数学模型第三版》学习笔记
数学模型第三版课后答案

《数学建模》习题解答第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
数学模型第三版课后习题答案.doc

《数学模型》作业解答第七章( 2008 年 12 月 4 日)1.对于节蛛网模型讨论下列问题:( 1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 k 1时段的价格y k 1由第k 1 和第 k 时段的数量x k 1和x k决定,如果仍设x k 1仍只取决于 y k ,给出稳定平衡的条件,并与节的结果进行比较.( 2)若除了 y k 1 由 x k 1 和 x k 决定之外, x k 1 也由前两个时段的价格析稳定平衡的条件是否还会放宽 .解:( 1)由题设条件可得需求函数、供应函数分别为:yk 1f xk 1x k)(2x k 1h( y k )在 P 0 (x 0 , y 0 )点附近用直线来近似曲线 f , h ,得到y k 1y 0 (xk 1x k x 0 ),2xk 1x 0( y ky 0 ) ,由( 2)得x k 2 x 0( y k 1y 0 )( 1)代入( 3)得xk 2x 0(xk 1xkx 0 )22x k 2 x k 1 x k 2x 0 2x 0对应齐次方程的特征方程为22() 2 8特征根为1, 24y k 和 y k 1 确定 . 试分(1)( 2)(3)当8 时,则有特征根在单位圆外,设8 ,则1,2( ) 2( ) 2 84224 1,212即平衡稳定的条件为2与 P 207的结果一致 .( 2)此时需求函数、供应函数在P 0 (x 0 , y 0 ) 处附近的直线近似表达式分别为:y k 1y 0( x k 1 x kx 0 ),( 4)2xk 1x 0( y ky k 1y 0 ) ,( 5)2由( 5)得, (xx 0) β(yyyk 1y 0)( 6 )2 k 3k 2将( 4)代入( 6),得2( x k 3 x 0 )(xk 2xk 1x 0 )(x k 1xkx 0 )224 x k 3x k 2 2 x k 1x k4 x 04x 0对应齐次方程的特征方程为43 220 (7)代数方程( 7 )无正实根,且αβ ,,24不是( 7)的根 . 设( 7)的三个非零根分别为 1, 2, 3,则12341 22 331212 34对( 7)作变换:, 则123q 0,p其中 p1(22 2), q1(833 2 2)412412361q( q ) 2 ( p ) 3q( q )2( p33) 32232 23用卡丹公式:2w 3q( q ) 2 ( p )3 w 2 3q( q ) 2 ( p ) 322322 3 3w23q( q ) 2 ( p )3w 3q( q ) 2 ( p ) 3223223其中 w1i 3 ,2求出 1,2,3 ,从而得到1 ,2 ,3 ,于是得到所有特征根 1的条件 .2.已知某商品在 k 时段的数量和价格分别为 x k 和 y k ,其中 1 个时段相当于商品的一个生产周期 . 设该商品的需求函数和供应函数分别为y kf (x k ) 和 x k 1g(yky k 1) . 试建2立关于商品数量的差分方程模型,并讨论稳定平衡条件 .解:已知商品的需求函数和供应函数分别为y kf (x k ) 和 x k 1g (yky k 1 ) .2设曲线 f 和 g 相交于点 P 0 (x 0 , y 0 ) ,在点 P 0 附近可以用直线来近似表示曲线f 和g :y k y 0 ( x k x 0 ) ,----------------------( 1)x k1x 0( y ky k 1 y 0 ) , 0--------------------( 2)2从上述两式中消去y k 可得2x k 2xk 1x k 2(1)x 0 , k 1,2, , -----------(3)上述( 3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程 .为了寻求 P 0 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:2 2容易算出其特征根为() 2 8 1,24---------------( 4)当8 时,显然有2( ) 28----------- ( 5)44从而 22,2 在单位圆外.下面设8 ,由 (5) 式可以算出1, 22要使特征根均在单位圆内,即1, 21 ,必须2 .故 P 0 点稳定平衡条件为2 .3. 已知某商品在 k 时段的数量和价格分别为 x k 和 y k ,其中 1 个时段相当于商品的一个生产周期 . 设该商品的需求函数和供应函数分别为y k 1f (xk1x k) 和 x k 1g ( y k ) . 试建2立关于商品数量的差分方程模型,并讨论稳定平衡条件 .解:已知商品的需求函数和供应函数分别为y k1f ( x k 1x k) 和 x k 1 g( y k ) .2设曲线 f 和 g 相交于点( x 0 , y 0 ),在点 0 附近可以用直线来近似表示曲线f 和g :P Py k 1y 0(xk 12 x kx 0 ) ,0 --------------------( 1)x k1x 0 ( y ky 0 ) ,--- ----------------( 2) 由( 2)得 x k2 x 0( y k1y 0 )--------------------( 3)( 1)代入( 3),可得 x k2x 0( x k1x kx 0 )22x k2x k 1x k 2x 0 2 x 0 , k 1,2, , --------------(4)上述( 4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程 .为了寻求 P 0 点稳定平衡条件,我们考虑( 4)对应的齐次差分方程的特征方程:22容易算出其特征根为() 2 8 1,24---------------( 4)当8 时,显然有2 ( ) 2 8----------- ( 5)4 4从而22, 2 在单位圆外.下面设8 ,由(5) 式可以算出1, 22 要使特征根均在单位圆内,即1, 2 1 ,必须 2 .故 P0点稳定平衡条件为 2 .《数学模型》作业解答第八章( 2008 年 12 月 9 日)1.证明节层次分析模型中定义的n 阶一致阵 A 有下列性质:(1) A 的秩为1,唯一非零特征根为n ;(2) A 的任一列向量都是对应于n 的特征向量.证明:(1)由一致阵的定义知: A 满足a ij a jk a ik , i, j , k 1,2, , n于是对于任意两列i, j ,有a ika jka ij ,k 1,2, ,n . 即i列与j 列对应分量成比例.从而对 A 作初等行变换可得:b11 b12 b1n初等行变换0 0 0A B0 0 0这里 B 0.秩B1 ,从而秩 A 1再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P,使 PA B ,于是c 11 c12c1nPAP 1 BP 1 0 0 0 C0 0 0易知 C的特征根为c11,0, ,0 (只有一个非零特征根).又A ~C ,A 与 C 有相同的特征根,从而 A 的非零特征根为 c 11 ,又 对于任意矩阵有12 nTr Aa11a22ann1 11n . 故 A 的唯一非零特征根为 n .a 1k, a2kT1,2, , n(2)对于 A 的任一列向量, , a nk , k有na 1 jajkna 1kna 1 kj 1 j 1na 2 jajk na2 kna 2 kTn a 1k , a 2kTA a 1k , a 2k , , a nkj 1 j 1, , a nknnna nka njajkankj 1j 1A 的任一列向量 a 1k , a 2k , , a nk T 都是对应于 n 的特征向量 .7. 右下图是 5 位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出 5 位选手的名次 .