四叉树网格划分研究
四叉树分解法

四叉树分解法四叉树分解法(Quadtree Decomposition)是一种常用的数据结构和算法,用于处理多维空间中的数据。
它将空间划分为四个象限,并将数据按照其位置放入相应的象限中,从而实现高效的数据存储和检索。
1. 背景介绍多维空间中的数据处理是计算机科学中的重要问题之一。
传统的数据结构如数组、链表等在处理多维数据时效率较低,而四叉树分解法则能够有效地解决这一问题。
四叉树分解法最早由Burkhard和Keller于1973年提出,被广泛应用于计算机图形学、地理信息系统等领域。
2. 原理与构造四叉树分解法是一种递归的数据结构,它将一个二维空间划分为四个相等的象限,并将数据按照其位置放入相应的象限中。
每个节点可以有四个子节点,如果一个象限中的数据过多,就可以继续将该象限划分为四个子象限,直到满足某个终止条件为止。
3. 插入数据在四叉树中插入数据时,首先需要找到数据所在的象限。
如果该象限已经有子节点,则递归地将数据插入到子节点中;如果该象限没有子节点,则创建子节点并将数据插入。
4. 查询数据在四叉树中查询数据时,首先需要确定查询范围所在的象限。
如果该象限完全包含在查询范围内,则将该象限中的所有数据返回;如果该象限与查询范围有交集,则递归地查询子节点中的数据。
5. 删除数据在四叉树中删除数据时,首先需要找到数据所在的象限。
如果该象限中只有一个数据,则直接删除;如果该象限中有多个数据,则递归地删除子节点中的数据。
6. 应用领域四叉树分解法在计算机图形学中的应用非常广泛。
例如,在图像压缩中,可以使用四叉树分解法将图像划分为多个小块,并根据每个小块的灰度值来判断是否需要进一步细分。
在地理信息系统中,四叉树分解法可以用于快速检索地理数据,如地图上的点、线、面等。
7. 优缺点分析四叉树分解法的优点是能够高效地存储和检索多维数据,尤其适用于稀疏数据。
它的缺点是对于密集数据的存储和检索效率较低,而且在数据更新频繁的情况下,维护四叉树结构的开销较大。
四叉树——精选推荐

四叉树前序四叉树或四元树也被称为Q树(Q-Tree)。
四叉树⼴泛应⽤于图像处理、空间数据索引、2D中的快速碰撞检测、存储稀疏数据等,⽽⼋叉树(Octree)主要应⽤于3D图形处理。
对游戏编程,这会很有⽤。
本⽂着重于对四叉树与⼋叉树的原理与结构的介绍,帮助您在脑海中建⽴四叉树与⼋叉树的基本思想。
本⽂并不对这两种数据结构同时进⾏详解,⽽只对四叉树进⾏详解,因为⼋叉树的建⽴可由四叉树的建⽴推得。
若有不⾜之处,望能不吝指出,以改进之。
^_^ 欢迎Email:zhanxinhang@四叉树与⼋叉树的结构与原理四叉树(Q-Tree)是⼀种树形数据结构。
四叉树的定义是:它的每个节点下⾄多可以有四个⼦节点,通常把⼀部分⼆维空间细分为四个象限或区域并把该区域⾥的相关信息存⼊到四叉树节点中。
这个区域可以是正⽅形、矩形或是任意形状。
以下为四叉树的⼆维空间结构(左)和存储结构(右)⽰意图(注意节点颜⾊与⽹格边框颜⾊):四叉树的每⼀个节点代表⼀个矩形区域(如上图⿊⾊的根节点代表最外围⿊⾊边框的矩形区域),每⼀个矩形区域⼜可划分为四个⼩矩形区域,这四个⼩矩形区域作为四个⼦节点所代表的矩形区域。
较之四叉树,⼋叉树将场景从⼆维空间延伸到了三维空间。
⼋叉树(Octree)的定义是:若不为空树的话,树中任⼀节点的⼦节点恰好只会有⼋个,或零个,也就是⼦节点不会有0与8以外的数⽬。
那么,这要⽤来做什么?想象⼀个⽴⽅体,我们最少可以切成多少个相同等分的⼩⽴⽅体?答案就是8个。
如下⼋叉树的结构⽰意图所⽰:四叉树存储结构的c语⾔描述:/* ⼀个矩形区域的象限划分::UL(1) | UR(0)----------|-----------LL(2) | LR(3)以下对该象限类型的枚举*/typedef enum{UR = 0,UL = 1,LL = 2,LR = 3}QuadrantEnum;/* 矩形结构 */typedef struct quadrect_t{double left,top,right,bottom;}quadrect_t;/* 四叉树节点类型结构 */typedef struct quadnode_t{quadrect_t rect; //节点所代表的矩形区域list_t *lst_object; //节点数据, 节点类型⼀般为链表,可存储多个对象struct quadnode_t *sub[4]; //指向节点的四个孩⼦}quadnode_t;/* 四叉树类型结构 */typedef struct quadtree_t{quadnode_t *root;int depth; // 四叉树的深度}quadtree_t;四叉树的建⽴1、利⽤四叉树分⽹格,如本⽂的第⼀张图<四层完全四叉树结构⽰意图>,根据左图的⽹格图形建⽴如右图所⽰的完全四叉树。
网格算法优化技巧提升数据处理效率的实用方法

