概率论与数理统计课程设计

合集下载

概率论与数理统计(选修)简易教案

概率论与数理统计(选修)简易教案

概率论与数理统计(选修) 简易教案一、教学目标1. 了解概率论与数理统计的基本概念和原理。

2. 掌握基本的概率计算和统计方法。

3. 能够应用概率论与数理统计解决实际问题。

二、教学内容1. 概率论的基本概念:随机事件、样本空间、概率公式。

2. 条件概率和独立性:条件概率的定义和计算、独立事件的概率计算。

3. 概率分布:离散型随机变量的概率分布、连续型随机变量的概率分布。

4. 统计学基本概念:总体、样本、参数、统计量。

5. 描述性统计分析:频数、频率、图表、均值、方差等。

三、教学方法1. 讲授法:讲解概率论与数理统计的基本概念、原理和方法。

2. 案例分析法:通过实际案例讲解概率计算和统计分析的应用。

3. 练习法:学生通过练习题巩固所学知识和技能。

四、教学准备1. 教材或教学资源:概率论与数理统计教材或相关教学资源。

2. 投影仪或白板:用于展示案例和讲解。

3. 练习题:准备相关的练习题供学生练习。

五、教学过程1. 导入:引入概率论与数理统计的概念和重要性。

2. 讲解:讲解概率论与数理统计的基本概念、原理和方法。

3. 案例分析:通过实际案例讲解概率计算和统计分析的应用。

4. 练习:学生进行练习题,巩固所学知识和技能。

5. 总结:对本节课的内容进行总结和回顾。

六、教学评估1. 课堂参与度:观察学生在课堂上的积极参与程度和提问回答情况。

2. 练习题完成情况:检查学生完成练习题的正确率和解题思路。

3. 小组讨论:评估学生在小组讨论中的合作和交流能力。

七、扩展活动1. 研究项目:学生可以自主选择一个感兴趣的概率论与数理统计相关的研究项目,进行深入研究和分析。

2. 数据分析竞赛:组织学生参加数据分析竞赛,应用所学的概率论与数理统计知识解决实际问题。

八、教学反思1. 教师应在教学过程中不断反思和调整教学方法,以提高教学效果。

2. 教师应关注学生的学习反馈,及时解决学生遇到的问题。

九、教学资源1. 教材或教学资源:提供概率论与数理统计的教材或相关教学资源,供学生自主学习和参考。

概率论及数理统计课程设计

概率论及数理统计课程设计

概率论及数理统计课程设计一、设计目的本次课程设计旨在让学生通过独立完成一个概率论及数理统计的实际问题,深入了解概率和统计学的基本理论、方法和应用。

二、设计要求2.1 课程要求1.独立完成一个概率论或数理统计的实际问题。

2.对问题进行系统分析、建模和求解,并对结果进行解释和评价。

3.撰写题目研究的报告,包括题目来源、问题描述、分析方法、结果分析和总结等部分。

2.2 设计内容1.选择一个实际问题,可涉及生活、工作、科学或社会等领域。

2.对问题进行分析和建模,包括问题的假设、目标、变量、参数等。

3.对数据进行采集和处理,包括数据的类型、总体分布特征、样本分布特征等。

4.进行相关的数理统计分析和概率计算,包括描述统计分析、参数估计、假设检验、回归分析等。

5.对结果进行总结和评价,包括结果的可靠性、应用价值等。

三、设计实施3.1 设计流程1.确定问题:学生自主选择一个实际问题进行研究。

2.分析问题:明确问题的假设、目标等,进行问题分析和建模。

3.数据采集:收集数据,并进行数据处理和初步分析。

4.数理统计分析:进行描述统计分析、参数估计、假设检验、回归分析等多种分析方法。