解:这个 5 阶竞赛图是一个5 阶有向 Hamilton 图 . 其一个有2向 Hamilton 圈为 314523. 所以此竞赛图是双向连通的 .4 5 1 2 32 4 53 11353 1243 14 52等都是完全路径 .此竞赛图的邻接矩阵为0 1 0 1 00 0 1 1 05A1 0 0 040 0 1 0 11 1 1 0 0令 e 1,1,1,1,1 T,各级得分向量为S1Ae 2,2,1,2,3 T,S2AS S 3AS 27,6,4,7,9 T ,S 4AS14,3,2,4,5 T ,313,11,7,13,17 T由此得名次为5, 1( 4), 2,3(选手1和4名次相同).注:给 5 位网球选手排名次也可由计算 A 的最大特征根和对应特征向量S 得到:1.8393,S0.2137,0.1794,0.1162,0.2137,0.2769 T数学模型作业( 12 月 16 日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层越海方案的最优经济效益准则层省收岸间当地建筑时入商业商业就业方案层建桥梁修隧道设渡轮2.简述层次分析法的基本步骤 . 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪 3 个层次?具体内容分别是什么?答:层次分析法的基本步骤为:( 1).建立层次结构模型;( 2).构造成对比较阵;( 3).计算权向量并做一致性检验;( 4).计算组合权向量并做组合一致性检验.对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3 个层次 .目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位 3 等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪 3 个层次?试给出一致性指标的定义以及n 阶正负反阵 A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这 3 个层次;一致性指标的定义为:CIn .n阶正互反阵A 是一致阵的充要条件为:A 的最大特征根n 1=n .第九章( 2008 年 12 月 18 日)1.在 9.1节传送带效率模型中 , 设工人数 n 固定不变 . 若想提高传送带效率D, 一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子, 其它条件不变, 于是每个工人在任何时刻可以同时触到两只钩子, 只要其中一只是空的, 他就可以挂上产品, 这种办法用的钩子数量与第一种办法一样. 试推导这种情况下传送带效率的公式, 从数量关系上说明这种办法比第一种办法好.解: 两种情况的钩子数均为2m .第一种办法是 2m 个位置,单钩放置2m 个钩子;第二种办法是 m 个位置,成对放置 2m 个钩子.① 由 9.1节的传送带效率公式,第一种办法的效率公式为2m 1nD11n2m当n较小, n1时,有2mD2m 1 11 n n 1 1 n 1n2m 8m 24mD 1 E,nE4m② 下面推导第二种办法的传送带效率公式:对于 m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的 m 个钩对.任一只钩对被一名工人接触到的概率是1 ;m 1任一只钩对不被一名工人接触到的概率是1;1, q 1 1m记 p.由工人生产的独立性及事件的互不相容性.得,任一钩对为空m m的概率为 q n,其空钩的数为2m ;任一钩对上只挂上1件产品的概率为npq n 1,其空钩数为 m .所以一个周期内通过的2m 个钩子中,空钩的平均数为2m q n m npq n 1 m 2q n npq n 1于是带走产品的平均数是2m m 2q n npq n 1 ,未带走产品的平均数是n 2m m 2q n npq n 1 )此时传送带效率公式为m 2q n npq n 1 nn 1n 1D ' 2m m 2 2 1 1 1n n m m m ③ 近似效率公式:nn n n 1 1 n n 1 n 2 1 由于 11 1m 2 m2 6 m3m1 n 1n 1 n 1 n 2 11 1m m 2 m2D ' 1 n 1 n 2 6m2当 n 1时,并令 E' 1 D' ,则E'n26m 2④ 两种办法的比较:由上知: En , E' n 26m24mE'/ E 2n ,当 m n 时,2n 1 ,E' E .3m 3m所以第二种办法比第一种办法好.《数学模型》作业解答第九章( 2008 年 12 月 23 日)一报童每天从邮局订购一种报纸,沿街叫卖. 已知每100 份报纸报童全部卖出可获利7 元. 如果当天卖不掉,第二天削价可以全部卖出,但报童每100 份报纸要赔 4 元 . 报童每天售出的报纸数 r 是一随机变量,其概率分布如下表:售出报纸数 r (百份)0 1 2 3 4 5 概率 P(r ) 0. 05试问报童每天订购多少份报纸最佳( 订购量必须是100 的倍数 ) ?解:设每天订购 n 百份纸,则收益函数为f ( r ) 7r ( 4)(n r ) r n 7n r nn收益的期望值为G(n) = (11r 4n) P( r ) + 7n P(r )r 0 r n 1现分别求出n = 0,1,2,3,4,5 时的收益期望值.G(0)=0 ; G(1)= 4 × +7× +7×( +++) =;G(2)= ( 8 0.05 3 0.1 14 0.25 ) 14 (0.35 0.15 0.1) 11.8; G(3)=( 12 0.05 1 0.1 10 0.25 21 0.35 ) 21 (0.15 0.1) 14.4G(4)=( G(5)=16 0.05 5 0.1 6 0.25 17 0.35 28 0.15 ) 28 0.1 13.15 20 0.05 9 0.1 2 0.25 13 0.35 24 0.15 35 0.1 10.25当报童每天订300 份时,收益的期望值最大.数模复习资料第一章1.原型与模型原型就是实际对象. 模型就是原型的替代物. 所谓模型 ,按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象. 如航空模型、城市交通模型等.直观模型如玩具、照片等形象模型如某一试验装置物理模型模型思维模型如某一操作抽象模型符号模型如地图、电路图数学模型2.数学模型对某一实际问题应用数学语言和方法, 通过抽象、简化、假设等对这一实际问题近似刻划所得的数学d 2 x结构 , 称为此实际问题的一个数学模型 . 例如力学中着名的牛顿第二定律使用公式F m dt 2 来描述受力物体的运动规律就是一个成功的数学模型. 或又如描述人口N t 随时间 t 自由增长过程的微分dN t方程rN t .dt3.数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程. 更具体地说 , 数学建模是指对于现实世界的某一特定系统或特定问题, 为了一个特定的目的, 运用数学的语言和方法, 通过抽象和简化 , 建立一个近似描述这个系统或问题的数学结构 ( 数学模型 ), 运用适当的数学工具以及计算机技术来解模型 , 最后将其结果接受实际的检验 , 并反复修改和完善 .数学建模过程流程图为:实际抽象、简化、假设数学地、数值地归结问题确定变量、参数求解模型数学模型估计参数否检验模型是( 用实例或有关知评价、推广并交付使用符合否?产生经济、社会效益识 )4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用5.数学模型的分类数学模型可以按照不同的方式分类, 常见的有:人口模型交通模型环境模型(污染模型)a. 按模型的应用领域分类数学模型生态模型城镇规划模型水资源模型再生资源利用模型b.按建模的数学方法分类初等数学模型几何模型微分方程模型数学模型图论模型组合数学模型概率模型规划论模型描述模型分析模型预报模型c. 