圆锥曲线方法归纳

合集下载

收藏:圆锥曲线综合五个类型

收藏:圆锥曲线综合五个类型

(一)求圆锥曲线方程求圆锥曲线方程分为五个类型,求解策略一般有以下几种: ①几何分析+方程思想; ②设而不求+韦达定理 ③定义+数形结合; ④参数法+方程思想 类型1——待定系数法待定系数法本质就是通过对几何特征进行分析,利用图形,结合圆锥曲线的定义与几何性质,分析图中已知量与未知量之间的关系,列出含有待定系数的方程,解出待定的系数即可。

例1.2014年全国Ⅱ卷(理科20)设 F 1 、 F 2 分别是椭圆 C :x 2a 2+y 2b 2=1 a >b >0 的左、右焦点,M 是 C 上一点且 MF 2 与 x 轴垂直,直线 MF 1 与 C 的另一个交点为 N .Ⅰ 若直线 MN 的斜率为 34,求 C 的离心率;Ⅱ 若直线 MN 在 y 轴上的截距为 2,且 ∣MN ∣=5∣F 1N ∣,求 a ,b .【解法分析】第Ⅱ小题利用试题提供的几何位置关系和数量关系,结合椭圆的几何性质和方程思想,通过待定系数法进行求解。

着重考查椭圆的几何性质,将几何特征转化为坐标表示,突显数形结合的思想。

.21∴.2102-32.,4321∴4322222211的离心率为解得,联立整理得:且由题知,C e e e c b a c a b F F MF ==++==•=72,7.72,7.,,1:4:)23-(,:.23-,,.4,.42222211111122====+===+=+====•=b a b a c b a ace NF MF c e a NF ec a MF c c N M m MF m N F ab MF 所以,联立解得,且由焦半径公式可得两点横坐标分别为可得由两直角三角形相似,由题可知设,即知,由三角形中位线知识可类型2——相关点法求轨迹方程动点P(x ,y)依赖与另一个动点Q(x 0,y 0)变化而变化,并且动点Q(x 0,y 0)又在另一个已知曲线上,则可先用x ,y 表示x 0,y 0,再将x 0,y 0代入已知曲线,可得到所求动点的轨迹方程。

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳圆锥曲线是数学中的重要主题之一、它涉及到许多重要的概念和技巧,可以用于解决各种问题。

本文将归纳总结圆锥曲线解题的一些常用技巧,帮助读者更好地理解和应用这一主题。

1.判别式法:对于给定的二次方程,可以根据判别式的符号来判断它表示的曲线类型。

当判别式大于零时,曲线是一个椭圆;当判别式小于零时,曲线是一个双曲线;当判别式等于零时,曲线是一个抛物线。

2.参数方程法:对于给定的圆锥曲线,可以使用参数方程来表示。

通过选取合适的参数,可以将曲线表示为一系列点的集合。

这种方法可以简化问题,使得求解过程更加直观和方便。

3.极坐标方程法:对于给定的圆锥曲线,可以使用极坐标方程来表示。

通过将直角坐标系转换为极坐标系,可以更好地描述和分析曲线的特性。

这种方法在求解对称性等问题时非常有用。

4.曲线拟合法:对于给定的一组数据点,可以使用曲线拟合的方法来找到一个最适合的圆锥曲线。

通过将数据点与曲线进行比较,可以得出曲线的参数和特性。

这种方法在实际应用中非常常见,例如地图估算、经济预测等领域。

5.曲线平移法:对于给定的圆锥曲线,可以通过平移坐标系来使其简化。

通过选取合适的平移距离,可以将曲线的对称轴对准到坐标原点,从而更方便地进行分析和求解。

6.曲线旋转法:对于给定的圆锥曲线,可以通过旋转坐标系来改变其方向和形状。

通过选取合适的旋转角度,可以使曲线变得更简单和易于处理。

这种方法在求解对称性、求交点等问题时非常有用。

7.曲线对称性法:对于给定的圆锥曲线,可以通过研究其对称性来简化问题。

根据曲线的对称轴、对称中心等特性,可以快速得到曲线的一些重要参数和结论。

8.曲线的几何性质法:对于给定的圆锥曲线,可以通过研究其几何性质来解决问题。

例如,对于椭圆可以利用焦点、半长轴、半短轴等参数来求解问题;对于双曲线可以利用渐近线、渐近点等参数来求解问题。

9.曲线的微积分法:对于给定的圆锥曲线,可以通过微积分的方法来求解其一些重要特性。

圆锥曲线解题技巧归纳(9篇)