5.结果总结:对分析结果进行总结和评价。

3.2 设计要点1.题目的选择要具有实际意义,并能够体现概率论和数理统计的理论和应用。

2.数据的收集和处理要合理、完整、准确,符合统计分析的要求。

3.分析方法要适当,充分体现概率论和数理统计的基本理论、方法和应用。

4.结果的总结和评价要清晰、准确、客观,体现分析结果的有效性和应用价值。

四、设计评价4.1 评分要点1.问题选择的质量和实际意义。

2.数据处理和分析方法的有效性和准确性。

3.求解结果的可靠性和应用价值。

4.报告的客观性和准确性,以及语言表达和文献引用等方面的要求。

4.2 评分标准本课程设计的评分将按照如下标准进行:分数评价90-100优秀,分析全面深入,结果可靠,报告准确详尽,符合要求。

80-89 良好,分析全面,结果较为可靠,报告语言表达清晰,各项要求均符合。

概率论与数理统计教学设计

概率论与数理统计教学设计

概率论与数理统计教学设计背景与目的概率论与数理统计课程是大学数学系列课程之一,是数学、统计学、应用数学等学科中的基础课程之一。

本课程涉及的知识点非常广泛,包括概率的基本概念、随机变量及其分布、数理统计中的参数估计和假设检验等,是大学生在数学和统计学中打开思维、拓展眼界的重要课程之一。

本文旨在针对概率论与数理统计课程进行教学设计,从内容、方法、评估几个方面,以创新的教学方式和评估方法,引导学生深入理解和应用概率论与数理统计知识,帮助学生掌握基本的数理统计计算和应用方法。

内容与方法课程内容本课程主要分为三部分:概率论、随机变量与分布、数理统计。

在第一部分概率论中,包括概率的基本概念、事件、概率的运算规则和概率分布,以及周期、伯努利实验、条件概率等知识点。

在第二部分随机变量与分布中,主要学习随机变量的定义、连续分部函数、正态分布、中心极限定理等知识点。

第三部分数理统计主要涵盖参数估计、假设检验、方差分析等各种统计方法。

教学方法1.针对不同知识点选择不同教学方法。

例如,对于概率的定义和概率的运算,可以使用演示法和案例分析法。

对于参数估计和假设检验等复杂内容,可以采用数学公式的推导和分析方法,以及案例实践与模拟操作。

2.强调互动教学。

教师不应该只是在黑板上讲授理论知识,应该让学生在学习的同时,积极表达自己、发表疑问,并与其他学生相互交流讨论。

3.多元化教学。

学生的学习方式有差异,因此需要采用多种教学手段,如PPT、视频、实例操作、小组讨论等。

评估方法教学评估作为教学的关键环节,与教学内容和教学方法密不可分。

本课程的评估方法主要分为两个方面:考试和实践项目。

考试考试是本课程最常用的评估方式之一。

考试内容覆盖了课程中的基本知识点,并且考试难度要适中,既要考查学生的记忆力,又要考查学生的理解、分析和应用能力。

实践项目除了考试以外,实践项目也是评估学生学习成果的重要方式。

教学过程中通过实践项目来培养学生的数据分析能力和解决实际问题的能力,同时也增加学生学习概率论与数理统计课程的兴趣和动力。

国家精品课 概率论与数理统计教案

国家精品课 概率论与数理统计教案

国家精品课概率论与数理统计教案国家精品课“概率论与数理统计”教案一、课程概述课程名称:概率论与数理统计授课人:XXX授课对象:本科生课程时长:48学时二、教学目标1. 知识目标:掌握概率论与数理统计的基本概念、原理和方法,理解其在实际问题中的应用。