按建模目的来分类数学模型优化模型决策模型控制模型d. 层次分析法的基本步骤: 1. 建立层次结构模型2. 构造成对比较阵 3. 计算权向量并作一致性检验 4. 计算组合权向量并作组合一致性检验阶正互反正 A 是一致阵的充要条件为 A 的最大特征值为nf. 正互反阵最大特征根和特征向量的实用算法:幂法、和法、根法4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变. 试构造模型并求解 .解:设椅子四脚连线呈长方形ABCD. AB与 CD的对称轴为x轴,用中心点的转角表示椅子的位置 . 将相邻两脚 A、B与地面距离之和记为 f ( ) ;C、D与地面距离之和记为g ( ) .并旋转 1800 . 于是,设f (0) 0, g(0) 0, 就得到 g 0, f 0.数学模型:设 f 、 g 是0,2 上的非负连续函数. 若0,2 , 有f g 0 , 且 g 0 0, f 0 0, g 0, f 0 , 则0 0,2 , 使f 0g 0 0 .模型求解: 令h( ) f ( ) g( ). 就有h(0) 0,h( ) f ( ) g( ) 0 g( ) 0 .再由 f , g 的连续性 , 得到h 是一个连续函数 . 从而 h 是 0, 上的连续函数. 由连续函数的介值定理:0 0, , 使h 00 .即00,, 使f0g00 .又因为0,2, 有f g0 .故 f0g00 .9.(1)某甲早8: 00 从山下旅店出发,沿一条路径上山,下午5: 00 到达山顶并留宿.次日早 8:00 沿同一路径下山,下午5:00 回到旅店 . 某乙说,甲必在两天中的同一时刻经过路径中的同一地点. 为什么?(2) 37 支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者进入下一轮,直至比赛结束 . 问共需进行多少场比赛,共需进行多少轮比赛 . 如果是n支球队比赛呢?解:( 1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标,第一天的行程x(t) 可用曲线()表示,第二天的行程x(t) 可用曲线()表示,()()是连续曲线必有交点p0 (t0 , d 0 ),两天都在 t0时刻经过 d0地点.xd方法二:设想有两个人,()一人上山,一人下山,同一天同p0时出发,沿同一路径, 必定相遇 .d0()t早 8t0晚5 方法三:我们以山下旅店为始点记路程, 设从山下旅店到山顶的路程函数为 f (t ) (即t时刻走的路程为 f (t) ) ,同样设从山顶到山下旅店的路函数为g (t) ,并设山下旅店到山顶的距离为 a ( a >0).由题意知: f (8) 0, f (17) a , g (8) a , g(17) 0 .令 h(t) f (t) g(t) ,则有 h(8)f (8) g (8)a 0 , h(17) f (17) g (17 ) a0 ,由于 f (t ) , g (t ) 都是时间 t 的连续函数,因此h(t )也是时间 t 的连续函数,由连续函数的介值定理,t0[8,17] , 使 h(t0 ) 0 ,即 f (t0 )g(t0 ) .( 2)36 场比赛,因为除冠军队外,每队都负一场; 6 轮比赛,因为 2 队赛 1 轮, 4 队赛 2轮,32队赛 5轮. n 队需赛n 1 场,若2k 1 n 2k ,则需赛k 轮.2.已知某商品在k 时段的数量和价格分别为x k和 y k,其中 1 个时段相当于商品的一个生产周期 . 设该商品的需求函数和供应函数分别为yk 1 f (xk 1xk ) 和 x k1g ( y k ) .试建2立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为y k 1 f ( x k 1xk ) 和 x k 1 g( yk ) .2设曲线 f 和g相交于点 P0 (x0 , y0 ) ,在点 P0 附近可以用直线来近似表示曲线 f 和g:y k 1y0 ( x k 1 x k x0 ) , 0 -------------------- ( 1)2x k 1 x0 ( y k y0 ) , 0 --- ---------------- ( 2)由( 2)得x k 2 x0 ( y k 1 y0 ) -------------------- ( 3)( 1)代入( 3),可得x k 2 x0 (xk 1 x k x0 )22x k 2 xk 1 x k 2x0 2 x0 , k 1,2, , -------------- (4)上述( 4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求 P0点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:2 2 0容易算出其特征根为( ) 2 8( 5)1,2 4 ---------------当8 时,显然有2 ( ) 2 8----------- ( 6)4 4从而 2 2, 2 在单位圆外.下面设8 ,由(5) 式可以算出1, 22 要使特征根均在单位圆内,即1, 2 1,必须 2 .故 P 0 点稳定平衡条件为 2 .3.设某渔场鱼量 x(t ) ( 时刻 t 渔场中鱼的数量 ) 的自然增长规律为:dx(t) rx(1 x )其中 r 为固有增长率 , N` 为环境容许的最大鱼量dth . N . 而单位时间捕捞量为常数( 1).求渔场鱼量的平衡点 , 并讨论其稳定性 ;( 2).试确定捕捞强度 E m , 使渔场单位时间内具有最大持续产量Q m , 并求此时渔场鱼量水平 x *0 .解:( 1) . x(t) 变化规律的数学模型为dx(t )xhdtrx(1)N记f ( x) rx(1 x ) h , 令 rx (1 x) h 0 ,即r x 2rx h 0 ---- ( 1 )N NN4rh4hN1 4h N r 2r (r, ( 1)的解为:x1, 2rNN)2N① 当0 时,( 1)无实根,此时无平衡点;②当0 时,( 1)有两个相等的实根,平衡点为f '(x) r (1x )rx r 2rx , f '( x 0 ) 0N N Nx ) rN 但 xx 0及 x x 0 均有 f ( x) rx(1N 4N x 0.2不能断定其稳定性 .0 ,即 dx 0 x 0不稳定;dt ③ 当 0 时,得到两个平衡点:4h 4h N N 1N N 1rN rN x 1, x 222易知 x 1N x 2Nf ' (x 1 ) 0 , f ' ( x 2 ), 22平衡点 x 1 不稳定 ,平衡点 x 2 稳定 .(2).最大持续产量的数学模型为:max hs.t. f (x) 0即 max hrx (1 x ) , 易得 x 0*N 此时 hrN,但 x 0*N这个平衡点不稳定 .N242要获得最大持续产量,应使渔场鱼量x N , 且尽量接近 N , 但不能等于 N.2 2 2 5.某工厂生产甲、乙两种产品 , 生产每件产品需要原材料、 能源消耗、劳动力及所获利润如下表所示:品种原材料能源消耗(百元)劳动力(人)利润(千元)甲214 4乙362 5 现有库存原材料1400 千克;能源消耗总额不超过2400 百元;全厂劳动力满员为2000 人. 试安排生产任务( 生产甲、乙产品各多少件), 使利润最大 , 并求出最大利润.解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S. 则此问题的数学模型为max S 4x 5ys.t .2x 3 y 1400x 6 y 24004x 2 y 2000x 0, y 0, x, y Z模型的求解:用图解法 . 可行域为:由直线l 1 : 2 x 3 y 1400l2: : x 6 y 2400l 3 : 4 x 2 y 2000及 x 0 , y 0组成的凸五边形区域 .直线 l : 4x 5y C 在此凸五边形区域内平行移动. 易知:当l过l1与l3的交点时, S 取最大值 . 