1_OSPF路由协议实验分析
路由协议配置实验报告心得

路由协议配置实验报告心得引言路由协议配置实验是计算机网络课程中的一项重要实践环节,通过实验可以让学生深入理解和掌握路由协议的原理和配置方法。
本文将结合个人的实验经验,分享在路由协议配置实验中的心得和体会。
实验背景在计算机网络中,路由协议是实现网络互连和数据包转发的重要组成部分。
常见的路由协议包括RIP(Routing Information Protocol)和OSPF (Open Shortest Path First)等,它们通过在路由器之间交换路由信息,确定最佳路径并进行数据转发。
在实验中,我们将通过配置路由器上的协议参数,模拟网络环境并观察路由器之间的交互情况。
实验目的该实验的主要目的是让学生通过实践,掌握以下技能:1. 熟悉路由器的基本配置和命令行操作;2. 理解和配置常见的动态路由协议(如RIP和OSPF);3. 搭建网络拓扑,观察路由器之间的路由信息交换过程;4. 分析和解决网络故障,优化网络性能。
实验步骤实验中,我针对RIP和OSPF两种协议进行了配置实验。
具体步骤如下:1. 准备实验环境:搭建一定规模的虚拟网络拓扑,并将路由器、交换机等网络设备连接起来;2. 初始化路由器:设置路由器的基本参数,如IP地址、子网掩码等;3. 配置RIP协议:通过命令行配置路由器上的RIP协议,设置路由器之间的邻居关系和路由信息的交换方式;4. 配置OSPF协议:同样通过命令行配置路由器上的OSPF协议,设置路由器之间的邻居关系和链路状态数据库的同步方式;5. 观察实验结果:检查路由表和链路状态数据库的变化,验证路由协议的正常工作;6. 优化网络:根据实验结果,对网络进行优化调整,如调整路由器的权重、修改链路成本等;7. 解决故障:模拟网络故障,观察路由器的恢复过程,并尝试解决故障。
实验心得通过参与路由协议配置实验,我深刻体会到了以下几个方面的重要性:理论与实践相结合在课堂上学习了路由协议的相关理论知识后,实验为我们提供了一个将理论应用于实践的机会。
OSPF路由协议的分析与实现

OSPF路由协议的分析与实现1引言1.1Internet上路由协议的使用现状在路由器上使用的路由协议有静态路由协议和动态路由协议之分。
静态路由协议不利用网络的信息,只是按照某种固定的规则去选择路由。
这样,在网络的拓扑发生变化的时候,它不能及时的调整自己的路由信息,最多只是由操作人员偶尔对网络的状态的变化作出反应。
由于它不能对网络的改变作出反应,故一般用于网络规模不大,拓扑结构固定的网络中。
其优点是简单,高效,可靠。
与之相反,动态路由协议则能根据网络拓扑的变化(比如某个网络端口不能工作),在一段网络路由信息汇聚的时间后,计算出新的正确的路由,以适应网络流量和拓扑的变化。
当然,动态路由协议也有不正常工作的情况,这就需要静态路由作为它的补充,在这里讨论的仅是动态路由协议。
在自治系统内的路由器我们称之为内部网关,它们之间通过交换网络拓扑信息,来寻找可达路径。
在此过程中所使用的路由协议,被称之为内部网关协议(IGP)。
常见的IGP有:RIP,OSPF,IGRP,ElGRP等。
在自治系统外的路由器被称之为外部网关,它们只通过交换可达信息,来寻找可达路径。
连接两个自治系统的外部网关并不需要了解这两个自治系统的具体的网络拓扑,只需要了解通过它可以到达哪些网络。
在此过程中所是使用的路由协议,被称之为外部网关协议(EGP)。
常见的EGP有:EGP,BGP,BGP.4等。
1.2课题研究的背景及意义网络是信息的高速公路,它是靠作用于像立交桥一样的路由器将它连接并延伸的。
路由器通过查找自己的路由表来获知该将信息往哪一条路上送,由此可知,路由器需要掌握网络的路由情况,而路由器又是通过路由协议来得到这一信息的,因此路由协议对路由器来说是非常重要的。
路由协议的好坏会直接影响到路由器的性能。
目前应用较多的路由协议有RIP和OSPF,它们同属于内部网关协议,但RIP基于距离矢量算法,而OSPF基于链路状态的最短路径优先算法。
它们在网络中利用的传输技术也不同。
ospf协议 实验报告

ospf协议实验报告OSPF协议实验报告引言在计算机网络领域,路由协议是实现网络通信的重要组成部分。
其中,OSPF (Open Shortest Path First)协议是一种内部网关协议(IGP),被广泛应用于大型企业网络和互联网中。
