一用亚硫酸钠氧化法测定气液接触过程的体积传质系数
气液反应传质教学实验技术研究

关键词 : 实验 技 术 ; 气液 反 应 ; 质 传
实践环节在高等学校培养创新型人才规划 中 占有 十分 重 要 的 地位 ¨ 。专 业 实 验是 学 生在 专 ] 业基础课及其实验 的基础上 , 结合专业课 的学习所 开出 的具 有一 定 的研究 型与综 合 型的实 验 , 实验 在 中应体 现 出对 基础 理论 的巩 固 、 生创新 意识 与科 学 研 能力 的培养 。我们 在 多 年从 事气 液 两 相 流传 递 与反 应的科 研 基 础 上 , 究 开 发 出适 合 化 学 工 研 程与 工艺专 业本 科 生创 新 技 能 培 养 的研 究 型综 合 型教 学实 验 , 对创 新 型人才 培养 具有重 要意义 。 1 以 N 2O . aS 溶液 吸收纯 氧的 一级反 应动 力学 常数
维普资讯
( 27 0 0 年第4 年第 期
L B R … RY S I N E A O A O Y CE C T
2 7 月出 0 年8 版 0
气 液 反 应 传 质 教 学 实 验 技 术 研 究
孙 相 或 于 志 家 丁 洁
( 大连 理工大 学化 工学 院
t =0, ≥ , =0 Z C
边界条件为 := , C;  ̄ C= ,C= z 0 C= i - , 0 0 z 8 d
与一级 反应 的处理 方法 类似 , 解 扩散反 应方 求
t 0, 0 C=C =C > = , ;
t>0,_+a C =0 z 。,
(6 1)
( 0# @27-4 0 g期
实 验 室 科 学
D 2 0C
-
27 8 出 0# 月 版 0-
(5 1)
纯氧 , 其他反应条件不变 , 则反应对 0 为二级 , : 其 反应 扩散 方程 为 :
亚硫酸盐法测定容积氧传递系数汇总

变化,亦使KL·a值和C*值发生变化。当水温升高时,KL·a 值虽然增高,但C*值降低;反之,则KL·a值降低而C* 值升 高。它们二者随温度的变化是互相反向的,对氧转移速率的
影响有相互抵消的作用。因此,认真研究二者与温度之间的 关系在工程实践中是非常重要的。
0.05mol/L碘溶液的配制:18gkI溶于100ml水中加入6.346g I2定容到500ml 实际称量7.5gKI和3.75 I2,浓度为0.02mol/L,所以计算时应0.02mol/L来 计算氧气的消耗量。
根据表格中数据可看出氧吸收速率逐渐降低,可能由于同学取三角瓶时忘记 开启摇床降低氧传递效率。
溶氧系数的测定方法有许多种,概括起来可分为三大类,即 亚硫酸盐氧化法、动态法和稳态氧平衡法。本实验采用亚 硫酸盐氧化法,以Cu2+作为催化剂,溶解在水中的氧能 立即氧化其中的亚硫酸根离子,使之成为硫酸根离子。
2 2
• Nv:体积溶氧传递速率;(mol/ml·min) • KL·a:体积溶氧系数;(1/min) • C﹡:气相主体中含氧量;(mmol/L) • CL:液相主体中含氧量;(mmol/L) • △t:取样间隔时间;(min) • △V:△t内消耗的Na2S2O3ml数;(ml) • m:取样量;(ml) • N:Na2S2O3标准液的浓度;(mol/l)
25
2
4.45
120
25
2
4.73
140
25
2
5.22
160
25
2
5.79
180
25
2
6.15
时间h 单位体积氧气总消耗量mol Nv Kla
化工原理下册计算答案

j06a10013用不含溶质的吸收剂吸收某气体混合物中的可溶组分A ,在操作条件下,相平衡关系 为Y=mX 。
试证明:(L/V )min =m ?,式中?为溶质A 的吸收率。