网格算法优化技巧提升数据处理效率的实用方法在大数据时代的到来,数据处理效率成为了一个亟待解决的问题。
为了提高数据处理的效率,人们发展了各种各样的算法和技巧。
其中,网格算法被广泛应用于数据处理领域,具有出色的优化能力。
本文将介绍一些实用的网格算法优化技巧,帮助读者提升数据处理效率。
1. 引言数据处理是指对大量数据进行分析、提取、管理的过程。
在数据处理中,为了快速准确地处理数据,算法的效率是至关重要的。
网格算法是一种基于网格结构的数据处理方法,通过将数据分割成网格单元,实现高效的数据处理。
下面将介绍几种常用的网格算法优化技巧。
2. 网格剖分网格剖分是将数据区域划分成多个网格单元的过程。
常见的网格剖分方法包括正交网格剖分和非结构网格剖分。
正交网格剖分适用于规则的数据集,可以快速计算数据在网格单元中的位置。
非结构网格剖分适用于复杂的数据集,可以灵活地剖分数据区域。
3. 网格索引网格索引是对网格单元进行编码,方便数据的查找和访问。
常用的网格索引方法有哈希编码和四叉树编码。
哈希编码使用哈希函数将网格单元映射到一个唯一的索引值,实现快速的数据查找。
四叉树编码将网格单元划分成四个子网格,通过递归地划分,实现数据的高效存储和访问。
4. 网格聚合网格聚合是将相邻的网格单元合并成一个大的网格单元,减少数据处理过程中的计算量。
网格聚合可以基于网格索引进行,根据网格单元的相似度将其合并。
网格聚合在数据处理中起到了关键的作用,大大提升了运算效率。
5. 网格筛选网格筛选是根据特定的条件在网格单元中选择数据的过程。
通过对网格单元的属性进行筛选,可以快速准确地选择需要的数据。
网格筛选可以基于网格索引进行,根据网格单元的特征进行筛选,节省了大量的计算资源。
6. 网格优化网格优化是通过优化网格结构来提高数据处理效率。
常见的网格优化方法有网格重构和网格平滑。
网格重构可以根据数据的特征重新划分网格单元,使得数据在网格中更加均匀地分布。
网格平滑可以通过插值等技术,消除网格中的噪声和不规则性,提高数据的质量和准确性。
四叉树的算法原理

