习题课—导数及其计算
导数的基本公式及运算法则习题课

;
(4)
y
1 cos2
x
;
(5) y 6x3 x ; 1 x2
(6)
y
4 x5
;
(7) y 3 x; 2
练习: 求下列函数的导数:
(3)y=xx-+11;
(4)y=x·tan x.
解:(3)法一:y′=(xx-+11)′ = =xx+-11x+-′1xx2-+11x+-1x=2-1x+2x1+21. ′
f (x) f (x)g(x) f (x)g(x)
g(x)
g ( x)2
(g(x) 0)
推论 1 (cu(x)) = cu(x) (c 为常数).
例 1 设 f (x) = 3x4 – ex + 5cos x - 1,求 f (x) 及 f (0).
解 根据推论 1 可得 (3x4) = 3(x4), (5cos x) = 5(cos x),又(x4) = 4x3, (cos x) = - sin x,(ex) = ex,(1) = 0, 故f (x) = (3x4 ex + 5cos x 1)
(1)y=x(x2+1x+x13);
(2)y=exsin x;
(3)y=xx2++33.
解:(1)∵y=x(x2+1x+x13)=x3+1+x12,∴y′=3x2-x23.
解:(2)y′=(exsin x)′=(ex)′sin x+ex(sin x)′
=exsin x+excos x =ex(sin x+cos x).
x2 ) ' 1 x2 x(2x) (1 x2 )2
1 x2 (1 x 2 ) 2
(4) y ' (2x3 ) ' (3x sin x) ' (e2 ) ' 2(x 3 )'3(x sin x)'0
人教A版高中同步学考数学选修1精品课件 第三章 习题课——导数运算及几何意义的综合问题

探究二
探究三
思想方法
当堂检测
解:(1)由题意得f'(x)=3x2+1,∴曲线y=f(x)在点(3,14)处的切线的斜率
为f'(3)=28.
∴切线的方程为28x-y-70=0.
(2)法一:设切点为(x0,03 +x0-16),
则直线 l 的斜率为 f'(x0)=302 +1,
∴直线 l 的方程为 y=(302 +1)(x-x0)+03 +x0-16.
于
.
解析:因为 f'(x)=aex+ ,
e + = e,
= 1,
1
由已知得
解得
- = e ,
= 0.
e
所以 a,b 的值分别是 1 和 0.
答案:1和0
课堂篇探究学习
探究一
探究二
探究三
思想方法
当堂检测
导数几何意义的综合应用
例1已知函数f(x)=x3+x-16.
(1)求曲线y=f(x)在点(3,14)处的切线方程;
=2lim
ℎ→0
答案:B
2ℎ
=2f'(x0).
)
课前篇自主预习
9
【做一做 3】 曲线 y= 在点 M(3,3)处的切线方程是
.
9
解析:∵y'=- 2 ,∴y'|x=3=-1,
∴过点(3,3)的斜率为-1 的切线方程为 y-3=-(x-3),即 x+y-6=0.
答案:x+y-6=0
1
【做一做 4】 设 f(x)=aex+bln x,且 f'(1)=e,f'(-1)=e ,则 a,b 的值分别等
(完整版)导数公式运算习题课

1 xlna
⑧
1 x
⑨f′(x)±g′(x)
⑩f′(x)g(x)+f(x)g′(x) ⑪f′(x)g(xg)-2(xf)(x)g′(x)
第一章 导数及其应用
1.下列结论正确的个数为
()
①y=ln2,则y′=12 ②y=x12,则y′|x=3=-227 ③y
=2x,则y′=2xln2 ④y=log2x,则y′=xl1n2
第一章 导数及其应用
2.对导数的运算法则的理解: (1)两个函数和(或差)的函数的求导法则 设 函 数 f(x) , g(x) 是 可 导 的 , 则 [f(x)±g(x)]′ = f′(x)±g′(x),即两个函数的和(或差)的导数,等于这两个 函数的导数的和(或差). (2)两个函数积的函数的求导法则 设函数f(x),g(x)是可导的,则[f(x)·g(x)]′=f′(x)g(x) +f(x)g′(x).即两个函数积的导数,等于第一个函数的导 数乘上第二个函数,加上第一个函数乘上第二个函数的 导数.
第一章 导数及其应用
5.已知f(x)=x2+ax+b,g(x)=x2+cx+d,又f(2x+ 1)=4g(x),且f′(x)=g′(x),f(5)=30,求g(4).
解:由f(2x+1)=4g(x),得 4x2+2(a+2)x+(a+b+1)=4x2+4cx+4d,
于是有aa++2b=+21c=,4d.
① ②
由f′(x)=g′(x),得2x+a=2x+c,
∴a=c.③
由f(5)=30,得25+5a+b=30.④
∴由①③可得a=c=2.
第一章 导数及其应用
又由④,得b=-5.再由②,得d=-12. ∴g(x)=x2+2x-12.故g(4)=16+8-12=427.
高中数学《导数的概念及其运算》练习题