本实验旨在深入了解OSPF协议的工作原理、特点和应用场景,并通过实际操作和观察验证其性能和可靠性。
一、OSPF协议概述OSPF协议是一种链路状态路由协议,通过计算最短路径来实现数据包的转发。
它基于Dijkstra算法,具有高度可靠性和快速收敛的特点。
OSPF协议支持IPv4和IPv6,并提供了多种类型的路由器之间交换信息的方式,如Hello报文、LSA (链路状态广告)等。
二、实验环境搭建为了进行OSPF协议的实验,我们搭建了一个小型网络拓扑,包括四台路由器和若干台主机。
路由器之间通过以太网连接,主机通过交换机与路由器相连。
在每台路由器上配置OSPF协议,并设置相应的参数,如区域ID、路由器ID、接口地址等。
三、OSPF协议的工作原理OSPF协议的工作原理可以简要概括为以下几个步骤:1. 邻居发现:路由器通过发送Hello报文来寻找相邻的路由器,并建立邻居关系。
Hello报文包含了路由器的ID、接口IP地址等信息,用于判断是否属于同一区域。
2. LSA交换:邻居路由器之间通过发送LSA报文来交换链路状态信息。
LSA报文包含了路由器所知道的网络拓扑信息,如链路状态、度量值等。
3. SPF计算:每台路由器根据收到的LSA报文,计算出最短路径树。
SPF计算使用Dijkstra算法,通过比较路径的度量值来选择最优路径。
4. 路由表更新:根据最短路径树,每台路由器更新自己的路由表。
路由表包含了目的网络的下一跳路由器和度量值等信息。
四、实验结果与分析通过实验观察和数据分析,我们得出以下结论:1. OSPF协议具有快速收敛的特点,当网络拓扑发生变化时,路由器能够迅速更新路由表,确保数据包能够按最优路径传输。
OSPF实验及解析

OSPF实验及解析:实现OSPF网络实验报告一、实验名称:实现OSPF网络二、实验条件:1、配置路由器运行OSPF协议。
2、拓扑图如(三)所示。
3、要求192.168.1.0/24、192.168.2.0/24为area 1配置为完全末梢区域;192.168.3.0/24为area 0;192.168.4.0/24、192.168.5.0为area 2,配置为NSSA 区域。
路由器D的F0/1端口的辅助IP地址和路由器E运行RIP-V2。
实现OSPF区域的路由器可以和RIP路由器互相学习到网络路径。
三、实验拓扑实现OSPF网络.jpg四、实验步骤及操作:1、路由器A的配置:RouterA(config)#int loopback 0RouterA(config-if)#ip add 172.16.0.1 255.255.255.255 RouterA(config-if)#exitRouterA(config)#int f0/0RouterA(config-if)#ip add 192.168.1.1 255.255.255.0 RouterA(config-if)#no shutRouterA(config-if)#exitRouterA(config)#int f0/1RouterA(config-if)#ip add 192.168.2.1 255.255.255.0 RouterA(config-if)#no shutRouterA(config-if)#exitRouterA(config)#router ospf 10RouterA(config-router)#network 192.168.1.0 0.0.0.255 area 1 RouterA(config-router)#network 192.168.2.0 0.0.0.255 area 1 RouterA(config-router)#area 1 stubRouterA#show ip ospf databaseRouterA#show ip ospf border-router2、路由器B的配置:RouterB(config)#int loopback 0RouterB(config-if)#ip add 172.16.0.2 255.255.255.255 RouterB(config-if)#exitRouterB(config)#int f0/0RouterB(config-if)#ip add 192.168.2.2 255.255.255.0 RouterB(config-if)#no