2. 能力目标:培养学生运用概率论与数理统计知识解决实际问题的能力,提高其逻辑思维和创新能力。

3. 情感态度价值观:培养学生对概率论与数理统计的兴趣,增强其科学素养,为其今后学习、工作打下坚实基础。

三、教学内容与要求1. 概率论基础:介绍概率的基本概念、条件概率、独立性等,要求学生掌握概率的计算和实际应用。

2. 随机变量及其分布:介绍随机变量及其分布函数,常见的随机变量分布类型,以及随机变量的数字特征等。

3. 数理统计基础:介绍数理统计的基本概念、参数估计和假设检验等,要求学生掌握参数估计和假设检验的方法。

4. 回归分析与方差分析:介绍一元线性回归分析、多元线性回归分析和方差分析等,要求学生掌握相关分析和回归分析的方法。

5. 课程实践:组织学生进行实际问题的概率论与数理统计应用,提高其解决实际问题的能力。

四、教学方法与手段1. 理论教学:采用讲授法、讨论法等教学方法,帮助学生理解概率论与数理统计的基本概念和原理。

2. 实验教学:通过实验课程和课程实践,让学生亲自动手操作,加深对理论知识的理解。

3. 教学手段:采用多媒体教学、在线学习等手段,丰富课程内容的表现形式,提高学生的学习兴趣。

五、教学评价与反馈1. 作业评价:布置适量的作业,及时批改和反馈,了解学生对课程内容的掌握情况。

2. 测验与考试:定期进行测验和考试,检查学生的学习成果,促使其巩固所学知识。

概率论与数理统计教案(48课时)(最新整理)

概率论与数理统计教案(48课时)(最新整理)

( x, y )G
,注意二重积分运算知识点的复习。
d) 二维均匀分布的密度函数的具体表达形式。
五.思考题和习题
思考题:1. 由随机变量 X ,Y 的边缘分布能否决定它们的联合分布?
2. 条件分布是否可以由条件概率公式推导? 3. 事件的独立性与随机变量的独立性是否一致? 4.如何利用随机变量之间的独立性去简化概率计算,试举例说明。 习题:
第四章 随机变量的数字特征 一.教学目标及基本要求
(1)理解数学期望和方差的定义并且掌握它们的计算公式;
(2)掌握数学期望和方差的性质与计算,会求随机变量函数的数学期望,特别是利用
期望或方差的性质计算某些随机变量函数的期望和方差。
(3)熟记 0-1 分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期
第四节 二维随机变量的函数的分布
已知(X,Y)的分布率 pij 或密度函数 (x, y) ,求 Z f ( X ,Y ) 的分布律或密度
函数Z (z) 。特别如函数形式: Z X Y , Z max( X ,Y ), Z min( X ,Y ) 。
2 学时
三.本章教学内容的重点和难点
a) 二维随机变量的分布函数及性质,与一维情形比较有哪些不同之处;
5.列举正态分布的应用。
习题:
第三章 多维随机变量及其分布
一.教学目标及基本要求
(1)了解二维随机变量概念及其联合分布函数概念和性质,了解二维离散型和连续 型随机变量定义及其概率分布和性质,了解二维均匀分布和正态分布。
(2)会用联合概率分布计算有关事件的概率,会求边缘分布。 (3)掌握随机变量独立性的概念,掌握运用随机变量的独立性进行概率计算。 (4)会求两个独立随机变量的简单函数(如函数 X+Y, max(X, Y), min(X, Y))的分布。