j06a10103一逆流操作的常压填料吸收塔,用清水吸收混合气中的溶质A ,入塔气体中含A 1%(摩尔比),经吸收后溶质A 被回收了80%,此时水的用量为最小用量的1.5倍,平衡线的斜率为1,气相总传质单元高度为1m ,试求填料层所需高度。
j06a10104在常压逆流操作的填料吸收塔中用清水吸收空气中某溶质A ,进塔气体中溶质A 的含量为8%(体积%),吸收率为98%,操作条件下的平衡关系为y =2.5x ,取吸收剂用量为最小用量的1.2倍,试求:① 水溶液的出塔浓度;② 若气相总传质单元高度为0.6 m ,现有一填料层高为6m 的塔,问该塔是否合用?注:计算中可用摩尔分率代替摩尔比,用混合气体量代替惰性气体量,用溶液量代替溶剂量。
j06a10105在 20℃和 760 mmHg ,用清水逆流吸收空气混合气中的氨。
混合气中氨的分压为10mmHg ,经吸收后氨的分压下降到0.051 mmHg 。
混合气体的处理量为1020kg/h ,其平均分子量为28.8,操作条件下的平衡关系为y =0.755x 。
若吸收剂用量是最小用量的5 倍,求吸收剂的用量和气相总传质单元数。
j06a10106在常压逆流操作的填料塔内,用纯溶剂S 吸收混合气体中的可溶组分A 。
入塔气体中A 的摩尔分率为0.03,要求吸收率为95%。
已知操作条件下的解吸因数为0.8,物系服从亨利定律,与入塔气体成平衡的液相浓度为0.03(摩尔分率)。
试计算:① 操作液气比为最小液气比的倍数;② 出塔液体的浓度;③ 完成上述分离任务所需的气相总传质单元数N OG 。
j06a10107某厂有一填料层高为 3m 的吸收塔,用水洗去尾气中的公害组分A 。
测得浓度数据如图,相平衡关系为y =1.15x 。
生物反应工程实验

【注意事项】
(1)实验表明,反应速度只在最初一段时间内保持恒定,随着反应时间的延长,酶促反应速度逐渐下降。原因有多种,如底物浓度降低,产物浓度增加而对酶产生抑制作用并加速逆反应的进行,酶在一定pH及温度下部分失活等。因此,研究酶的活力以酶促反应的初速度为准。
(2)本实验是一个定量测定方法,为获得准确的实验结果,应尽量减少实验操作中带来的误差。因此配制各种底物溶液时应用同一母液进行稀释,保证底物浓度的准确性。各种试剂的加量也应准确,并严格控制准确的酶促反应时间。
五、爱护仪器、节约药品。仪器损坏后应立即报损,并按规定赔偿。
六、试验、药品、公用器具使用后应立即放回原处,注意不要调错试剂瓶塞或滴管,以免污染药品。
七、实验室必须安静,不得做与本次实验无关的事情:禁止吸烟及吃食物。
八、根据实验记录,及时完成实验报告,不按时交报告者,不予记录实验成绩。
九、实验完毕,值日生应将实验室打扫干净,关好水、电、门、窗,离开实验室时,检查一遍,以免发生事故,确保安全。
2Na2SO3+O2→2Na2SO4
H2O+Na2SO3+I2→Na2SO4+2HI
2Na2S2O3+ I2→Na2S4O6+2NaI
【实验器材】
(1)搅拌发酵罐(5L)(2)碱式滴定管
(3)碘量瓶(4)0.1mol·L-1碘液(5)0.1mol·L-1硫代硫酸钠(Na2S2O3)溶液
(6)无水亚硫酸钠(7)硫酸铜
实验九糖化酶的发酵(一)……………………………………………………………18
实验十糖化酶的发酵(二)……………………………………………………………19
实验十一糖化酶的发酵(三)……………………………………………………………21
级间隙高度和表观气速对多级环流反应器混合和传质的影响