shutRouterB(config-if)#exitRouterB(config)#int f0/1RouterB(config-if)#ip add 192.168.3.1 255.255.255.0 RouterB(config-if)#no shutRouterB(config-if)#exitRouterB(config)#router ospf 10RouterB(config-router)#network 192.168.2.0 0.0.0.255 area 1 RouterB(config-router)#network 192.168.3.0 0.0.0.255 area 0 RouterB(config-router)#area 1 stub no-summary注:设置某区域为完全末梢区域的条件:1、设置内部路由器的区域为末梢区域2、在区域边界路有器上设置该区域为末梢区域且不进行路由汇总3、路由器C的配置:RouterC(config)#int loopback 0RouterC(config-if)#ip add 172.16.0.3 255.255.255.255 RouterC(config-if)#exitRouterC(config)#int f0/0RouterC(config-if)#ip add 192.168.3.2 255.255.255.0RouterC(config-if)#no shutRouterC(config-if)#exitRouterC(config)#int f0/1RouterC(config-if)#ip add 192.168.4.1 255.255.255.0RouterC(config-if)#no shutRouterC(config-if)#exitRouterC(config)#router ospf 10RouterC(config-router)#network 192.168.3.0 0.0.0.255 area 0 RouterC(config-router)#network 192.168.4.0 0.0.0.255 area 2 RouterC(config-router)#area 2 nssa no-summary4、路由器D的配置:RouterD(config)#int loopback 0RouterD(config-if)#ip add 172.16.0.4 255.255.255.255 RouterD(config-if)#exitRouterD(config)#int f0/0RouterD(config-if)#ip add 192.168.4.2 255.255.255.0RouterD(config-if)#no shutRouterD(config-if)#exitRouterD(config)#int f0/1RouterD(config-if)#ip add 192.168.5.1 255.255.255.0RouterD(config-if)#ip add 192.168.6.1 255.255.255.0 secondary RouterD(config-if)#no shutRouterD(config-if)#exitRouterD(config)#router ospf 10RouterD(config-router)#network 192.168.4.0 0.0.0.255 area 2 RouterD(config-router)#network 192.168.5.0 0.0.0.255 area 2 RouterD(config-router)#area 2 nssaRouterD(config-router)#redistribute rip metric 2 metric-type 1 RouterD(config-if)#exitRouterD(config)#router ripRouterD(config-router)#version 2RouterD(config-router)#network 192.168.6.0RouterD(config-router)#redistribute ospf 10 metric 25、路由器E的配置:RouterE(config)#int f0/0RouterE(config-if)#ip add 