圆锥曲线解题技巧归纳(9篇)

圆锥曲线解题技巧归纳(9篇)化为一元二次方程,利用判别式求最值篇一如果能把圆锥曲线的最值问题转化为含有一个未知量的一元二次方程,利用,解得要求未知量的范围,然后确定其最值。

例3:直线,椭圆C:。

求以椭圆C的焦点F1、F2为焦点,且与直线l有公共点M的椭圆中长轴最短的。

分析:因为直线l与所求椭圆有公共点,可以由方程组得到一个一元二次方程,再利用判别式确定所求椭圆长轴的`最小值。

解:椭圆C的焦点。

说明:直线l与椭圆有公共点,可得方程组,消去一个未知数,得到一个一元二次方程,由一元二次方程有实根的条件得,构造参变量的不等式,确定的最小值,这种解法思路清晰、自然。

圆锥曲线的八大解题方法:篇二1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法圆锥曲线的解题方法:篇三一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。

例题:动点P(x,y)到定点A(3,0)的距离比它到定直线x=—5的距离少2。

求动点P的轨迹方程。

解析:依题意可知,{C},由题设知{C},{C}{C}。

(2)定义法:根据圆锥曲线的定义确定曲线的形状。

上述例题同样可以由定义法求出曲线方程:作直线x=—3,则点P到定点A与到定直线x=—3的距离相等,所以点P的轨迹是以A为焦点,以x=—3为准线的抛物线。

(3)待定系数法:通过题设条件构造关系式,待定参数即可。

例1:已知点(—2,3)与抛物线{C}的焦点的距离是5,则P=_____。

解析:抛物线{C}的焦点为{C},由两点间距离公式解得P=4。

例2:设椭圆{C}的右焦点与抛物线{C}的焦点相同,离心率为{C},则椭圆的方程为_____。

解析:抛物线{C}的焦点坐标为(2,0),所以椭圆焦半径为2,故离心率{C}得m=4,而{C},所以椭圆方程为{C}。

一、化为二次函数,求二次函数的最值依据条件求出用一个参数表示的二次函数解析式,而自变量都有一定的变化范围,然后用配方法求出限制条件下函数的最值,就可得到问题的解。

圆锥曲线解题十招全归纳

圆锥曲线解题十招全归纳

《圆锥曲线解题十招全归纳》招式一:弦的垂直平分线问题 (2)招式二:动弦过定点的问题 (4)招式四:共线向量问题 (6)招式五:面积问题 (13)招式六:弦或弦长为定值、最值问题 (16)招式七:直线问题 (20)招式八:轨迹问题 (24)招式九:对称问题 (30)招式十、存在性问题 (33)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。

解:依题意知,直线的斜率存在,且不等于0。

设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。

由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。

则线段AB 的中点为22211(,)22k k k--。

线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。

AB =21k =+2d k=21k +=k =053x =。

【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳圆锥曲线作为高中数学解析几何的重要知识点,其中蕴含着重要丰富的数学思想方法,解析几何基本思想是使用几何方法解决问题,也就是数形结合思想,所有的数学试题都不能离开形只谈抽象数或者是研究图。