由2 x 3y 1400400, y 200 4 x 2 y解得: x2000Smax 4 400 5 200 2600 (千元).故安排生产甲产品400 件、乙产品 200 件, 可使利润最大 , 其最大利润为2600 千元 .6.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:货物体积重量利润(立方米 / 箱)(百斤 / 箱)(百元 / 箱)甲 5 2 20乙 4 5 10 已知这两种货物托运所受限制是体积不超过24 立方米,重量不超过13 百斤 . 试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解: 设甲货物、乙货物的托运箱数分别为x1, x2,所获利润为 z .则问题的数学模型可表示为max z 20x1 10 x25x1 4x2 24st 2x1 5x2 13x1 , x2 0, x, y Z这是一个整线性规划问题.用图解法求解 .可行域为:由直线l 1 : 5x 1 4x 2 24l 2 : 2x 1 5x 2 13 及 x 10, x 20 组成直线 l : 20x 1 10x 2c 在此凸四边形区域内平行移动 .x 2l 1易知:当 l 过 l 1 与 l 2 的交点时, z 取最大值l 2x 15x 14x 224x 1 4解得由5x 213x 212x 1lzmax20 4 10 1 90 .7. 深水中的波速 v 与波长 、水深 d 、水的密度和重力加速度g 有关,试用量纲分析方法给出波速 v 的表达式 .解 :设 v ,,d , , g的关系为 f (v, , d , , g ) =0. 其量纲表达式为[ v ]=LM 0T -1 ,0 0, [ d0 0]=L -3, [g0 -2,其中 L ,M ,T 是基本量纲.[]=LM T ]=LMT , [ MT ]=LM T ---------4分量纲矩阵为11 13 1(L )A=0 0 01 0 (M )1 0 02 (T )( v) ( )(d)( ) ( g)齐次线性方程组 Ay=0 ,即y 1y 2 y 3 3y 4y 5y 4- y 1- 2y 5的基本解为 y 1 = (1,1,0,0,1), y 2 = (0, 1,1,0,0)2211由量纲 P i 定理 得v2g 211d2∴ v g1,1( 2),2dv g ( d) ,其中是未定函数 .第二章 (2) (2008年 10 月 9日15. 速度为 v 的风吹在迎风面积为 s 的风车上,空气密度是,用量纲分析方法确定风车获得的功率 P 与 v 、S 、的关系 .解: 设 P 、 v 、 S 、 的关系为 f ( P, v, s, )0 , 其量纲表达式为 :[P]= ML 2T 3 , [ v ]= LT 1 ,[ s ]= L 2 ,[]= ML 3 , 这里 L, M ,T 是基本量纲 .量纲矩阵为:A=齐次线性方程组为:21 2 3 ( L )1 0 0 1 (M )3 10 0(T)(P) (v) (s) (2 y 1 y 2 2y3 3y4 0y 1y 4 03y 1y 2它的基本解为 y ( 1,3 ,1,1)由量纲 P i 定理得P 1v 3 s 11 ,Pv 3s 1 1, 其中 是无量纲常数 .16.雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度 v 的表达式 .解 :设 v ,,, g的关系为 f ( v ,,,g ) =0. 其量 纲表达式为 [ v ]=LM 0T -1 ,-3-2-1 -1-1 -2-2 -2-1-10 -2[ ]=L MT , []=MLT ( LT L ) L =MLL T T=L MT , [ g ]=LM T , 其中 L , M ,T 是基本量纲 .量纲矩阵为13 1 1 (L)11 0 (M) A=1 012(T)(v) ()()(g )齐次线性方程组 Ay=0 ,即y 1 - 3y 2 - y 3 y 4 0 y 2y 3 0 - y 1 - y 3 - 2y 4的基本解为 y=(-3 ,-1 ,1 ,1)由量纲 P i 定理 得v31g .v3g,其中 是无量纲常数.16 * .雨滴的速度 v 与空气密度、粘滞系数 、特征尺寸 和重力加速度g 有关,其中粘滞系数的定义是: 运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比, 比例系数为粘滞系数,用量纲分析方法给出速度 v 的表达式 .解:设 v ,, , , g 的关系为 f (v, , , , g) 0 . 其量纲表达式为 [ v 0 -1 , ]=L -30, -2( -1 -1 )-1 -2 -2 -2 -1-1 , 0 0 , 0 -2]=LM T [ MT [ ]=MLT LT L L =MLL T T=L MT [ ]=LM T[ g ]=LM T 其中 L , M , T 是基本量纲 .量纲矩阵为11 31 1 (L)A=0 11 0 ( M )10 012 (T )(v) ( ) ( ) ( ) ( g)齐次线性方程组 Ay=0 即y 1y 2 3y 3y 4 y 5 0y 3 y 4 0y 1y 4 2 y 5的基本解为y 1 (1,1 ,0,0, 1)22y 2(0,3, 1,1, 1 )2 2得到两个相互独立的无量纲量1v1/ 2g 1 / 223 / 21g 1 / 2即vg 1 ,3 / 2g 1 / 21 1(1,2)0, 得( 21)2. 由 1g (3 / 2g 1 / 2 1 ) ,其中 是未定函数 .20. 考察阻尼摆的周期, 即在单摆运动中考虑阻力, 并设阻力与摆的速度成正比 . 给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期.解:设阻尼摆周期 t ,摆长l ,质量m , 重力加速度g ,阻力系数k 的关系为f (t, l , m, g, k)其量纲表达式为:[ t]L 0 M0T ,[ l ]LM0T0 , [m]L 0MT 0,[ g]LM0T2 ,[k ][ f ][ v]1MLT2( LT1)1L 0MT 1, 其中 L ,M ,T 是基本量纲 .量纲矩阵为0 1 0 1 0 ( L )0 0 1 0 1 (M )A=0 021 (T )1(t ) (l ) ( m) (g) (k )齐次线性方程组y 2 y 4 0y 3y 5 0y 12 y 4y 5的基本解为Y 1 (1, 1 ,0, 1,0)22Y 2 (0,1, 1,1,1)22得到两个相互独立的无量纲量tl1/ 2g 1/ 21l 1/ 2m 1 g 1 / 2 k2∴ tl 1 ,1( 2 ) ,2kl 1 / 2gmg 1/ 2∴ tl ( kl 1/ 2 ) ,其中 是未定函数 .g mg 1 / 2考虑物理模拟的比例模型,设g 和 k 不变,记模型和原型摆的周期、摆长、质量分别为1 /2 t , t ' ; l , l ' ; m , m '.又 tl ( kl1 /2 )g m g当无量纲量ml 时, 就有 tl gl . mlt gll第三章 1( 2008 年 10 月 14 日)1. 在节存贮模型的总费用中增加购买货物本身的费用, 重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解: 设购买单位重量货物的费用为k , 其它假设及符号约定同课本.10 对于不允许缺货模型,每天平均费用为:c 1 c 2 rTC(T )krT2 dC c 1 c 2rdT T 22令 dC0 ,解得T *2c1dTc 2 r由 QrT ,得 Q2c 1 r rTc 2与不考虑购货费的结果比较,T、Q的最优结果没有变.2 0 对于允许缺货模型,每天平均费用为:1 c 2Q 2c 3 (rT Q) 2kQC(T,Q)c 12r2rTC c 1 c 2Q 2 c 3 r c 3Q 2 kQ T T 2 2rT 22 2rT 2T 2C c 2Q c 3Q kQ c 3TrT rTCT令, 得到驻点:CQT2c 1 c 2 c 3 k 2rc 2c 3c 2 c 3Q2c 1 r c 3 c 3 k 2 r 2 krc 2 c 2 c 3 c 2 (c 2 c 3 ) c 2c 3与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数 r ,k r .