192.168.6.2 255.255.255.0RouterE(config-if)#no shutRouterE(config-if)#exitRouterE(config)#int f0/1RouterE(config-if)#ip add 192.168.7.1 255.255.255.0RouterE(config-if)#exitRouterE(config)#router ripRouterE(config-router)#version 2RouterE(config-router)#network 192.168.6.0RouterE(config-router)#network 192.168.7.0注:设置某区域为非完全末梢区域的条件:1、设置内部路由器的区域为非完全末梢区域2、在区域边界路有器上设置该区域为非完全末梢区域且不进行路由汇总6、PC工作站的设置:Pc1的设置:IP=192.168.1.10 Netmask=255.255.255.0Pc2的设置:IP=192.168.7.10 Netmask=255.255.255.0五、实验结果及分析在pc1上:Ping+192.168.7.10(通讯正常)在pc2上:Ping+192.168.1.10(通讯正常)由此证明配置成功注一:各Lsa的查看命令1、查看数据库中的所有路由器的Lsa的命令:show ip ospf database router2、查看数据库中的网络Lsa的命令:show ip ospf database network3、查看数据库中的网络汇总Lsa的命令:show ip ospf database summary4、查看数据库中的ASBR汇总Lsa的命令:show ip ospf database asbr-summary5、查看数据库中的自主系统外部Lsa的命令:show ip ospf database external6、查看数据库中的Nssa外部Lsa的命令:show ip ospf database nssa-external【实验环境】BENET公司总部位于北京,在上海和广州拥有分公司,现希望把三个地方的办公网络用OSPF连接起来,希望你为他们实现这个办公网络的搭建!【实验目的】按照现有拓扑图的规划,配置多区域的OSPF在他的上面配置末梢区域(Stub Area)和完全末梢区域(Totally Stublly Area)以及知道为什么要换分多区域的原因?【实验拓扑】【实验步骤】网络拓扑图的具体布线:Router1 S0/0 <----> Router2 S0/0Router2 S1/0 <----> Router3 S0/0Router3 E1/0 <----> Router4 E0/0第一步:配置路由器的回环地址和接口的IP地址;(1) 、配置Router1的回环地址和接口的IP地址;(2)、配置Router2的回环地址和接口的IP地址;(注意:在Router2上配置回环地址是根据情况而定的;Router2是属于Area2是属于骨干区域,但同时它也是一个ABR路由器;所以要配置两个接口的IP地址;因为R2是区域边界系统路由器(ABR)所以在它上面要配置两个接口的IP地址)!(3)、配置Router3的回环地址和接口的IP地址(他和Router2一样是一个ABR路由器又是Area0所以要配置两个接口的IP地址;而回环地址就在这里不在做具体的介绍了;因为R3是区域边界路由器(ABR)所以在它上面要配置两个接口的IP地址)(4)、配置Router4的回环地址和接口的IP地址;(他和Router2一样是一个ABR路由器又是Area0所以要配置两个接口的IP地址;而回环地址就在这里不在做具体的介绍了)第二步:启动OSPF的进程,并配置他们的区域末梢区域(Stub Area)和完全末梢区域(Totally Stubby Area)(1)、在Router1上配置OSPF进程以及宣告他所在的末梢区域(Stub Area)(注意:宣告OSPF的进程和宣告RIP的进程的配置是不一样的,在配置OSPF时他的进程号时本地路由器的进程号,他是来标识一台路由器的多个OSPF的进程的;)末梢区域(Stub Area )他是一个不允许自治系统外部LSA通告在其内进行泛洪的区域。
ospf多区域实验报告