级间隙高度和表观气速对多级环流反应器混合和传质的影响陶金亮;黄建刚;肖航;杨超;黄青山【摘要】针对应用广泛的简单多级环流反应器,研究了级间隙高度和表观气速对其混合和传质的影响规律.发现简单多级环流反应器的各级存在着非正常流动、过渡及正常流动三个典型流动状态,且流动状态的转变存在着受级间隙高度影响的两个临界表观气速,并提出了相应的预测模型.研究结果表明:级间隙高度越大,多级环流反应器内形成正常流型所需的表观气速越大;各级上升管和降液管的气含率会增高,且相同条件下第三级气含率最大,第二级次之,第一级气含率最小;各级的循环液速会增大,且第一级循环液速最大,第二级次之,第三级最小;混合时间会缩短,而传质系数会增大.本研究可为工业多级环流反应器的科学设计、放大和操作提供重要指导.【期刊名称】《化工学报》【年(卷),期】2018(069)007【总页数】13页(P2878-2889,封3)【关键词】多级环流反应器;级间隙高度;气含率;循环液速;传质;两相流【作者】陶金亮;黄建刚;肖航;杨超;黄青山【作者单位】河北工业大学化工学院,天津300130;河北工业大学化工学院,天津300130;中国科学院青岛生物能源与过程研究所,山东青岛266101;中国科学院青岛生物能源与过程研究所,山东青岛266101;中国科学院青岛生物能源与过程研究所,山东青岛266101;中国科学院过程工程研究所,中国科学院绿色过程与工程重点实验室,北京 100190;中国科学院青岛生物能源与过程研究所,山东青岛266101;中国科学院过程工程研究所,中国科学院绿色过程与工程重点实验室,北京 100190【正文语种】中文【中图分类】TQ021.1引言环流反应器是一类高效的气-液或气-液-固多相反应器[1],具有结构简单,传质和传热性能好,能耗低等优点[2-3]。
环流反应器是从鼓泡塔发展而来的,与鼓泡塔相比,其突出优点是反应器内的流体存在着定向流动,可显著减少液相的无规则流动,循环液速比较高[4]。
8. 化工原理 气体吸收 题目(含答案)

气体吸收-选择题(题目)层次:A(1) x08a02023只要组分在气相中的分压__________液相中该组分的平衡分压,吸收就会继续进行,直至达到一个新的平衡为止。
(A)大于(B)小于(C)等于(D)不等于(2) x08a02024对极易溶的气体,气相一侧的界面浓度y i__________y e。
(A)大于(B)等于(C)接近于(D)小于(3) x08a02025在吸收塔设计中,当吸收剂用量趋于最小用量时,____________________。
(A)回收率趋向最高;(B)吸收推动力趋向最大(C)操作最为经济;(D)填料层高度趋向无穷大(4) x08a02065逆流操作的填料吸收塔,当吸收因数A <1 且填料为无穷高时,气液两相将在————达到平衡。
(A 塔顶、B 塔底、 C 塔中部)(5) x08a02086选择题:(按 a.增加、b.减少、c.不变、d.不定, 填入括号内)随温度增加,气体的溶解度(),亨利系数E()。
(6) x08a02090选择题:(请按a.增加、b.减少、c.不变,填入括号内)对接近常压的低浓度溶质的气液平衡系统,当温度和压力不变,而液相总浓度增加时其溶解度系数H 将(),亨利系数E将()。
(7) x08a02099通常所讨论的吸收操作中,当吸收剂用量趋于最小用量时,_______。
(A)回收率趋向最高(B)吸收推动力趋向最大(C)操作最为经济(D)填料层高度趋向无穷大。
(8) x08a03091选择题:(请按a.增加、b.减少、c.不变,填入括号内)在常压下用水逆流吸空气中的CO2,若将用水量增加,则出口气体中的CO2含量将()气相总传质系数Ky 将(),出塔液体中CO2浓度将()。
(9) x08a03111选择题:(按 a.增加、b.减少、c.不变、d.不定, 填入括号内)双组分理想气体进行定常单向扩散,如维持气相各部分p不变,则在下述情况下,气相中的传质通量N A将如何变化?⑴总压增加,N A();⑵温度增加,N A();⑶气相中惰性组分的摩尔分率减少,则N A()。
一用亚硫酸钠氧化法测定气液接触过程的体积传质系数