概率论与数理统计教案-随机变量及其分布

概率论与数理统计教案-随机变量及其分布

概率论与数理统计教案-随机变量及其分布一、教学目标1. 了解随机变量的概念及其重要性。

2. 掌握随机变量的分布函数及其性质。

3. 学习离散型随机变量的概率分布及其数学期望。

4. 理解连续型随机变量的概率密度及其数学期望。

5. 能够运用随机变量及其分布解决实际问题。

二、教学内容1. 随机变量的概念及分类。

2. 随机变量的分布函数及其性质。

3. 离散型随机变量的概率分布:二项分布、泊松分布、超几何分布等。

4. 连续型随机变量的概率密度:正态分布、均匀分布、指数分布等。

5. 随机变量的数学期望及其性质。

三、教学方法1. 采用讲授法,系统地介绍随机变量及其分布的概念、性质和计算方法。

2. 利用案例分析,让学生了解随机变量在实际问题中的应用。

3. 借助数学软件或图形计算器,直观地展示随机变量的分布情况。

4. 开展小组讨论,培养学生合作学习的能力。

四、教学准备1. 教学PPT课件。

2. 教学案例及实际问题。

3. 数学软件或图形计算器。

4. 教材、辅导资料。

五、教学过程1. 导入:通过生活实例引入随机变量的概念,激发学生的学习兴趣。

2. 讲解随机变量的定义、分类及其重要性。

3. 讲解随机变量的分布函数及其性质,引导学生理解分布函数的概念。

4. 讲解离散型随机变量的概率分布,结合实例介绍二项分布、泊松分布、超几何分布等。

5. 讲解连续型随机变量的概率密度,介绍正态分布、均匀分布、指数分布等。

6. 讲解随机变量的数学期望及其性质,引导学生掌握数学期望的计算方法。

7. 案例分析:运用随机变量及其分布解决实际问题,提高学生的应用能力。

8. 课堂练习:布置适量练习题,巩固所学知识。

10. 作业布置:布置课后作业,巩固课堂所学。

六、教学评估1. 课堂提问:通过提问了解学生对随机变量及其分布的理解程度。

2. 课堂练习:检查学生解答练习题的情况,评估学生对知识的掌握程度。

3. 课后作业:布置相关作业,收集学生作业情况,评估学生对知识的运用能力。

《概率论与数理统计》教案

《概率论与数理统计》教案

《概率论与数理统计》教案第一章:概率的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量及其分布2.3 连续型随机变量及其分布2.4 随机变量的数字特征(期望、方差)第三章:多维随机变量及其分布3.1 多元随机变量的概念3.2 联合分布及其性质3.3 独立性及其检验3.4 随机向量的数字特征(协方差、相关系数)第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的分布第五章:假设检验与置信区间5.2 常用的检验方法5.3 置信区间的估计5.4 功效分析与错误类型第六章:抽样调查与样本分布6.1 抽样调查的基本概念6.2 随机抽样方法6.3 样本分布的性质6.4 抽样误差的估计第七章:回归分析与相关分析7.1 线性回归模型7.2 回归参数的估计7.3 回归模型的检验与诊断7.4 相关分析与判定系数第八章:时间序列分析8.1 时间序列的基本概念8.2 平稳时间序列的模型8.3 时间序列的预测8.4 季节性分析与指数平滑第九章:非参数统计与生存分析9.1 非参数统计的基本概念9.2 非参数检验方法9.4 生存函数与生存分析的估计第十章:贝叶斯统计与统计软件应用10.1 贝叶斯统计的基本原理10.2 贝叶斯参数估计与预测10.3 贝叶斯统计的应用10.4 统计软件的使用与实践重点和难点解析一、随机现象与样本空间补充说明:事件的关系与包含关系,概率的基本性质(互补性、传递性等),概率的计算方法。

二、随机变量及其分布补充说明:概率质量函数与概率密度函数的区别与联系,分布函数的性质,随机变量的期望与方差的计算。

三、多维随机变量及其分布补充说明:二维随机变量的联合分布函数,条件概率的计算,独立性的数学表述与检验方法。

四、大数定律与中心极限定理补充说明:大数定律的数学表述及其含义,中心极限定理的条件与结论,样本均值与标准差的性质。

概率论与数理统计教案

概率论与数理统计教案

概率论与数理统计教案【篇一:概率论与数理统计教案】《概率论与数理统计》课程教案第一章随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。

了解概率的公理化定义。

(5) 理解条件概率、全概率公式、bayes 公式及其意义。

理解事件的独立性。

二.本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率 2学时第三节等可能概型(古典概型) 2 学时第四节条件概率第五节事件的独立性 2 学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系; 2)古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和bayes公式 5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件a?b,a?b,a?b,a?b,ab??,a…的具体含义,理解事件的互斥关系;3)让学生掌握事件之间的运算法则和德莫根定律;4)古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5)讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算?和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数f(x)?p{x?x}的特殊值及左连续性概念的理解; b)构成离散随机变量x的分布律的条件,它与分布函数f(x)之间的关系;c) 构成连续随机变量x的密度函数的条件,它与分布函数f(x)之间的关系; d) 连续型随机变量的分布函数f(x)关于x处处连续,且p(x?x)?0,其中x为任意实数,同时说明了p(a)?0不能推导a??。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计课堂设计——概率论与数理统计在博彩中的应用院系:班级: 姓名:学号:概率论与数理统计在博彩中的应用作者:摘要:赌博自古以来就一直是我们生活中的一个重要部分,各种形式的赌博存在于我们的生活中,但是我们也听过十赌九骗、十赌九输,那么赌博究竟有没有什么机制与规律呢?本文通过概率论的一些知识来揭示赌博中的规律,通过揭示其运行机制,让我们感受数学的美。