要求学生具备较扎实基础知识及较强综合能力.本文将重点分析下直线与圆锥曲线中常见题型,并给出相应解题技巧,使学生更好地备战高考数学。

圆锥曲线解题技巧归纳直线与圆锥曲线常见解题思想方法直线与圆锥曲线常见解题思想方法有两种:几何法与代数法,下面将具体分析下这两种解题思想方法.(一)几何法几何法解决数学问题主要运用了数形结合思想,结合圆锥曲线定义、图形、性质等题目中已知条件转化成平面几何图形,并使用平面几何有关基本知识例如两点间线段最短、点到直线垂线段最短等来巧妙地解题.(二)代数法代数法主要是依据已知条件来构建目标函数,将其转化成函数最值问题,再结合使用配方法、不等式法、函数单调性法及参数法等等来求最值.三、直线与圆锥曲线的常见题型及解题技巧实例分析(一)题型一:弦的垂直平分线问题解题技巧及规律:题干中给出直线与曲线M过点S(-1,0)相交于A,B两点,分析直线存在斜率并且不等于0,然后设直线方程,列出方程组,消元,对一元二次方程进行分析,分析判别式,并使用韦达定理,得出弦中点坐标,再结合垂直及中点,列出垂直平分线方程,求出N点坐标,最后结合正三角形性质:中线长是边长的32倍,使用弦长公式求出弦长.(二)题型二:动弦过定点问题解题技巧及规律:第一问是使用待定系数法求轨迹方程;第二问中,已知点A1、A2的坐标,因此可以设直线PA1、PA2方程,直线PA1与椭圆交点是A1(-2,0)和M,结合韦达定理,能求出点M坐标,同理求出点N坐标.动点P在直线L:x=t(t>2)上,这样就能知道点P横坐标,根据直线PA1,PA2方程求出点P纵坐标,得出两条直线斜率关系,通过计算出M,N点坐标,求出直线MN方程,代入交点坐标,如果解出是t>2,就可以了,否则不存在.圆锥曲线解题技巧归纳一、考查目标:1、熟练掌握三大曲线的定义和性质;2、能够处理圆锥曲线的相关轨迹问题;3、能够处理圆锥曲线的相关定值、最值问题。

圆锥曲线的切线切点弦总结归纳(转换坐标系法)

圆锥曲线的切线切点弦总结归纳(转换坐标系法)

圆锥曲线的切线、切点弦推论总结归纳1、椭圆切线推论:已知椭圆C 方程22221x y a b+=(a>b>0),C 上一点P (00,y x ),过点P 且与C 相切的切线L 方程为:12020=+byy a x x 。

12222=+by a x'2'2()()1x y +=推导:如图所示,当切线'L 斜率存在且不为0时(即切线L 斜率存在且不为0),设'OP 、'L 的斜率分别为1k ,2k ,0010000y ay b k x bx a-==-,由圆的切线性质易知'OP ⊥'L ,即121k k ⋅=-,∴02101bx k k ay -==-,∴由点斜式易得'L 方程为:''0000()y bx xy x b ay a -=--,又'',x yx y a b ==,∴ 0000()y bx x y x b b ay a a-=--,即为椭圆切线L 方程,化简如下:0000y y bx x x b ay a --=-⋅,000022()()y y y x x x b a --=-,2200002222x x y y x y a b a b +=+,又点P(00,y x )是椭圆上一点,∴2200221x y a b +=,即切线L 方程化简后为:0022x x y ya b+=1;易知当切线L 斜率为0时,P (0,b ±),切线L 方程为:y b =±,满足上式;当切线L 斜率不存在时,P (,0a ±)切线L 方程为:x a =±,也满足上式。

综上,推导完毕。

2、直线与椭圆位置关系判定推论:已知椭圆C 方程12222=+by a x (a>b>0),一直线L 方程为:0Ax By C ++=,则L 与C 相交⇔2222A a B b +>2C ;L 与C 相切⇔2222A a B b +=2C ;L 与C 相离⇔2222A a B b +<2C 。