《生物反应工程》实验讲义及实验报告班级:学号:姓名:成绩:实验一游离酶与固定化酶酶学性质比较实验目的:掌握测定酶动力学参数的实验方法,作图法计算酶动力学参数,掌握固定化酶的方法,以及固定化酶后动力学参数的变化。
实验原理:要建立一个完整的酶动力学方程,必须要通过动力学实验确定其动力学参数。
对M—M方程,就是要确定rmax和Km值。
但直接应用M—M方程求取动力学参数所遇到的主要困难在于该方程为一非线性方程。
为此常将该方程加以线性化,通过作图法直接求取动力学参数。
通常有下述几种作图方法。
Lineweaver—Burk法(简称L-B法)。
将M—M方程取其倒数得到下式:(1)以1/rs对1/Cs作图可得一直线,该直线斜率为Km/rmax,直线与纵轴交于1/rmax,与横轴交于一1/Km。
此法又称双倒数图解法。
Hanes—Woo1f法(简称H—W法)。
将式(1)两边均乘以Cs得到(2)以Cs/rs对Cs作图,得一斜率为1/rmax的直线,直线与纵轴交点为Km/rmax,与横轴交点为一Km。
(3)Eadie—Hofstee法(简称E-H法)。
将M—M方程重排为(3)以rs对rs/Cs作图,得一斜率为一Km的直线,它与纵铀交点为rmax,与横轴交点为rmax/Km。
固定化酶亦称固相酶或水不溶酶。
它是通过物理或化学的方法使溶液酶转变为在一定的空间内其运动受到完全约束、或受到局部约束的一种不溶于水,但仍具活性的酶。
它能以固相状态作用于底物进行催比反应。
固定化酶的主要优点是,在催化反应以后很容易从反应系统中分离出来,不仅固定化酶可以反复使用,而且产物不受污染容易精制,固定化后的酶大多数情况下其稳定性增加,仅有少数的稳定性下降,固定化酶有一定的形状和一定的机械强度,可以装填在反应器中长期使用,便于实现生产连续化和自动化。
固定化酶的制备方法可分为吸附法、交联法、共价法、包埋法四大类。
如果固定化酶的动力学仍服从M—M方程,则可通过动力学参数Km与rmax值的大小来反映酶在固定化前后活性的变化。
亚硫酸盐氧化法测量体积溶氧系数KL

亚硫酸盐氧化法测量体积溶氧系数K L·a由双膜理论导出的体积溶氧传递方程:N v= K L·a(c﹡-c L) ( 1 ) 是在研究通气液体中传氧速率的基本方程这一,该方程指出:就氧的物理传递过程而言,溶氧系数KL·a的数值,一般是起着决定性作用的因素。
所以,求出KL·a作为某种反应器或某一反应条件下传氧性能的标度,对于衡量反应器的性能,控制发酵过程,有着重要意义。
一、实验目的:1、了解Na2SO3测定K L·a的原理,并用该法测定摇瓶的K L·a;2、了解摇瓶的转数(振幅、频率)对体积溶氧系数K L·a的影响。
二、原理:在有Cu2+存在下,O2与SO3快速反应生成SO4。
Cu2+2 Na2SO3 + O2 ===== 2Na2SO4(2 )并且在20~45℃下,相当宽的SO3浓度范围(0.017~0.45mol/L)内,O2与SO3的反应速度和SO3的浓度无关。
利用这一反应特性,可以从单位时间内被氧化的SO3量求出传递速率。
当反应(2)达稳态时,用过量的I2与剩余的Na2SO3作用Na2SO3+ I2+ H2O ===== Na2SO4+ 2HI (3 )再以Na2S2O3滴定过剩的I22Na2S2O3+ I2===== Na2S4O6+ 2NaI (4 )由反应方程(2)、(3)、(4)可知,每消耗4mol Na2S2O3相当于1mol O2被吸收,故可由Na2S2O3的耗量求出单位时间内氧吸收量。