四叉树的算法原理四叉树是一种用于解决二维空间数据存储和查询问题的数据结构。
它将空间划分为四个象限,并将数据递归地存储在每个象限中。
四叉树的算法原理包括构建四叉树、查询和插入数据、删除数据等。
四叉树的构建过程是将二维空间不断地划分为四个象限,直到满足某个停止条件。
首先,将整个二维空间看作一个正方形,将其划分为四个等大小的象限。
然后,对于每个象限,如果象限内的数据点个数超过了某个阈值,再对该象限进行进一步的划分;如果未超过阈值,则将数据点存储在该象限中。
如此反复进行,直到达到停止条件,即每个象限内的数据点个数都不超过阈值或达到了最大的划分层数。
在查询数据时,首先将查询范围划分为四个象限,并与四叉树的四个象限进行比较。
如果查询范围与某个象限完全重合,则返回该象限内的所有数据点。
如果查询范围与某个象限不重合,则不需要继续向该象限的子象限进行查询。
如果查询范围与某个象限部分重合,则需要继续向该象限的子象限进行递归查询。
在插入数据时,首先将数据点与四叉树的根节点进行比较。
如果数据点在根节点所占据的范围内,则将数据点插入该节点中。
如果数据点在某个子象限的范围内,则继续递归地将数据点插入该子象限中。
如果数据点不在任何子象限的范围内,则需要对整个四叉树进行扩展,以容纳新的数据点。
在删除数据时,同样需要根据数据点的位置,递归地进行搜索,并将数据点从相应的节点中删除。
如果节点中没有其他数据点,则可以将该节点及其子节点释放,以减少存储空间的占用。
四叉树的优势在于其可以高效地处理空间数据的存储和查询问题。
它可以将二维空间划分为各个象限,并将数据点存储在相应的象限中,从而可以方便地进行数据查询和范围查询。
四叉树还可以应用于多个领域,如计算机图形学、GIS(地理信息系统)等,用于处理地理数据和图像数据。
然而,四叉树也存在一些局限性。
首先,四叉树只适用于二维空间数据的存储和查询,对于更高维度的数据,需要使用其他的数据结构。
其次,四叉树的构建和维护时的时间复杂度较高,特别是当数据点的分布不平衡或分布非常集中时,容易导致四叉树的深度较大,影响操作的效率。
简单高效的面向对象四叉树有限元网格生成技术研究

出现 , 日渐 成 熟 。 了提 高 复 杂 边 界 网 格 的质 量 , 且 为
结 合 不 同 网格 生成 方 法 的 优 势 , 出现 了 混 合 生 成 方 法 。但 随 之 而来 的 问 题 是 网格 生 成 耗 时 偏 多 , 的 有
2 四 叉 树 网 格 的 邻 居 查 寻 算 法 的 改 进
维普资讯
第1卷 第 3 9 期
2 002年 8月
计Байду номын сангаас
算
力
学
学
报
Vo . No. 11 9. 3
A u s gu t 2002
Chi s ur ne e Jo nalo m put tona e ha c f Co ai lM c ni s
网 格 的 灵 活 性 ; 流 动 区域 它 可 达 到 二 阶精 度 且 与 在 物 面 无 关 , 而 消 除 了 网格 生 成 中所 有 难 点 ] 四 从 。
在 网 格 生 成 的 过 程 中 , 于 网 格 划 分 的 随 机 由
性 , 要 详 细 地 了 解 网 格 间 的 几 何 关 系 。文 献 [ , 需 2 3 将 任 一 网格 的所 有 需 要 的信 息 都存 储 在 “ 元 收 ] 单 集 器” 数组 中; 献 [- 定 义 了“ 居” 概 念 , 的 文 4还 I 邻 的 将 任 一 网 格 八 个 方 向 的 邻 居存 储 在 相 关 的链 表 中 , 但 文 中 只 定 义 了边 相 邻 的 邻 居 , 有 定 义 和 记 录角 没 相 邻 的 邻 居 。它 们 都 没 有 涉 及 邻 居 网格 的查 寻 , 严 格 的意 义 上 说 , 们 都 只 应 用 了 四又 树 网 格 生 成 的 它 思 想 , 没 有 应 用 四 又 树 数 据 结 构 的 优 势 , 此 导 而 因 致 程 序 庞 大 , 储 量 增 大 , 格 生 成 的 速 度偏 慢 。 存 网
基于等分辨率的全球四叉树网格剖分模型研究

张 一 颖 ,王 军
( 1 .东北农业大学 , 黑龙江 哈 尔滨 1 5 0 0 3 0 ; 2 . 黑龙江测绘地理信息局 , 黑龙江 哈尔滨 1 5 0 0 8 1 )
摘
要: 针对 目前我 国地理信 息公共服 务平 台建设情 况和 我 国地理信 息服务 特点进行 总结分析 , 提 出基 于 S O A
平面四边形网格自动生成方法研究