在每个生产周期T内, 开始的一段时间0 t T 0 一边生产一边销售, 后来的一段时间 (T 0t T ) 只销售不生产, 画出贮存量 g(t ) 的图形 . 设每次生产准备费为 c 1 ,单位时间每件产品贮存费为c2,以总费用最小为目标确定最优生产周期,讨论k r 和 k r 的情况.解:由题意可得贮存量g(t ) 的图形如下:gg(t)k rrO n T0 T t (k r )T0 T贮存费为Tc2 lim g( i ) t i c2 0 g(t)dt c22i 1t 0又(k r )T0 r (T T0 )T0 rT , 贮存费变为c2 r (k r )T T k 2k于是不允许缺货的情况下,生产销售的总费用(单位时间内)为C(T ) c1 c2 r ( k r )T 2 c1 r ( k r )T T 2kT T c2 2kdC c1 c2 r (k r ) . dT T 2 2k令dC0 , 得 T2c1k dT c2 r (k r )易得函数 C (T )在 T 处取得最小值,即最优周期为:2c1 k Tr )c2 r ( k当k r时,T 2c1 . 相当于不考虑生产的情况 .c2r当 k r 时,T . 此时产量与销量相抵消,无法形成贮存量.第四章( 2008 年 10 月 28 日)1. 某厂生产甲、乙两种产品, 一件甲产品用A原料1 千克 , B原料5 千克;一件乙产品用A原料2千克, B原料4 千克. 现有A原料 20 千克, B 原料70千克.甲、乙产品每件售价分别为20 元和 30元. 问如何安排生产使收入最大?解:设安排生产甲产品x 件 , 乙产品 y 件,相应的利润为S则此问题的数学模型为:max S=20x+30yx 2y 20. 5x 4 y 70x, y 0, x, y Z这是一个整线性规划问题,现用图解法进行求解可行域为:由直线 l1:x+2y=20, l2:5x+4y=70l2y以及 x=0,y=0 组成的凸四边形区域 .直线 l :20x+30y=c在可行域内l平行移动 .易知:当 l 过l1与l2的交点时,l1x S 取最大值 .x 2y 20解得x 10由4 y 70 y 55x此时 S m ax=2010 30 5 =350(元)2.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:货物体积重量利润(百斤 / 箱)(百元 / 箱)(立方米 / 箱)甲 5 2 20乙 4 5 10已知这两种货物托运所受限制是体积不超过24 立方米,重量不超过13 百斤 . 试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解: 设甲货物、乙货物的托运箱数分别为x1, x2,所获利润为 z .则问题的数学模型可表示为max z 20x1 10 x25x1 4x2 24st 2x1 5x2 13x1 , x2 0, x, y Z这是一个整线性规划问题.用图解法求解.可行域为:由直线l1 : 5x14x224l 2 : 2x15x213及x10, x20 组成直线l : 20x110x2 c 在此凸四边形区域内平行移动 .x2l1l易知:当 l 过 l 1 与 l 2 的交点时, z 取最大值5x 1 4x 2 24 x 1 4由5x 213解得12x 1x 2zmax20 4 10 1 90.3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉 . 已知每台甲型、 乙型微波炉的销售利润 分别为 3 和 2 个单位 . 而生产一台甲型、乙型微波炉所耗原料分别为 2 和 3 个单位 , 所需工时分别为 4 和 2个单位 . 若允许使用原料为100 个单位 , 工时为 120 个单位 , 且甲型、乙型微波炉产量分别不低于6 台和 12台. 试建立一个数学模型 , 确定生产甲型、乙型微波炉的台数 , 使获利润最大.并求出最大利润 .解:设安排生产甲型微波炉 x 件 , 乙型微波炉 y 件 , 相应的利润为 S. 则此问题的数学模型为:max S=3x +2y2x 3 y 100.4x 2y 120x 6, y 12, x, y Z这是一个整线性规划问题 用图解法进行求解可行域为:由直线 l 1 : 2x+3y=100, l 2 :4x+2y = 120及 x=6,y=12 组成的凸四边形区域 .直线 l : 3x+2y=c 在此凸四边形区域内平行移动. 易知:当 l 过 l 1 与 l 2 的交点时 , S取最大值 .2x 3 y 100由2 y 解得4x 120x 20.y 20S m ax = 3 20 2 20 = 100.第五章 2( 2008 年 11 月 14 日)6. 模仿节建立的二室模型来建立一室模型 (只有中心室) ,在快速静脉注射、 恒速静脉滴注(持续时间为)和口服或肌肉注射 3 种给药方式下求解血药浓度,并画出血药浓度曲线的中心室图形 .解: 设给药速率为 f 0 t ,中心室药量为 x t , 血药浓度为 C t , 容积为 V ,排除速率为常数 k, 则 x / t kx tf 0 t , x t VC t .(1) 快速静脉注射 : 设给药量为 D 0 , 则 f 0 t 0, C 0D 0,解得 C tDe k t .VV(2) 恒速静脉滴注 ( 持续时间为): 设滴注速率为 k 0,则 f 0 tk 0 ,C 00, 解得k 0 1 e kt , 0 t C tVkk 0 1 e kt e k t , t Vk(3) 口服或肌肉注射 :f 0 tk 01 D 0 e k 01t 见5.4节(13)式 ,解得k 01De ktek 01t, kk01C tV k 01 k3 种情况下的血药浓度曲线如kD te kt ,kk01V下:(1)(2)(3)Ot4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为a4. b初始兵力 x0与 y0相同.(1)问乙方取胜时的剩余兵力是多少, 乙方取胜的时间如何确定 .(2)若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型, 讨论如何判断双方的胜负 .解 : 用x t , y t表示甲、乙交战双方时刻t 的士兵人数 , 则正规战争模型可近似表示为:dxaydtdybx, 1dtx 0 x0 , y 0 y0现求 (1) 的解 : (1)0 a的系数矩阵为 Aba 2ab 0. abE A 1,2b1 , 2对应的特征向量分别为2 ,21 1x t 2abt 2abt .1 的通解为C1 1 eC2 1 ey t再由初始条件,得x t x0 y0 e abt x0 y0 e ab t 22 2又由 1 可得dybx . dx ay其解为ay 2bx 2k,而k ay02bx02 3(1)当x t1 0时, y t1 k ay02 bx02y0b 3a a 1 y0 .a 23即乙方取胜时的剩余兵力数为y0 .2x0 abt1x0 abt1 0.又令由()得0,2 y0 e y0 ex t122注意到 x0 y0 2 abt1x0 2 y0. e 2 abt1 3, t1ln 3,得 ex0 .2 y0 4b (2)若甲方在战斗开始后有后备部队以不变的速率r 增援.则dxay rdtdy4bxdtx(0) x0 , y 0 y0由 4 得dx ay r,即 bxdx aydy rdy . 相轨线为 ay 2 2ry bx2 k , dy bx2r 2k ay02 2ry 0 bx.20或 a y r bx2 k. 此相轨线比书图11 中的轨线上移了a ar r 2 r 2b 2a . 乙方取胜的条件为k 0, 亦即 y0 a a x0 a 2.第六章( 2008 年 11 月 20 日)1. 