N v=△V·N/(m·△t·4·1000) (mol/ml·min)在实验条件下,P=1atm, c﹡=0.21mmol/L, cL=0mmol/L 据方程(1)有:K L·a = N v / c﹡(1/min)使用符号:N v:体积溶氧传递速率;(mol/ml·min)K L·a:体积溶氧系数;(1/min)c﹡:气相主体中含氧量;(mmol/L):液相主体中含氧量;(mmol/L)cL△ t:取样间隔时间;(min)△ V:△t内消耗的Na2S2O3ml数;m:取样量;(ml)N: Na2S2O3标准的摩尔浓度;(mol/L)三、仪器与试剂:1、摇瓶机;2、三角瓶:500ml一只,100ml 两只;移液管:20ml,5ml各一只;碱式滴定管:一只;3、试剂:①2%可溶淀粉指示剂;(称取2克可溶性淀粉,然后用少量蒸馏水调匀,徐徐倾入已沸的蒸馏水中,煮沸至透明,冷却定容至100毫升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《生物反应工程》实验讲义及实验报告班级:学号:姓名:成绩:实验一游离酶与固定化酶酶学性质比较实验目的:掌握测定酶动力学参数的实验方法,作图法计算酶动力学参数,掌握固定化酶的方法,以及固定化酶后动力学参数的变化。
实验原理:要建立一个完整的酶动力学方程,必须要通过动力学实验确定其动力学参数。
对M—M方程,就是要确定r max和K m值。
但直接应用M—M方程求取动力学参数所遇到的主要困难在于该方程为一非线性方程。
为此常将该方程加以线性化,通过作图法直接求取动力学参数。
通常有下述几种作图方法。
Lineweaver—Burk法(简称L-B法)。
将M—M方程取其倒数得到下式:(1)以1/r s对1/C s作图可得一直线,该直线斜率为K m/r max,直线与纵轴交于1/r max,与横轴交于一1/K m。
此法又称双倒数图解法。
Hanes—Woo1f法(简称H—W法)。
将式(1)两边均乘以Cs得到(2)以C s/r s对C s作图,得一斜率为1/r max的直线,直线与纵轴交点为K m/r max,与横轴交点为一K m。
(3)Eadie—Hofstee法(简称E-H法)。
将M—M方程重排为(3)以r s对r s/C s作图,得一斜率为一K m的直线,它与纵铀交点为r max,与横轴交点为r max/K m。
固定化酶亦称固相酶或水不溶酶。
它是通过物理或化学的方法使溶液酶转变为在一定的空间内其运动受到完全约束、或受到局部约束的一种不溶于水,但仍具活性的酶。
它能以固相状态作用于底物进行催比反应。
固定化酶的主要优点是,在催化反应以后很容易从反应系统中分离出来,不仅固定化酶可以反复使用,而且产物不受污染容易精制,固定化后的酶大多数情况下其稳定性增加,仅有少数的稳定性下降,固定化酶有一定的形状和一定的机械强度,可以装填在反应器中长期使用,便于实现生产连续化和自动化。
固定化酶的制备方法可分为吸附法、交联法、共价法、包埋法四大类。
如果固定化酶的动力学仍服从M—M方程,则可通过动力学参数K m与r max值的大小来反映酶在固定化前后活性的变化。
仪器与试剂:分光光度计、水浴锅、酸性磷酸酯酶、磷酸苯二钠、酚标准液、碳酸钠溶液、费林-酚试剂、卡拉胶实验步骤及数据记录:1、酚标准曲线的绘制。
取9只试管,按照0-8的顺序编号,0号为空白管。
按照下表的过程进行操作:管号0 1 2 3 4 5 6 7 80.4mmol/L酚标准液0 mL 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8蒸馏水 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 1mol/L碳酸钠溶液 2 2 2 2 2 2 2 2 2 费林-酚试剂0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.535℃显色10minA6802、酶动力学参数的求取。
取7只试管,按照0-6的顺序编号,0号为空白管。