第4类,封闭单元操作,在铺砌过程的最后阶段只 剩下6个节点时,根据铺砌边界上大鱼150º 的节点内角 数目和相对位臵,产生封闭单元。
网格中单元的大小由铺砌边界上的节点的空间大 小所决定。在铺砌过程中,维持这一空间大小不变。这 样,我们可以通过修改固定节点的空间大小来控制单元 的大小。各个节点的空间大小可以不相同,因为大小不 一的单元组成的网格,有利于分析单元,便于网格的疏 密分布。
②平面四边形网格的生成方法有两类主要的方法。 一类是间接法,即在区域内部先生成三角形网格, 然后分别将两个相邻的三角形合并成为一个四边形。生 成的四边形的内角很难保证接近直角。所以再采用一些 相应的修正方法加以修正。间接法优点是首先就得到了 区域内的整体的网格尺寸的信息,对四边形网格尺寸梯 度的控制一直是四边形网格生成技术的难点。缺点是生 成的网格质量相对比较差,需要多次的修正,同时需要 首先生成三角形网格,生成的速度也比较慢,程序的工 作量大。 另外一类是直接法,二维的情况称为铺砖法。采 用从区域的边界到区域的内部逐层剖分的方法。这种方 法到现在已经逐渐替代间接法而称为四边形网格的主要 生成方法。它的优点是生成的四边形的网格质量好,对 区域边界的拟合比较好,最适合 流体力学的计算。缺 点是生成的速度慢,程序设计复杂。
3、边界节点数的调整
第一种方法:将节点1、2合并成节点4,节点4的位 臵取节点1、2、3的平均位臵。
第二种方法;删除单元a以后,将节点1、2合并成 节点4,节点4的位臵取节点1、2、3的平均位臵。
以上两种方法每次使栅格边界减少2个节点,如果 要减少一个可删除单元1,、2、3、4以后.,合并相应的 节点。
基区划分任意一个几何轮廓若干个子区域直线段子区域曲线段子区域四边形基区类四边形基区类四边形基区是指在一定条件下可以把曲线段近似看作一条直线来处理把它看成是四边形的一条基区网格生成21四边形基区的网格生成由于基区形状与所要生成的单元具有相似性这种相似性的程度越高就越容易处理
四叉树结构地形网格简化算法的研究

2 最后将 所有 叶子 节点 渲染输 出。
太原ຫໍສະໝຸດ 科技大学
学
报
2 0 1 3焦
其中, 为视角, d为地形节点到视点的距离 , s 为用户容许像素误差 , f 为地形节点的边长 , L 为投影 平面的边长, A为物体空间中单位长度在投影平面上
的像 素数 ( 如图 4所示 ) , e 为地形 节点 的复杂度 。 由于 、 、 L 、 A在 一 定 的屏 幕 投 影误 差 下 可 以 看作是 常量 , 于是 将式 ( 1 )简化为 :
达 。用 自顶 向下 的四叉树 结构 对 地 形表 示 ,如 图 1
所示 。
根 节
叉树模型使用最多, 它具有表达多分辨率数据 的能 力, 且数据结构相对 简单 、 易于实现、 效率高 , 但 存 在对数据 的尺 寸要求 高、 易于 出现模 型破碎等 缺 点[ 2 3 。 自从 L i n d s t r o m_ 3 提 出 了用 四叉 树 结 构 简 化
两 个 阶段 , 提高 了渲 染效 率 , 等等 。 本文 以规 则格 网 为研 究 对 象 , 利 用基 于 四叉 树 的简 化 算 法 对 生 成 的 地 形 网 格 进 行 基 于 视 点 的 L O D简化 , 并提 出利 用加 权距 离 和 的 方法 引 入视 线 因素 , 进一 步 完 善 视 相 关 的评 价 系 统 ; 为 了消 除 地
文 章编 号 : 1 6 7 3— 2 0 5 7 ( 2 0 1 3 ) O 1— 0 0 0 1— 0 5
四叉树 结构 地 形 网格 简 化 算 法 的研 究
王庆 霞 , 张荣 国 , 武 妍 , 刘小君
( 1 . 太原科技 大学计 算机科 学与技 术 学院 , 太原 0 3 0 0 2 4; 2 . 合肥 工业 大 学机 械 与汽 车 工程 学院 , 合肥 2 3 0 0 0 9 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硕士学位论文开题报告及论文工作计划书
课题名称四叉树网格划分研究
学号*******
姓名张
专业机械工程
学院机械工程与自动化学院
导师马
副导师陈
选题时间年月日
东北大学研究生院
年月日
填表说明
1、本表一、二、三、四、五项在导师指导下如实填写。
2、学生在通过开题后一周内将该材料交到所在学院、研究所。
3、学生入学后第三学期应完成论文开题报告,按有关规定,没有完成开题报告的学生不能申请论文答辩。
东北大学硕士研究生学位论文选题报告评分表。