在节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic规律,而单位时间捕捞量为常数 h.(1) 分别就h rN / 4 ,h rN / 4 ,h rN / 4 这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为x t ,则由题设条件知:x t 变化规律的数学模型为dx(t ) xhrx (1 )dt N记 F ( x) rx (1 x ) hN(1).讨论渔场鱼量的平衡点及其稳定性:由 F x 0 ,得rx(1 x) h 0 .N即r x 2 rx h 0 1Nr 2 4rh r (r 4h ) ,N NN 1 4h N(1) 的解为:x1, 2 rN2①当 h rN / 4 ,0,(1) 无实根,此时无平衡点;②当 h rN / 4 ,0 , (1) 有两个相等的实根,平衡点为x0 N. 2x ) rx 2rx, F ' ( x0 )F ' ( x) r (1 r 0 不能断定其稳定性 .N N N但 x x0 及 x x0 均有 F (x)x rNdx0 .x0不稳定;rx (1 ) ,即dtN 4③当 h rN / 4 ,0 时,得到两个平衡点:N 1 4hN 14hN NrNx1 rN ,x22 2易知: x1 N ,x2 N , F ' ( x1 ) 0 , F ' ( x2 ) 02 2平衡点 x1不稳定,平衡点x2稳定.(2)最大持续产量的数学模型为max hs.t. F (x)0即 max h rx (1 x) ,Nh rN / 4h rN / 4h rN / 4rx 1 x / Nx1 N / 2 x2 x。
数学建模重要知识点总结

数学建模重要知识点总结一、微积分微积分是数学建模中最重要的数学工具之一,它包括微分和积分两大部分。
微分是求函数的导数,用于描述函数的变化率和曲线的切线。
而积分则是求函数的不定积分或定积分,用于描述函数的面积、体积等性质。
在数学建模中,微积分可以用于建立问题的数学模型,求解微分方程和积分方程,对函数进行优化等。
例如,在物理建模中,我们经常会用到微积分来描述物体的运动、速度和加速度等。
在经济学建模中,微积分可以用来描述供求关系、利润最大化等问题。
二、线性代数线性代数是研究向量空间、线性映射和矩阵等数学对象的学科。
在数学建模中,线性代数可以用于描述多维空间中的几何关系、解线性方程组、求解最小二乘问题等。
例如,在计算机图形学中,线性代数可以用来描述和变换三维物体的位置和姿态。
在统计学建模中,线性代数可以用来对数据进行降维、拟合线性模型等。
三、概率论与数理统计概率论与数理统计是研究随机现象的规律性和统计规律的学科。
在数学建模中,概率论与数理统计可以用于描述随机现象的概率分布、推断总体参数、假设检验等。
例如,在风险管理建模中,我们经常会用到概率论与数理统计来描述风险的分布和进行风险评估。
在机器学习建模中,概率论与数理统计可以用来对数据进行建模和推断。
四、数学优化数学优化是研究如何在给定约束条件下,找到使目标函数取得极值的方法和理论。
在数学建模中,数学优化可以用来对问题进行建模和求解。
例如,在生产调度问题中,我们可以用数学优化来寻找最优的生产计划;在投资组合优化中,我们可以用数学优化来构建最优的资产配置。
五、微分方程微分方程是研究未知函数及其导数之间关系的方程。
在数学建模中,微分方程可以用来描述系统的动力学行为、生物种群的增长规律、热传导过程等。
我们可以通过对微分方程进行数值求解、解析求解或者定性分析,来获得系统的行为特征。
六、离散数学离散数学是研究离散结构及其性质的数学学科,包括集合论、图论、逻辑和代数等内容。
数学模型复习知识点

内在规律,做出一些必要的简化假设,还用适当的数学工具,得到的一个数学结构。
2.数学模型的一般步骤:模型准备、模型假设、模型的构成、模型求解、模型分析、模型检验、模型应用。
3.数学建模的过程描述:表述、求解、解释、验证几个阶段。
并且通过这些阶段阶段完成从现实对象到数学模型,再从数学模型到现实兑现的循环。
4.量纲其次原则:以若干物理量为基本量纲,运用物理学公式,对相关的物理问题求解,用数学公式表示一些物理量之间的关系时,公式等号两端必须有相同的量纲。
5.量纲分析:就是利用量纲其次原则建立的物理量之间的数学模型。
6.层次分析法的基本步骤:建立层次结构模型、构造成对比较矩阵、计算权向量并做一致性检验、计算组合权向量并做组合一致性检验。
7.模型的逼真性:即为根据客观事物的特性,作出能真实反映其内部机理,较直观模型的可行性:即根据内部机理的数量规律,通过对数据的测量和统计分析,按照一定准侧做出的与数据拟合最好的模型。
模型的逼真性和可行性相辅相成,只有相互依存,才能使模型构成的更好。
8.(效用函数)无差别曲线:描述甲对物品x和y的偏爱程度,如果占有x1数量的x和y1数量和占有x2的x和y2的y,对甲某来说是同样满足的话,称p2和p1对甲是无差别的。
9.无差别曲线的特点:无差别曲线有无数条、无差别曲线是下凸的、单调的、互不相交的。
10.对无差别曲线做下凸形状作如下解释:当人们占有的x较少时,人们宁愿用较多的△y 换取较少的△x,当人们占有较多的△x时,人们愿意用较多的△x换取较少的△y满足这种特性的曲线是下凸的。
11.数学规划模型属于多元函数的条件极值问题的范围,其决策变量个数n和约束条件个数一般较大,并且最优解往往在可行域的边界上取得,数学规划是解决这类问题的有效方法。
分类:①线性规划②非线性规划③整数规划12.数学建模的重要意义:①在一般工程技术领域,数学建模仍然大有用武之地。
②在高新技术领域,数学模型几乎是必不可少的工具。
初中数学模型笔记

初中数学模型笔记一、引言在学习数学的过程中,我们常常遇到一些与实际问题相关的数学模型。
通过建立数学模型,我们可以更好地理解问题,并通过数学方法求解和分析。
本文将介绍初中数学中常见的几种数学模型以及其应用。
二、线性模型1. 定义线性模型是指满足线性关系的模型。
在一元一次方程和一元一次不等式的学习中,我们可以将问题转化为线性模型来求解。
2. 应用举例a. 速度问题假设小明骑自行车从A地到B地,已知他以固定的速度每小时骑行x公里,要求我们根据已知条件求解他从A地到B地的时间。
此时,我们可以建立线性模型:时间 = 距离 ÷速度通过解一元一次方程,我们可以求解出小明从A地到B地的所需时间。
b. 配对问题某商店进行商品促销,商品A和商品B以不同的价格进行销售,要求我们根据商品价格的不同,求出使销售总额最大的配对。
此时,我们可以建立线性模型:销售总额 = 商品A的销售数量 ×商品A的价格 + 商品B的销售数量 ×商品B的价格通过解一元一次不等式,我们可以求解出使销售总额最大的商品配对。
三、几何模型1. 定义几何模型是指利用几何图形和几何关系来解决问题的模型。
在几何学的学习中,我们可以通过建立几何模型来求解各种空间问题。
2. 应用举例a. 面积问题某房间的形状是矩形,已知矩形的长和宽,要求我们计算房间的面积。
此时,我们可以建立几何模型:房间的面积 = 长 ×宽通过计算乘积,我们可以求解出房间的面积。
b. 体积问题某水池的形状是圆柱体,已知水池的底面半径和高,要求我们计算水池的体积。
此时,我们可以建立几何模型:水池的体积 = 圆底面积 ×高通过计算圆底面积并乘以高,我们可以求解出水池的体积。
四、概率模型1. 定义概率模型是指通过概率计算来解决问题的模型。
在概率论的学习中,我们可以通过建立概率模型来分析和预测随机事件的发生。
2. 应用举例a. 投掷骰子问题假设我们投掷一个普通的六面骰子,要求我们计算点数是偶数的概率。
数学模型(姜启源 第三版第一章)

1、举出两三个实例说明建立数学模型的必要性,包括实际问题的背景,建模目的,需要大体上什么样的模型以及怎样应用这种模型等。
2、从下面不大明确的叙述中确定要研究的问题,要考虑哪些有重要影响的变量:(1)一家商场要建一个新的停车场,如何规划照明设施;(2)一农民要在一块土地上作出农作物的种植规划;(3)一制造商要确定某种产品的产量及定格;(4)卫生部门要确定一种新药对某种疾病的疗效;(5)一滑雪场要进行山坡滑道和上山缆车的规划。