关键字:赌博;概率论1.发展历程概率论是一门研究随机现象的规律的数学分支。

其起源于16世纪,意大利学者吉诺拉莫·卡尔达诺(1501-1576)开始研究骰子等赌博中的一些问题,但真正刺激概率论发展的是来自17世纪的赌博者问题。

数学家费马向法国数学家帕斯卡提出下列问题:现有两个赌徒相约赌若干局,谁先赢s局就算赢了,当赌徒A先赢a局(a<s),而赌徒B赢b局(b<s),赌博中止,那赌博怎么分才公平?随后他们二人从不同的方法出发,在1654年7月29号得出了这一问题的答案,三年后,荷兰数学家惠更斯(1629-1695)亦用自己的方法得出了答案,并写成《论赌博中的计算》一书,这便是概率论最早的论著,在他们三人的解法中都包含了数学期望这一概念,这也奠定了古典概率论的基础。

使概率论成为数学的一个分支的另一个奠基人是瑞士数学家雅各·伯努利(1654-1705)。

他的主要贡献是建立了概率论的第一个极限定理,即伯努利大数定律:在多次重复试验中,概率有趋于稳定的趋势。

1713年这个定理发表在他的遗著《猜度术》中。

1730年,法国数学家棣莫弗出版其著作《分析杂论》当中包含了著名的棣莫弗——拉普拉斯定理,这是概率论中第二个重要的极限定理的雏形。

接着拉普拉斯在其1812年出版的著作《概率的分析理论》中,首先明确的给出了这一定理的古典定义。

另外,他还和其他数学家共同建立了关于最小二乘法和正态分布的理论。

另一位在概率论发展史上的代表人物是泊松,他推广了伯努利大数定律,并提出了一种新的分布——泊松分布。

概率论在这之后一直集中于研究推广伯努利大数定律和研究中心极限定理。

1901年,中心极限定理被严格证明,这使得数学家们能够很好的解释为什么现实中很多分布都近似于正态分布的问题。

20世纪30年代,数学家们更多的研究随机过程,著名的马尔科夫过程在1931年才被重视。

在概率论的发展过程中,苏联数学家柯尔莫格洛夫做出了杰出的贡献。

到了近代,出现了理论概论与应用概论的分支,概率论已经发展成为数学的一个庞大分支。

从概率论的起源和发展看,概论都与赌博问题息息相关,可以说对于概率论的研究正是起源于赌博问题,同时赌博问题中也有很多概率问题值得我们研究。

本文将要利用概率论的知识研究赌博中包含的一些问题,揭示赌博的内在机制。

2.一个悖论——加倍赌注赌博赌博问题中有这样一个有意思的问题,就是加倍赌注赌博问题,即如果你想赢得1000元,你第一局下1000元,如果赢了,赌局结束,你得到了想要的1000元,如果输了,第二句就下2000元赌注,依次类推,每次输了下一局就下以前输掉的赌注加上1000元地两倍,我们假设输赢的概率是相等的,都是1/2,则由表1我们可以看到这个赌局的结果。

我们看到初始赌注是1000元,但是到第11局的时候已经是124000,而赌博者赢得他想要的1000元的概率是0.000488,这几乎已经是一个不可能事件;当进行到31局地时候,所需的赌注是1000*230这相当于一万亿,当然只要我们继续加倍赌注我们就能赢得我们想要的1000元,但是我们的资本不是无穷的,估计我们会在赢得1000元钱输掉所用的赌本。