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳

圆锥曲线解题技巧归纳1.球面坐标系与圆锥曲线:在球面坐标系中,圆锥曲线可以看作是一个直线在球面上的投影。

通过利用球面坐标系的相关性质,可以简化圆锥曲线的解题过程。

2.圆锥曲线的标准方程:圆锥曲线的标准方程是通过平移和旋转的方式将一般方程转化成一种特殊形式的方程。

通过将一般方程转化成标准方程,可以方便地研究圆锥曲线的性质。

3.圆锥曲线的分类与特点:根据圆锥曲线的二次项和四次项的系数可以将圆锥曲线分为椭圆、双曲线和抛物线三类。

每一类圆锥曲线都有其特有的性质和特点,熟悉这些特点可以帮助我们更好地解题。

4.圆锥曲线的参数方程:圆锥曲线的参数方程是通过引入一个参数来表示曲线上的点的坐标。

通过使用参数方程,可以简化圆锥曲线的分析和解题过程。

5.圆锥曲线的对称性:圆锥曲线具有多种对称性,包括关于坐标轴、原点和直线的对称性。

利用这些对称性可以简化问题的分析和解题过程。

6.圆锥曲线的焦点与准线:焦点和准线是圆锥曲线的两个重要特点。

了解焦点和准线的性质可以帮助我们理解圆锥曲线的形状和性质,并解决相关的问题。

7.圆锥曲线的参数化方程:圆锥曲线的参数化方程是通过引入一个或多个参数来表示曲线上的点的坐标。

通过使用参数化方程,可以更灵活地处理圆锥曲线上的点和相关的问题。

8.圆锥曲线的极坐标方程:圆锥曲线的极坐标方程是通过将直角坐标系中的变量用极坐标表示来得到的。

利用极坐标方程,可以方便地研究圆锥曲线的性质,并解决相关的问题。

9.圆锥曲线的参数方程与极坐标方程的转换:圆锥曲线的参数方程和极坐标方程可以相互转换。

通过掌握参数方程和极坐标方程之间的转换关系,可以灵活地处理圆锥曲线的问题,并得到更加深入的理解。

(完整版)圆锥曲线知识点归纳总结

(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。

三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。

构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。

2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。

椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。

椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。

重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。

抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。

重要公式:抛物线的标准方程为(x^2/4a) = y。

4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。

双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。

双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。

椭圆的应用包括轨道运动、天体力学以及密码学等领域。

抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。

双曲线的应用包括电磁波的传播、双曲线钟的标定等。

6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。

对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。

切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。

焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。

此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。

熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线方法归纳
1、点差法(中点弦问题)
设()
11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有 1342121=+y x ,1342222=+y x ;两式相减得()()03422
2
12221
=-+-y y x x
⇒()()
()()
3421212121y y y y x x x x +--=+-⇒AB k =b
a 43- (ⅰ)涉及直线与圆锥曲线相交弦的中点和弦斜率问题时,常用“点差法”“设而不求”整体来求,借助于一元二次方程根的判别式、根与系数的关系、中点坐标公式及参数法求解.但在求得直线方程后,一定要代入原方程进行检验. (ⅱ)用“点差法”求解弦中点问题的解题步骤:
设点——设出弦的两端点坐标

代入——代入圆锥曲线方程

作差——两式相减,再用平方差公式把上式展开

整理——转化为斜率与中点坐标的关系式,然后求解
1. 已知椭圆x ²+2y ²=4,求椭圆上以(1, 1)为中点的弦所在的直线方程?
2. 如果椭圆x ²36+y ²9=1的弦被点A (4, 2)平分,求这条弦所在的直线方程
3. 已知直线y =-x +1与椭圆x ²a ²+y ²b ²=1 (a >b >0)相交于A , B 两点,且线段AB 的中
点在直线l :x -2y =0上,则此椭圆的离心率为 .
4. 过点M (1, 1)作斜率为-12的直线与椭圆C :x ²a ²+y ²b ²=1 (a >b >0)相交于A , B 两点,
若M 是线段AB 的中点,则椭圆C 的离心率等于 .
5. 已知抛物线y ²=2px (p >0),过其焦点且斜率为1的直线交抛物线于A , B 两点,若
线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 .
6. 已知双曲线E 的中心为原点,F (3, 0)是E 的焦点,过F 的直线l 与E 相交于A , B
两点,且AB 的中点为N (-12,-15),则E 的方程为
设而不求
1、考虑斜率是否存在
2、常与韦达定理结合使用
3、以抛物线为例
直线l :b kx y += 抛物线
,)0( p
① 联立方程法: ⎩⎨⎧=+=px
y b kx y 22⇒0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0 ∆,以及2121,x x x x +,还可进一步求出b x x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++=
在涉及弦长,中点,对称,面积等问题时,常用此法,比如
4、相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+= 或 2122122124)(1111y y y y k
y y k AB -++=-+
=
1、如图,已知抛物线C:y2=4x焦点为F,直线l经过点F
且与抛物线C相交于A、B两点.
(Ⅰ)若线段AB的中点在直线y=2上,求直线l的方程;(Ⅱ)若|AB|=20,求直线l的方程.
2、给定直线l:216
=-,抛物线C:2(0)
y x
=>。

(1)当抛物线C的焦点
y ax a
在直线l上时,确定抛物线C的方程。

(2)若△ABC的三个顶点都在(1)所确定的抛物线C上,且点A的纵坐标8
y=,△ABC的重心恰在抛物线C的焦点上,
A
求直线BC的方程。

相关文档
最新文档