3、怎样解决下面的实际问题。
包括需要哪些数据资料,要作些什么观察、实验以及建立什么样的数学模型等。
(1)估计一个人体内血液的总量;(2)为保险公司制定人寿保险金计划(不同年龄的人应缴纳的金额和公司赔偿的金额);(3)估计一批日关灯管的寿命;(4)确定火箭发射至最高点所需的时间;(5)决定十字路口黄灯亮的时间长度;(6)为汽车租凭公司制订车辆维修、更新和出租计划;(7)一高层办公楼有4部电梯,早晨上班时间非常拥挤,试制订合理的运行计划。
4、在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余不变。
试构造模型并了解。
5、模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除了需要人划之外,至多能载猫、鸡、米三者之一,而当下人不在场时猫要吃鸡、鸡要吃米。
试设计一个安全过河的方案,并使渡河次数尽量地最少。
6、利用1.5节表1和表3给出的1790—2000年美国实际人口资源建立下列模型:(1)分段的指数增长模型。
将时间分为若干段,分别确定增长率r ;(2)阻滞增长模型。
换一种方法确定固有增长率r 和最大容量m x 。
7、说明1.5节中Logistic 模型(9)可以表为0()()1mr t t x x t e --=+,其中是人口增长出现拐点的时刻,并说明0t 与,r ,m x 的关系。
8、假定人口的增长服从这样的规律:t 时刻的人口为()x t ,到t t +∆时间内人口的增量与()m x x t 成正比(其中m x 为最大容量)。
七年级下册数学模型笔记

七年级下册数学模型笔记数学模型是数学与实际生活问题相结合的一种工具,通过将问题抽象化、数学化,从而可以用数学的方法来解决实际问题。
在七年级下册数学课程中,我们学习了各种数学模型,并通过实例应用,深入理解数学模型的应用方法和意义。
本文将就七年级下册数学模型进行笔记整理,包括比例、百分数、平均数、图形与几何等多个模型的应用。
1. 比例模型比例是数学中常见的一种关系,表示两个量之间的等比关系。
在比例模型中,我们常常遇到问题是根据已知的比例关系来求解未知的数值。
比例模型常见的题目类型有以下几种:(1)已知两个量的比例关系,求解未知数值。
例如:已知小明走路每分钟行走500米,那么30分钟内他走了多少米?(2)已知两个量的比例关系,求解比例关系的比值。
例如:车辆行驶120公里,耗费汽油3升,求行驶300公里耗费汽油多少升?2. 百分数模型百分数是指以100为基准的比例关系,常用于表示比例、增减等情况。
在百分数模型中,我们需要将题目中给定的百分数关系转化为实际数值进行计算。
百分数模型常见的题目类型有以下几种:(1)已知某一数值占另一数量的百分比,求解具体数值。
例如:某商品原价500元,现以8折出售,求实际售价是多少?(2)已知某一数量增减了百分之几,求解变化后的数值。
例如:某城市人口增长了25%,原有人口是100万,求增长后的人口数。
3. 平均数模型平均数是用来表示一组数值的中间值,代表了总体的代表性。
在平均数模型中,我们需要根据题目中给定的平均数和其他数值,求解未知数值。
平均数模型常见的题目类型有以下几种:(1)已知一组数的平均数和其中的某个数,求解其他数的和。
例如:一份调查报告显示,某班级15名学生的平均年龄为13岁,已知其中10名学生年龄的和为140岁,求剩下5名学生年龄的和。
(2)已知一组数的平均数和其中的某些数之和,求解其他数的个数。
例如:某班级30名学生,平均成绩为80分,已知其中20名学生的成绩总和为1500分,求剩下10名学生的平均成绩。
高三数学建模知识点梳理

高三数学建模知识点梳理数学建模是一项将现实世界中的问题转化为数学模型,并通过数学方法进行求解和分析的技术。
对于高三学生来说,掌握数学建模的基本知识点对于提高数学素养和解决实际问题具有重要意义。
本文将对高三数学建模的知识点进行梳理,帮助大家更好地理解和应用。
1. 数学建模的基本概念1.1 什么是数学建模数学建模是一种模拟现实世界问题的方法,通过将实际问题抽象为数学模型,并用数学语言和符号进行表述,从而为问题的求解和分析提供一种数学框架。
1.2 数学建模的步骤数学建模的一般步骤包括:问题分析、假设与简化、模型的建立、模型的求解、模型的验证与改进、模型的应用。
2. 数学建模的方法与技巧2.1 建立模型的方法建立模型的方法主要有以下几种:(1)解析模型:通过数学公式和逻辑推理来描述系统的运行规律。
(2)数值模型:通过数值模拟和计算来近似描述系统的行为。
(3)统计模型:通过统计分析和概率论方法来描述系统的随机性。
(4)机器学习模型:通过训练数据和算法来发现数据的规律性。
2.2 模型的求解方法模型的求解方法主要有以下几种:(1)微分方程法:利用微分方程来描述系统的动态变化。
(2)代数方程法:利用代数方程来描述系统的静态关系。
(3)线性规划法:利用线性规划来求解优化问题。
(4)非线性规划法:利用非线性规划来求解优化问题。
(5)最优化方法:利用各种优化算法来求解最优化问题。
2.3 模型的验证与改进模型的验证与改进主要包括以下几个方面:(1)模型的一致性:确保模型与实际问题在数学表述上的一致性。
(2)模型的准确性:通过实验数据和实际应用来检验模型的准确性。
(3)模型的适应性:根据实际情况对模型进行调整和改进。
3. 数学建模的应用领域数学建模广泛应用于自然科学、社会科学、工程技术等各个领域,具体包括:(1)物理科学:如天体运动、量子力学、热力学等。
(2)生物科学:如遗传算法、神经网络、生态模型等。
(3)经济学:如市场预测、优化生产、经济博弈等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学模型(第三版)》学习笔记写在开始---小康社会欢迎您今天第一次归纳、复习,整理思路重点,从最后两章(除了“其他模型”)开始,想可能印象比较深刻。
可实际开始总结才发现对于知识的理解和掌握还有很大差距,自己也是自学看书,非常希望各位提出宝贵意见,内容、学习方法经验上的都是.整本书读下来感觉思路、数学都有很大拓展,总结起来有一下几个特点:(一)“实际—>模型”的建模过程很关键,本书的模型很多虽然所谓“简单”、“假设多”,但简化分析中,还真难找到比它更合适、更合理、更巧妙的建模、假设了;(二)模型求解之后的处理,许多地方似乎求解完毕可以结束,但却都未戛然而止,而是进一步“结果分析”、“解释”,目的不一,要看进程而定,有的促进了模型的改进,有的对数学结果做出了现实对应的解释(这一点建模过程中也经常做,就是做几步解释一下实际意义),也还有纯数学分析的,这些都是很重要的,在我看来,这本书中的许多模型、论文似乎到了“结果分析”这一步才刚刚开始,前面的求解似乎是家常便饭了;(三)用各种各样的数学工具、技巧、思想来建模的过程,这本书读下来愈发觉得线性代数、高等数学基础的重要性,同时书中也设计到了一些(虽是浅浅涉及)新的数学知识和技巧,许多我在读的过程中只是试图了解这个思想,而推导过程未能花很多时间琢磨,但即便如此,还是让我的数学知识有了很大的拓展(作为工科专业学生)。
从上周六继续自学《数学模型》开始一周,比预期的时间长了许多,但是过程中我觉得即便如此也很难领会完整这本书的内容。
最近学习任务比较多,所以两天前快看完时到现在一直未能做个小结,从今天起每天做2章的小结,既是复习总结重点,也是请诸位同学指教、提意见交流——毕竟自己领会很有限。
也可以作为未读过、准备读这本书的同学的参考~?——Tony Sun July 2012, TJU(目前已更新:全12章)第1章建立数学模型关键词:数学模型意义特点?第1章是引入的一章,对数学模型的意义来源,做了很好的解释。
其实数学模型也是模型的一种,是我们用来研究问题、做实验的工具之一,只不过它比较“理论”、“摸不着”而已。
但通常,数学模型有严谨的特点,而且我们可以根据建模实际需要改变模型,成本也比较低;同时数学模型手段之一计算机模拟也有很好的效果。