ospf多区域实验报告OSPF多区域实验报告一、实验目的本次实验旨在通过搭建OSPF多区域网络,探究OSPF协议在多区域环境下的工作原理和性能表现,以及对网络的影响。
二、实验环境1. 软件:GNS3网络模拟软件2. 硬件:个人电脑3. 网络拓扑:包括多个区域的OSPF网络三、实验步骤1. 搭建OSPF网络拓扑:在GNS3中搭建包含多个区域的OSPF网络拓扑,确保各个路由器能够相互通信和传输数据。
2. 配置OSPF协议:在各个路由器上配置OSPF协议,包括设置区域ID、网络地址、Hello定时器等参数。
3. 观察网络状态:观察各个区域之间的路由信息交换情况,查看路由表和链路状态数据库,分析各个区域之间的路由信息传播情况。
4. 测试网络性能:通过模拟数据传输和路由切换等操作,测试OSPF多区域网络的性能表现,包括数据传输速度、路由收敛速度等指标。
四、实验结果1. 路由信息传播良好:经过配置和观察,各个区域之间的路由信息能够正常传播,网络能够实现全局路由收敛。
2. 网络性能表现良好:在进行数据传输和路由切换测试时,网络表现出较好的性能,数据传输速度快,路由收敛速度较快。
五、实验总结通过本次实验,我们深入了解了OSPF协议在多区域环境下的工作原理和性能表现。
在多区域网络中,OSPF能够有效地传播路由信息,实现全局路由收敛,同时表现出较好的网络性能。
因此,在实际网络设计和部署中,可以考虑采用OSPF多区域网络,以提高网络的可扩展性和性能表现。
六、展望未来,我们将继续深入研究OSPF协议在不同网络环境下的性能表现,探索更多的网络优化方案,为构建高性能、可靠的网络架构提供更多的参考和支持。
实验报告OSPF动态路由的配置

实验报告OSPF动态路由的配置一、实验目的学习理解OSPF协议的基本概念和原理,熟悉如何在路由器上进行OSPF协议的配置,了解动态路由的优势和使用场景。
二、实验设备及环境1.两台Cisco路由器,型号为CISCO 1941。
2.一台PC,用于通过远程终端软件进行配置。
三、实验步骤及结果1.配置基本网络环境在路由器上面配置基本网络,包括路由器的IP地址、掩码、路由器名称等。
2.配置OSPF协议OSPF协议是一种链路状态协议,通过洪泛算法计算网络拓扑,并为该拓扑分配最短路径,从而获得网络路由信息。
因此,在进行OSPF协议的配置时,需要比较细致的考虑网络拓扑结构和各个节点的IP地址等信息。
在路由器上进行OSPF协议的配置步骤如下:(1)进入路由器命令行界面,输入en命令进入enable模式。
(2)输入conf t命令进入全局配置模式。
(3)输入router ospf 1命令进入OSPF配置模式,其中的数字1表示一个process id,是用来识别一个ospf进程的唯一标志。
(4)输入network 192.168.1.0 0.0.0.255 area 0命令为第一个路由器添加一个网络,其中192.168.1.0是网络的IP地址,0.0.0.255是子网掩码,area 0表示这个网络为区域0。
同样的,我们可以为第二个路由器添加一个网络。
(5)保存配置命令为write memory。
3.查看OSPF协议的状态和路由表信息在路由器上可以通过show命令查看OSPF协议的状态和路由表信息,具体步骤如下:(1)输入en进入enable模式,再输入show ip protocols命令查看OSPF协议的状态。
(2)输入show ip route命令查看路由表信息,其中O表示该路由为OSPF路由。
四、实验结果分析通过以上步骤的配置,可以让两台路由器之间建立起OSPF协议的动态路由,它可以实现自动学习网络拓扑结构,获得最短路径并自动更新路由表信息,从而提高网络的可靠性和拓展性。
网络路由协议实验结果分析

网络路由协议实验结果分析近年来,随着互联网的快速发展,网络路由协议成为了保障网络通信的重要技术之一。
在网络中,路由协议负责确定数据包传输的最佳路径,确保网络的高效运行。
本文将就网络路由协议实验结果进行详细分析,探讨其在实际应用中的优缺点及改进方向。
一、实验环境概述本次实验采用了常见的路由器设备和网络模拟器软件搭建了一个小规模网络环境。
在该环境下,使用了多种常见的路由协议,包括RIP、OSPF和BGP等,分别在不同拓扑结构下进行了实验。
二、实验结果分析1. RIP协议实验结果分析RIP(Routing Information Protocol)是一种基于距离向量的内部网关协议,其路由选择依据跳数。