3.主要结论与引理3.1主要前提假设(1)每一次单独的赌局都有负的期望值,使得长期赌局的累积期望一定为负。

(2)本金是有限的,即不存在加倍赌注赌博的情况出现。

(3)各个单独的赌局互相是不影响的,这是强调赌局的独立性。

(4)最小赌注限制,即每局赌局有最小允许的下注额,小于这个下注额的不能参加赌局。

3.2主要结论(1)长期赌博的结果注定是输。

(2)无论赌博者有多少钱,只要赌博者不断继续赌博,他的本金总会输光。

3.3定理(1)定理1:一个赌局出现的结果是有限的,x 1,x 2,x 3……,x n ,其每个结果对应的概率为f(x i )(i=1,2,3……,n),则数学期望为E=∑*nxi f xi 1)(,即为赌局的期望结果。

(2)定理2:最佳投注原理,即凯利规则(Kelly System ),假设一个赌局获胜的概率是P ,输的概率是1-P ,M 表示每局开始前你拥有的的钱,则最有投注原理是M ((P-(1-P)).4.实例分析4.1骰子问题(以三个骰子赌博为例)规则说明:一般采用三枚骰子和一个骰盅,分为开大开小,规定4点到10点为小,11点到17点为大。

若押小开小,则押小者胜,可获一倍彩金,押大者输,赌注归庄家所有;若押大开大,依此类推。

若庄家摇出三个骰子点数相同,则不论下注者押大押小都输。

I 庄家摇出三个骰子点数相同的概率:各点数组合共有6*6*6=216种,点数相同共有6种情况,所以概率为P=028.02166≈II 开小的概率,逐个分析4点的组合有(1,1,2),共有3种情况,所以概率为P=014.02163≈;5点的组合有(1,1,3),(1,2,2),共有6种情况,其概率为P=028.02166≈;6点的组合有(1,1,4),(1,2,3),共有9种情况,其概率为P=042.02169≈;7点的组合有(1,1,5),(1,2,4),(1,3,3),(2,2,3),共有15种情况,其概率为P=069.021615≈;8点的组合有(1,1,6),(1,2,5),(1,3,4),(2,2,4),(2,3,3),共有21种情况,其概率为P=097.021621≈;9点的组合有(1,2,6),(1,3,5),(1,4,4),(2,2,5),(2,3,4),共有24种情况,其概率为P=111.021624≈;10点的组合有(1,3,6),(1,4,5),(2,2,6),(2,3,5),(2,4,4),(3,3,4),共有27种情况,其概率为P=125.021627=;所以开小的概率为P=0.486;由此可知开大的概率为P=1-0.486-0.028=0.486。

III 实例:如果有一玩家,下注100元,规定100元只下一种情况,则其收益期望E=(200*0.486+0*0.514)-100=-2.8,由此可见其期望为负。

现在假设玩家可以随意决定下注多少且下注额可无限分割,但是最小下注额为1元,那么根据凯利规则可知,第一局下注2.8元(100*(0.514-0.486)),如果赢了,现在有102.8元,继续下注102.8*0.028=2.8784元;如果输了,现在有97.2元,继续下注2.7216元。

采用这一下注规则,第一,我们可以尽量降低全部输光的可能性;第二,这种方法能获得最高的期望收益;第三,利用这种方法能最快达成目标赢钱数。

4.2轮盘赌问题规则说明:轮盘游戏由一个轮盘,一个象牙制小球以及一张赌桌构成。

轮盘以转轴为中心转动,并且分为38个细长沟道(美式轮盘),36个沟道分别编号1-36,一半红色一半黑色,另外两个绿色沟道分别标记0,00。

玩家按照轮盘上的赌区下注,一旦赌桌上的赌注超过最小赌注,小球就会被掷进轮盘。

小球进入任一轨道并不再滚动,则赌局的输赢就确定了。

无论哪一局赌局,玩家所下的赌注都不能超过最大赌注。

美式轮盘有38个号码,如果你赌一个号码,你赢得的几率是37:1,如果你下注1元并且赢了,那么赌场应该赔你37元,这样就是公平的赌局;但是实际上,赌场只赔你35元,另外2元则留在赌场的口袋里,这就是赌场优势,即2/38=5.26%。

