xzy :(1)5x9.计算y·3xy;15---022321; =yyx3)(x原式(1)解:=(5×)(y)=15x x-4 -.-----------1)4((3)111332((3)22)yz2xyz)(z÷)=-yz=-2xx]-6÷=(2)原式[(3)(x÷)(y÷--212的值+m.mm-m10.已知=3,求--2222=11. ,所以m+m2+m两边平方得解:m-=9-5 -。

相关文档
最新文档