实验结果显示,RIP协议在小规模网络中运行良好,具有较低的计算复杂度,并且对于网络拓扑变化能够快速适应。
然而,由于其传输的只是路由表中的距离信息,无法满足大规模网络中的高效路由需求。
2. OSPF协议实验结果分析OSPF(Open Shortest Path First)协议是一种链路状态协议,通过收集邻居节点的链路状态信息来构建网络拓扑,通过计算最短路径来进行路由选择。
实验结果表明,OSPF协议在大规模网络中的性能较好,具有较低的路由计算复杂度和较快的收敛速度。
但是,OSPF协议对网络资源的开销较大,需要额外的带宽和路由器计算资源。
3. BGP协议实验结果分析BGP(Border Gateway Protocol)协议是一种用于互联网自治系统之间的路由选择协议,其路由策略基于路径。
实验结果显示,BGP协议适用于大规模互联网环境中,能够提供高度的可靠性和灵活性,能够根据策略来选择最佳的路径。
然而,BGP协议的路由选择时间较长,收敛速度较慢,存在一定的安全风险。
三、实验结论及改进方向通过实验结果的分析,我们可以得出以下结论:首先,不同的路由协议适用于不同规模和需求的网络环境。
RIP协议适用于小规模网络,OSPF协议适用于大规模网络,而BGP协议适用于互联网环境。
实验OSPF路由协议配置实验报告

浙江万里学院实验报告课程名称:数据通信与计算机网络及实践实验名称:OSPF路由协议配置专业班级:姓名:小组学号:2012014048实验日期:6.6实验内容:1、理解OSPF路由协议。
2、在路由器上配置OSPF路由协议,组建一个简单的路由网络。
3、理解并会在路由器中配置使用OSPF协议路由。
实验目的:1、掌握OSPF协议的配置方法。
2、掌握路由器上同时有多种路由协议时的配置方法。
实验报告内容本实验要求读者完成一个综合实验项目。
实验网络图如下所示,要求一组操作路由器A和B,另一组操作路由器C和D。
首先每组自己采用ospf路由协议实现本网段的全连通。
之后,将两组路由器再互连起来,并且互连的两个路由器接口采用rip路由协议。
利用上述讲解的路由引入技术实现两组的全连通。
第一组配置图第二组配置图(一)直接在图中标注各设备接口(包括主机)的IP地址(二)每组完成自己的配置。
配置可以分成三步:(1)配置主机和路由器各接口的IP地址;(2)在路由器上配置ospf路由;(3)测试网络的连通性。
如果全部连通说明配置正确,否则查找错误并纠正后成绩:教师:李翠莲再测试。
要求写出两台路由器上的ospf路由配置命令。
这一步配置可以分成三步:(1)在路由器上新增加配置rip路由协议,在rip协议的network中只声明新增的网段;(2)在路由器的rip协议中引入ospf协议,ospf协议中引入rip协议。
注意只需要在配置了多种路由协议的路由器中需要这样做,只配置一种路由协议的路由器不需要进行路由引入操作,路由引入除了引入路由协议外,还要注意附加引入直连路由;(3)完成后测试各网段的连通性,特别是不同组的主机测试。
给出部分测试结果。
要求写出两台路由器上新增的rip路由配置和路由引入配置命令。
RouteB(第一组)上的新增路由配置:[RTB]rip[RTB-rip-1]version 2[RTB-rip-1]undo summary[RTB-rip-1]network 172.20.0.0RouteB(第一组)上的新增路由引入配置:[RTB-rip-1]import ospf[RTB-rip-1]quit[RTB]ospf[RTB-ospf-1]import rip[RTB-ospf-1]quitRouteC(第二组)上的新增路由配置:[RTC]rip[RTC-rip-1]version 2[RTC-rip-1]undo summary[RTC-rip-1]network 172.20.0.0RouteC(第二组)上的新增路由引入配置:[RTC-rip-1]import ospf [RTC-rip-1]quit [RTC]ospf[RTC-ospf-1]import rip [RTC-ospf-1]quit结合第五步得到的路由表分析出现表中结果的原因:RouteB 通过RIP学习到C和D 的路由情况,通过OSPF学习到A 的路由信息实验个人总结班级通信123班本人学号后三位__048__ 本人姓名_ 徐波_ 日期2014.6.06本次实验是我们的最后一次实验,再次之前我们已经做了很多的有关于华为的实验,从一开始的一头雾水到现在的有一些思路,不管碰到什么问题,都能够利用自己所学的知识去解决或者有一些办法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0分计。