按照下表的过程进行操作:℃管号0 1 2 3 4 5 65mmol/L磷酸苯二钠溶液0 0.1 0.15 0.2 0.3 0.4 0.50.5 0.4 0.45 0.3 0.2 0.1 00.2mol/LpH5.6乙酸盐缓冲液酶液0.5 0.5 0.5 0.5 0.5 0.5 0.535℃反应15min1mol/L碳酸钠溶液 2 2 2 2 2 2 2 费林-酚试剂0.5 0.5 0.5 0.5 0.5 0.5 0.535℃显色10minA6803、酶固定化及动力学参数测定。
称取0.8g卡拉胶,溶解在20mL水中,加热煮沸,冷却到50-60℃。
将在水浴锅中保温好的酶液5mL倒入,并搅拌均匀,冷却,待完全固化后,用5%的KCl 溶液浸泡30 min。
将浸泡好的固定化酶取出,滤纸吸干,用小刀将其切成3×3mm的小块。
称取固定化酶5g共6份,取6只50mL三角瓶,按照下表过程操作:三角瓶号0 1 2 3 4 55mmol/L磷酸苯二钠溶液0 1 3 5 7 90.2mol/LpH5.6乙酸盐缓冲10 9 7 5 3 1液固定化酶 5 5 5 5 5 535℃摇床反应15min1mol/L碳酸钠溶液 2 2 2 2 2 2费林-酚试剂0.5 0.5 0.5 0.5 0.5 0.535℃显色10minA680实验结果处理分析:绘制酚标准曲线计算游离酶动力学参数CsA680酚含量r s1/Cs1/r sCs /r sr s /Cs计算固定化酶动力学参数CsA680酚含量r s1/Cs1/r sCs /r sr s /Cs游离酶和固定化酶酶活力比较:游离酶方法L-B H-W E-H参数K m r max K m r max K m r max固定化酶方法L-B H-W E-H参数K m r max K m r max K m r max酶活回收率有效因子分析和讨论:1、动力学参数作图法求取的方法有那些?分别考虑其误差来源。
(预习时填写)2、固定化酶的方法有那些?本实验中采用的方法是什么?有什么优点?实验二用亚硫酸钠氧化法测定气液接触过程的体积传质系数实验目的:在非发酵情况下,用亚硫酸钠氧化法来测定发酵罐通气或搅拌时的体积传质系数,从而考察通气、搅拌等因素对发酵罐内气液接触过程的体积传质系数的影响。
仪器与试剂:1、发酵罐(搅拌或气升式)2、碘量瓶3、移液管(1mL)4、烧杯(50mL、2000 mL)5、0.1mol·L-1碘液6、0.1 mol·L-1硫代硫酸钠(Na2S2O3)溶液7、无水亚硫酸钠8、硫酸铜实验原理亚硫酸钠溶液,在铜或钴离子作为催化剂的作用下,能与液相中的溶解氧迅速反应,使亚硫酸根离子氧化为硫酸根离子,其氧化反应速度在较大范围内与亚硫酸根离子浓度无关。
由于氧是较难溶解于水的气体,因而氧的溶解速度要比液相中的氧的消耗速度慢的多,因此氧分子一经渗入液相,就立即被还原,所以可以认为,在整个实验中,液相中的氧浓度可视为零,即有:在25℃及0.1MPa下,亚硫酸钠溶液中,经测定C*=0.21mgO2·L-1。
所以从上式可以看出,只要测得值,就可以计算出。
实验时,在搅拌罐中配制一定浓度的亚硫酸钠溶液,其体积视发酵罐的大小而定;在搅拌通气或通气情况下,加入少量催化剂,计时,取不同时刻的试样与过量的碘溶液作用,多余的碘用表定过的硫代硫酸钠来滴定,根据消耗的硫代硫酸钠溶液的体积,可以计算出单位时间内氧的溶解量值。
上述过程的反应式如下:实验步骤:1、发酵罐清洗,试运转,(对气升式发酵罐要确定其最佳装液量)2、装罐实验:准确称取31.5g亚硫酸钠,放置烧杯中,用1L水溶解,待亚硫酸钠全部溶解后,倒入发酵罐中;准确称取0.5g硫酸铜并溶解于少量水中,将硫酸铜溶液倒入发酵罐中;在室温下,开动搅拌通气或通气搅拌,调节搅拌转速n和通气量Q;开始计时,每隔一定时间(5min)取样1mL分析其中的亚硫酸钠含量(取5个样),测定其中的亚硫酸钠含量。