椅子在不平的地面上放稳、商人安全过河、预报人口增长这3个熟悉的例子,用简单的数学进行描述、建模分析,给数学模型一个最好的诠释:用数学语言描述事物、现象——往往增添了说服力。
第2章初等模型关键词:初等数学简化技巧思想这一章顾名思义,是一些用“初等”数学知识建立、求解的模型,虽然数学知识比较易懂,但是其中的巧妙思想确实十分重要的。
如何把问题做恰当的简化,到简单的数学工具能够表示、求解的程度,本章做出了很好的例子,同时分析也很精彩。
节公平席位分配,通过定义不公平程度等衡量标准,确立目标,提出Q值法。
有意思的是,在考虑是否存在一个理论上公平的分配方法时,根据所提出的4个(毋庸置疑的)公理,得出的结论却是:不存在满足上述公理的分配方法。
这种类似情况在本书中后面的例子也出现过。
这给我们什么启示呢有些问题和工作,比如公平席位的分配,日常中是一定要做的,就算不能达到绝对公平也要分配,但一旦证明不存在理论上公平的分配方法时,我们还有分配的意义吗答案不一;在这个例子中,固然是有意义的,我们自然转而寻求一个相对公平的分配方法,抑或,就是回溯查看提出的“公理”是不是那么的“公理”,看能否通过删改公理来取得更公平方案。
录像机计数器、双层玻璃功效、刹车距离等模型,均是用日常现象、基础的物理知识和巧妙简化进行的建模分析,这里每个例子中的分析,求解后的解释很重要——它们是整个模型的关键,阐述现象。
实物交换——是后面经济学模型的雏形,无差别曲线的图形方法,确定这种曲线实际中要收集大量的数据;核军备竞赛一节,也是一个动态的变化过程,基本全是用曲线进行分析的——这里给我们一个思想,得出表达式后,许多时候我们只关注曲线的形状、趋势,因此作图分析是很好的方法,图中可以给我们很多信息(交点,截距,极限值……),而这些信息都一一对应着它们的实际意义;有些即使没有明显的含义,但也很可能为接下来的铺垫、预测作下铺垫。
量纲分析与无量纲化——是另一种重要的求解方法,大致来说思想就是:仅知道变量之间的制约关系(正/负相关),系数、阶数均未知,即只能得出表达式的“形式”,要我们通过“量纲齐次性”(等式两端必须保持量纲的一致)来确定具体的表达式。
这是与按理论推导建模并列的另一种方法,这一节用单摆、抛射等物理问题很好地诠释了这种方法的强大。
关键:恰当地选择特征尺度,不仅可以减少独立参数的个数,还帮助我们决定舍弃哪些次要因素。
物理知识和经验是关键。
第2章小结:本章可以总结为“初等数学知识+巧妙简化技巧+思想”,10节涉及了不同类型的问题、数学方法,很多都是本书后面章节模型的雏形、基础。
第3章简单的优化模型关键词:简单优化微分法建模思想本章与第4章连续两章都是优化、规划的问题,可以看成一类问题——内容上也是由简单到复杂。
在第3章中,主要是几个简单的优化模型,可以归结到函数极值问题来求解,直接用微分法。
虽然模型、数学计算难不倒,但是还是那句——建模,求解之后结果分析、结果解释的思想,是我们要学习和引入脑中的。
存贮模型分不允许、允许缺货两种讨论,中间推出一个最小费用的结果——经济订货批量公式EOQ。
对存贮量函数q(t)作图,观察规律,对结果解释。
生猪出售时机关键点在于敏感性分析和强健性分析——这对于优化模型是否实用、有效是很重要的。
森林救火亮点是对火势蔓延程度dB/dt的形式作出的数条假设,以及假设对应的实际解释。
只要合理、自圆其说,就是一个好的对实际问题的简化。
最优价格主要是引出边际收入、编辑支出,以及经济学一条着名定律——最大利润在边际收入等于编辑支持时达到。
血管分支是很有趣的一节,用数学模型研究生理问题,我们还是只关注建模、数学的层面,而对于血管系统几何形状等生理学知识不讨论过多,用合理有力的假设代之。
消费者的选择一个消费者买两种产品时,钱应该如何分配。
分配比例使他得到最大的满意度的最优比例乘务消费者均衡,而建立消费者均衡模型的关键在于确定效用函数U(q1,q1)。
冰山运输也是很有趣的问题,考虑各种因素,基于一些假设,这节研究怎样运输冰山使费用最小。
其中用实际数据建立了经验公式,二是假设冰山为球形,简化了融化规律等的计算。
第4章数学规划模型关键词:数学规划方法 lingo/lindo软件结果深入分析变量个数约束条件、可行域、目标函数,构成了常说的“数学规划”模型。
本章揭示了数学规划的本质,和它与传统优化数学问题的区别:常理优化模型属于函数极值问题的范畴,但实际中更多的是决策变量数、约束个数较大,且最优解往往在边界上取得的问题,因此不能用传统的“微分法”求解——因此要引入“数学规划”方法。
这一章内容不少,但都是一类问题,主要点有几个:1. lingo、lindo求解的使用——运行结果中还有一些平时未留意的信息,可以作为结果分析来用,前两节叙述较多;2. 一些细节之处:把一句话用数学公式表达,它往往作为约束条件,如p102的式(19);3. 多目标规划的处理,p109的“选课策略”——基本思想是通过加权组合形成一个新的目标,从而化为单目标规划;4. 同前面章节一样地,对一个问题解出结果后,问题虽然解决了,但分析并没有结束——我们要学习这种further discussion的精神,发现这个结果“恰与…相同…”之类的,不妨多问自己一句:“这是偶然的吗”然后继续分析,得出一般的结论,这样往往能看到更多的风景,得出的结论更有含金量/启发性,而不是仅仅是解决了该个问题而已。
如p109选课策略。
5. 减少变量个数,简化模型、式子(简化起见,同时lingo对变量个数有限制),p115销售的例子。
6. 求最优解时,为了减少搜索范围,加快速度,可以先去一个特殊情况求出一个可行解,然后让最优解至少优于它。
第5章微分方程模型关键词:动态模型合理假设分析预测控制这一章是非常经典的一章,对微分方程模型作了很好的诠释、介绍,每一个模型都有丰富的价值。
对于随时间连续变化的对象或状态,当我们要 1)分析变化规律;2)预测;3)研究如何控制它的时候,就要建立相应的微分方程模型。
自然地,这样的模型功能非常强大,也具有一般性,也自然地需要在简化假设上动脑筋——如何用数学语言能表述的东西来刻画一个实际动态过程。
一个方程,有时就表示着一件事,这件事有可能还持续几十年——多么有趣而强大。
传染病模型本节是解决“传播”、“蔓延”微分方程问题的典例,模型分三部分层层递进:SI(只分为易感染着、已感染者),SIS(已感染者可以被治愈,重新变为易感染者),SIR(治愈后具免疫力,即增加了“移出者”)。
可以说从基础模型到一步步递进,是对实际传染病情况的逐渐深入、全面的考虑,而其中的分析十分重要,也是本章分析得最细的章节。
其中引入了“相轨线”分析法,是很有力的工具,后面多次用到,这一节有很详细的介绍。
经济增长模型通过建立产值与1)资金;2)劳动力之间的关系,来研究1)资金与劳动力的最佳分配,使效益最大;2)如何调节资金、劳动力增长率,使劳动生产率有效增长。
本模型虽然不长,但推导出计量经济学一重要模型——Douglas生产函数。
本节给出的模型推导稍繁,但结果简明,有合理解释。
正规战与游击战这一节介绍了历史上用过的、经典的预测战争结局的数学模型,有传统正规战争、稍复杂的游击战,以及混合战。
重点在于建模过程:如何描述战争双方的特性,如何作假设。
然后用来分析硫磺岛战役。
这节很好地体现了微分方程的强大。
药物在体内的分布与排除本节建立了房室模型,研究血药浓度的变化过程,为制订给药方案、剂量大小提供数量依据。
重点在于1)模型的假设:尽管是简化,但由临床试验证明是正确的,可以接受;2)对参数的估计。
先由机理分析确定方程形式,再由测试数据估计参数。
香烟过滤嘴的作用看起来不易下手的一个问题,用恰当的假设,引入两个基本函数q,w,及物理学常用的守恒定律,建立出微分方程模型,从而构造动态模型。
本例是经典的建模案例。
人口的预测和控制本节模型与之前的区别在于:考虑年龄的分布,即除了时间外,年龄是另一个自变量。
过程中重要的是数学公式中,系数、因子的实际含义要解释。
烟雾的扩散与消失这个模型巧妙地引入了“仪器灵敏度”指标,不仅帮助建模,而且该指标本身是客观存在的,并非虚构,这样更加有说服力。
万有引力定律的发现十分有意义的一节。
我们初中就熟悉的牛顿万有引力定律,是由开普勒第三定律和牛顿第二定律一同推导出的,这一节再现了这个推导过程。