4.实验报告文件以PDF格式提交。
【实验目的】
掌握OSPF协议单区域的配置和使用方法。
【实验内容】
(1)完成路由器配置实验实例4-3(P155)的“OSPF单区域配置”,回答步骤0、步骤8问题。
(2)在(1)的基础上每台路由器上各加入一台电脑,画出新拓扑,然后:
(a)检查任意两个PC之间是否可以Ping通,对一台主机ping其它主机的结果进行截屏。
(b)采用#depug ip ospf显示上面OSPF协议的运行情况,观察并保存R1发送和接收的Update
分组(可以改变链路状态来触发),注意其中LSA类型;观察有无224.0.0.5、224.0.0.6 IP
地址,如有说明这两地址的作用。
(c)显示并记录路由器R1数据库的Router LSA,Network LSA,LS数据库信息汇总
# show ip ospf database router !显示router LSA
# show ip ospf database network !显示network LSA
# show ip ospf database database !显示OSPF 链路状态数据库信息。
(d)显示并记录邻居状态。
# show ip ospf neighbor
(e)显示并记录R1的所有接口信息
#show ip ospf interface [接口名]
【实验要求】
重要信息信息需给出截图,注意实验步骤的前后对比。
【实验记录】(如有实验拓扑请自行画出)
(1)完成路由器配置实验实例4-3(P155)的“OSPF单区域配置”,回答步骤0、步骤8问题。
实验拓扑图:
步骤0:
(1)按拓扑图,配置PC1和PC2的IP、掩码、网关,测试它们的连通性。
(2)在Router1(或Router2)上执行命令show ip route,记录路由表信息。
(3)在PC上的命令窗口执行命令route print,记录路由表信息。
步骤1:三层交换机基本配置。
步骤2:路由器Router1的基本配置。
步骤3:路由器Router2的基本配置。
步骤4:配置OSPF路由协议。
S3550配置OSPF。
步骤5:Router1配置OSPF。
步骤6:Router2配置OSPF。
步骤7:查看验证3台路由设备的路由表是否自动学习了其他网段的路由信息,请注意O项。
交换机:
分析路由表,表中有O条目吗?是怎么产生的?
【分析】表中有O条目,交换机通过对它配置OSPF 协议学习到从VLAN10,通过下一跳为192.168.1.1可以到达环回地址为192.168.2.0/24的主机(Router1),再到达192.168.3.0/24的主机(Router2)。
Router1:
分析路由表,表中有O条目吗?是怎么产生的?
【分析】表中有O条目,Router1通过对它配置OSPF 协议学习到从Serial 2/0,通过下一跳为192.168.2.2可以到达环回地址为192.168.3.0/24的主机(Router2),通过下一跳为192.168.1.2再到达192.168.5.0/24的主机。
Router2:
分析路由表,表中有O条目吗?是怎么产生的?
【分析】表中有O条目,Router2通过对它配置OSPF 协议学习到从Serial 2/0,通过下一跳为192.168.2.1可以到达环回地址为192.168.1.0/24的网段,从Serial 2/0通过下一跳为192.168.2.1再到达192.168.5.0/24的网段。
步骤8:测试网络的连通性。
(1)将此时路由表与步骤0的路由表比较,有什么结论?
答:步骤0中的路由表为空,因为此时还没有对路由器进行配置。
而此时的路由表出现了“C”条目和“O条目”,“C”条目显示了网络设备直连的网段和端口地址,而“O”条目,表示设备的直连网段运用OSPF协议建立起了基于OSPF协议原理的路由转发路径。
(2)执行命令tracert PC1(或PC2)。
PC1 tracert PC2,完成跟踪:
(3)启动Wireshark,测试连通性,抓取数据包,数据包走向与tracert的一致吗?