调节通气量或搅拌转速,重复上面的实验,要求改变实验条件,做3个条件实验。
数据记录:实验结果记录表按照记录数据进行绘图:数据处理:按照上面的数据,计算和条件转速:气量:转速:气量:转速:气量:转速:气量:转速:气量:转速:气量:)()(绘制转速n和关系图,或气量Q和关系图分析和讨论:3、讨论分析转速、通气量、亚硫酸钠浓度等因素对发酵罐体积传质系数的影响,如何根据测定数据计算氧消耗速率和体积传质系数;(预习时填写)4、试分析实验过程中的主要误差来源,并提出今后实验改进的意见。
实验三微生物反应器的反应性能试验实验目的:进一步了解和掌握生物反应器BSTR和CSTR的反应性能,了解和掌握微生物菌体在反应器中生长的规律,并了解反应器的有关操作。
实验原理:间歇搅拌釜式反应器是一类常用的微生物反应器。
其主要特征是分批进料和卸料,因此其操作试剂由两部分组成:一是进行反应所需的时间,即开始进行反应直至达到所要求的反应程度为止所需的时间。
由于搅拌的作用,反应器内的物料充分混合,浓度均匀,反应器内物系的组成仅随反应时间而变。
对于菌体浓度而言,随着反应的进行,微生物菌体的浓度不断增加,其菌体浓度变化的规律基本上符合Monod方程。
连续搅拌釜式反应器也是一类微生物反应器,其反应性能和间歇反应器有明显的不同。
其主要特征是,反应物连续稳定地加入到反应器中,同时反应产物也连续稳定地流出反应器,并保持反应体积不变。
当反应器操作达到稳定时,反应器内物系的组成不随时间而变,同时由于反应器内的搅拌,使得物系在空间上达到充分混合,物系组成也不随空间位置而变,此时反应器内物系的组成和反应器出口的组成相同。
对应于一定的进料流量,反应器内的物系有一定的组成,对于菌体浓度而言,随着流量的增大,菌体浓度变小,当进料流量达到一定值时,反应器内的菌体浓度可以为零,这时称为反应器操作的洗出点。
设备和试剂1、微生物反应器2、可见分光光度计3、微型计量泵(蠕动泵)4、酒精酵母种子培养液5、葡萄糖实验步骤:1、反应培养基配制:培养基配方:葡萄糖20g/L、硫酸铵4 g/L、蛋白胨5 g/L、磷酸二氢钾1 g/L、硫酸镁0.5 g/L、氯化钙0.2 g/L、酵母膏1 g/L2、反应器反应性能试验:A:间歇反应试验:加入一定体积的反应培养基,按10%的接种量加入酒精酵母种子液。
30℃,控制一定的搅拌转速和通气量进行反应。
每隔半小时,取一定量的反应液,测定其OD值。
B:连续反应试验:在间歇反应一定时间后,控制反应器内的反应体积在一较小值,在间歇反应条件下,用蠕动泵连续加入培养基,并控制出料阀门,使出料量等于进料量,以维持反应器内的液面位置不变,这时反应器在某一稀释率下进行连续反应。
当一定时间后连续反应达到稳定时,取样分析反应液的OD值。
调节进料流量和出料流量,使连续反应器在另一稀释率下反应。
流量的调节是从小到大,直至某一流量下反应器的操作达到洗出,完成试验。
分析方法:取5mL反应液,用水稀释50mL,用水作为对比,在可见分光光度计上在540nm 处测定其OD值。
数据记录:间歇实验结果记录表间歇实验结果记录表30min 40 min 30min 40 min 30min 40 min C glucoseOD数据处理:1、间歇反应菌体浓度随时间变化的曲线和连续反应菌体浓度随加料流量变化曲线,2、根据图中数据计算:μKs μ(1h)μ(3h)μ(6h)max分析和讨论:1、间歇培养过程中迟滞期的长短如何调整?如何判断连续培养中洗出点?(预习时填写)2、经实验数据可知,在连续培养过程中,什么情况下达到最佳稀释率?洗出点的稀释率为多少?实验四停留时间分布的测定实验目的:采用示踪法测定反应器的停留时间分布,了解发酵罐内流体的混合特性,有利于发酵罐的设计和操作。