所以我们看到看似公平的赌局,在人为因素的介入下,往往获胜的是庄家,而玩家是真正的输家。

4.3玩转21点规则说明:21点一般用到1-8副牌,庄家给每个玩家发两张牌,牌面朝下;给自己发两张牌,一张牌面朝上(叫明牌),一张牌面朝下(叫暗牌)。

大家手中扑克点数的计算是:K、Q、J 和10 牌都算作 10 点。

A 牌既可算作1 点也可算作11 点,由玩家自己决定。

其余所有2 至9 牌均按其原面值计算。

首先玩家开始要牌,如果玩家拿到的前两张牌是一张 A 和一张10点牌,就拥有黑杰克(Blackjack);此时,如果庄家没有黑杰克,玩家就能赢得2倍的赌金(1赔2)。

没有黑杰克的玩家可以继续拿牌,可以随意要多少张。

目的是尽量往21点靠,靠得越近越好,最好就是21点了。

在要牌的过程中,如果所有的牌加起来超过21点,玩家就输了——叫爆掉(Bust),游戏也就结束了。

假如玩家没爆掉,又决定不再要牌了,这时庄家就把他的那张暗牌打开来。

庄家根据自己的情况拿牌,一般到17点或17点以上不再拿牌,但也有可能15到16点甚至12到13点就不再拿牌或者18到19点继续拿牌。

假如庄家爆掉了,那他就输了。

假如他没爆掉,那么你就与他比点数大小,大为赢。

一样的点数为平手,你可以把你的赌注拿回来。

如果拿牌拿到手中有5张牌,并且总数不到21点,那这种情况能压住一切牌型(当然5张加起来一共21点更好),但某些玩法中不支持此规则。

4.4彩票(Lottery)问题现在,我们常常听到“某某获得巨奖”的消息。

现在购买彩票的人数越来越多,所以研究彩票运行的机制就显得很有价值,而彩票与概率论有着不可分割的关系。

各种彩票对于自己的设奖金额都有规定。

设奖金额包括当期金额和调节金额。

调节基金用于浮动奖奖金保底、派发特别奖、支付各种不可预见的奖金支出等。

当期奖金总额减去奖金调节基金和固定奖总额剩余部分,构成浮动奖“彩池”,并确定浮动奖分配比例。

奖池由上期未中出的浮动奖奖金和超出一等奖单注封顶限额部分的奖金组成。

奖池与当期奖金中用于一等奖的部分及调节基金转入部分合并为一等奖奖金,即奖池只与一等奖有关。

现在在全国范围内发行的彩票有福利彩票和体育彩票两种。

其中福利彩票有刮刮乐、双色球、七乐彩、3D、29选7、35选7等;体育彩票包括七星彩、排列三、排列五、足彩胜负、半/全场进球、篮球彩票、22选5等。

I即开型彩票是指购票者在一个销售点一次完成购票和兑奖全过程的一种彩票,刮刮乐就属于这种类型。

这种彩票易于操作且安全性高,不易作弊,这种彩票没有太多的关于概率方面的研究。

II传统型彩票规则说明及奖项设置:2元一注,每一注填写一张彩票。

每张彩票由6位数字和一个特别号码组成。

每个数字均可填写0-9中的一个,特别号码为0、1、2、3、4中的一个。

每期设置6个奖项,投注者任意填写一个奖号。

中奖号码规定见下表2,以中奖号码为123456+1为例。

表2奖级中奖号码每注奖金每注中奖概率特等奖123456+1 (奖金总额-固定奖金)*65%/注数P0=5*1016=0.0000002金)*15%/注数P 1=5*1056=0.000001金)*20%/注数P 2=5*105*206=0.00002三等奖 有四个连续号码中的,共3组300元 P 3=5*105*3006=0.0003四等奖 有三个连续号码中的,共4组20元 P 4=5*105*40006=0.004五等奖 有两个连续号码中的,共5组5元 P 5=5*105*500006=0.05由表可知,每一注奖的中奖比例为%4.5543210≈+++++=P P P P P P P ,即每1000注彩票,约有54注中奖。

相关文档
最新文档