抓包:
答:从图中可以看出,抓取到的包路径与tracert时显示的路径是一致的。
(4)抓取数据包,分析OSPF头部结构。
PC1 ping PC2时抓包:
OSPF数据包:
【分析】
OSPF版本号:2
报文类型:Hello Packet(1)
分组长度:44
报文源路由器:192.168.5.1
区域ID:0.0.0.0
校验和:0x714b(正确)
认证类型:Null
数据:(none)
(5)在PC命令窗口执行命令route print,此时路由表信息与步骤0记录的有区别吗?此时的路由表信息:
分析:路由信息的配置不会反映在PC机上,因此没有区别。
(2)在(1)的基础上每台路由器上各加入一台电脑,画出新拓扑,然后:
实验拓扑图:
新加入的两台电脑分别配置IP地址(192.168.6.10和192.168.7.12),掩码和网关
路由器接口配置IP地址(192.168.6.1和192.168.7.1),并申明直连网段(192.168.6.0和192.168.7.0):
(a)检查任意两个PC之间是否可以Ping通,对一台主机ping其它主机的结果进行截屏。
用192.168.5.11分别ping 192.168.3.22,192.168.6.10, 192.168.7.12,都可以ping通:
(b)采用#depug ip ospf显示上面OSPF协议的运行情况,观察并保存R1发送和接收的Update
分组(可以改变链路状态来触发),注意其中LSA类型;观察有无224.0.0.5、224.0.0.6 IP 地址,如有说明这两地址的作用。
图中出现了LSA type1类型。
SEND[LS-UPD] To 224.0.0.5,只有这个地址,没有224.0.0.6。
这2个地址是组播地址,对所有DR/BDR路由器的组播地址为224.0.0.6,对所有的非DR/BDR路由器的组播地址为224.0.0.5。
(c) 显示并记录路由器R1数据库的Router LSA,Network LSA,LS数据库信息汇总
#show ip ospf database router !显示router LSA
#show ip ospf database network !显示network LSA
# show ip ospf database database !显示OSPF 链路状态数据库信息。
Router LSA:
第一部分link state id是192.168.2.1,这个端口在ROUTER1上,共有4条链路,一条是到VLAN 10的192.168.1.2,这里192.168.1.2是DR 192.168.5.1的端口地址,这在后面的show ip ospf neighbor中可以看到;一条是通过Router1 在serial2/0链路上的端口192.168.2.1连接到ROUTER2(192.168.3.1);一条连接到子网192.168.2.0;一条连接到子网192.168.7.0(新加的子网)。
第二部分link state id 是192.168.3.1,表示ROUTER2,也是4条链路,目的地分别是192.168.2.2(连接到ROUTER1),192.168.2.0(子网),192.168.3.0(子网),192.168.6.0(新加的子网)第三部分link state id 是192.168.5.1,交换机,有2条链路,分别是VLAN 10(192.168.1.2)和子网192.168.5.0。
Network LSA:
网络链路状态为area 0.0.0.0,根据官方文档,这里的link state ID是DR接口的IP地址,在该网络中DR是192.168.5.1,其接口为192.168.1.2。
而在attached Router中会显示网络中所有
与DR邻接的路由器,根据拓扑图,有交换机和Router1,所以显示结果为这两台设备的Router ID。
OSPF 链路状态数据库信息:
可以看到共有3个路由链路状态,1个网络链路状态(area 0.0.0.0),共4个LSA(即前面的3个路由链路状态和后面的1个网络链路状态)。
(d) 显示并记录邻居状态。
# show ip ospf neighbor
ROUTER1的邻居只有2个,一个是192.168.5.1网段,一个是192.168.3.1网段。
(e) 显示并记录R1的所有接口信息
#show ip ospf interface [接口名]
路由器端口F0/0 和 F0/1 的ROUTER ID都是192.168.2.1,F0/0没有邻居,F0/1有1个邻居,F0/0收到了0个HELLO包,发出了0个HELLO包,而其它的包没有收到也没有发出。
F0/1收到了`196个HELLO包,发出了198个HELLO包,其它包也收到和发出了较多。
串口S2/0有1个邻居,收到188,发出197个HELLO包。