§3.1 导数的概念及运算1.下列求导运算正确的是( )A.⎝⎛⎭⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.(2021·安徽江南十校联考)曲线f (x )=1-2ln x x在点P (1,f (1))处的切线l 的方程为( ) A .x +y -2=0 B .2x +y -3=0 C .3x +y +2=0 D .3x +y -4=03.(2020·广元模拟)已知函数f (x )=14x 2+cos x ,则其导函数f ′(x )的图象大致是( )4.设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( ) A.⎣⎡⎦⎤0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6 5.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2)6.(多选)已知函数f (x )及其导函数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.下列选项中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x7.已知函数y =f (x )的图象在x =2处的切线方程是y =3x +1,则f (2)+f ′(2)= .8.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = . 9.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=ln(1+x ),则曲线y =f (x )在点(0,0)处的切线方程为________,用此结论计算ln 2 022-ln 2 021≈________.10.(2021·山东省实验中学四校联考)曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离是 .11.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.12.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.13.(2020·青岛模拟)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x14.已知函数f (x )=x +a 2x,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是 .15.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为 . 16.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求在曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.§3.2 导数与函数的单调性课时精练1.函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )2.下列函数中,在(0,+∞)上单调递增的是( )A .f (x )=sin 2xB .g (x )=x 3-xC .h (x )=x e xD .m (x )=-x +ln x3.(2020·甘肃静宁一中模拟)已知函数f (x )=x 2+a x ,若函数f (x )在[2,+∞)上单调递增,则实数a 的取值范围为( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞)4.已知函数f (x )=sin x +cos x -2x ,a =f (-π),b =f (2e ),c =f (ln 2),则a ,b ,c 的大小关系是( )A .a >c >bB .a >b >cC .b >a >cD .c >b >a5.(多选)若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值可以是( )A .-3B .-1C .0D .26.(多选)若函数 g (x )=e x f (x )(e =2.718…,e 为自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数不具有M 性质的为( )A .f (x )=1xB .f (x )=x 2+1C .f (x )=sin xD .f (x )=x7.函数y =2ln x -3x 2的单调递增区间为________.8.若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.9.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________. 10.(2020·济南质检)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.11.函数f (x )=(x 2+ax +b )e -x ,若f (x )在点(0,f (0))处的切线方程为6x -y -5=0.(1)求a ,b 的值;(2)求函数f (x )的单调区间.12.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性.13.(多选)若0<x 1<x 2<1,则( )A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .1221e e x x x x >D .1221e e x xx x < 14.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为____________.15.已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝⎛⎭⎫ln 1x <2f (1)的解集为________. 16.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求实数m 的取值范围.§3.3 导数与函数的极值、最值课时精练1.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =02.函数y =x e x 在[0,2]上的最大值是( ) A.1e B.2e 2 C .0 D.12e3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 24.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.1635.(多选)函数y =f (x )的导函数f ′(x )的图象如图所示,则以下命题错误的是( )A .-3是函数y =f (x )的极值点B .-1是函数y =f (x )的最小值点C .y =f (x )在区间(-3,1)上单调递增D .y =f (x )在x =0处切线的斜率小于零6.(多选)(2021·烟台模拟)已知函数f (x )=x 2+x -1e x,则下列结论正确的是( ) A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e2,则t 的最小值为2 7.函数f (x )=2x -ln x 的最小值为________.8.若函数f (x )=x 3-2cx 2+x 有两个极值点,则实数c 的取值范围为______________.9.已知函数f (x )=sin x -13x ,x ∈[0,π],cos x 0=13,x 0∈[0,π]. ①f (x )的最大值为f (x 0); ②f (x )的最小值为f (x 0);③f (x )在[0,x 0]上是减函数; ④f (x 0)为f (x )的极大值.那么上面命题中真命题的序号是________.10.已知不等式e x -1≥kx +ln x 对于任意的x ∈(0,+∞)恒成立,则k 的最大值为________.11.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值; (2)讨论函数f (x )在定义域内极值点的个数.12.已知函数f (x )=x ln x .(1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间(0,e]上的最小值(其中e 为自然对数的底数).13.已知函数f (x )=x +2sin x ,x ∈[0,2π],则f (x )的值域为( )A.⎣⎡⎦⎤4π3-3,2π3+3 B.⎣⎡⎦⎤0,4π3-3 C.⎣⎡⎦⎤2π3+3,2π D .[0,2π]14.(2020·邢台模拟)若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则实数a 的取值范围为________.15.已知函数f (x )=x ln x +m e x (e 为自然对数的底数)有两个极值点,则实数m 的取值范围是__________.16.(2019·全国Ⅲ)已知函数f (x )=2x 3-ax 2+2.(1)讨论f (x )的单调性;(2)当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围.高考专题突破一 高考中的导数综合问题第1课时 利用导数研究恒(能)成立问题1.设函数f (x )=ln x +a x(a 为常数).(1)讨论函数f (x )的单调性; (2)不等式f (x )≥1在x ∈(0,1]上恒成立,求实数a 的取值范围.2.已知函数f (x )=x ln x (x >0).(1)求函数f (x )的极值;(2)若存在x ∈(0,+∞),使得f (x )≤-x 2+mx -32成立,求实数m 的最小值.3.已知函数f (x )=x 2+(a +1)x -ln x ,g (x )=x 2+x +2a +1.(1)若f (x )在(1,+∞)上单调递增,求实数a 的取值范围;(2)当x ∈[1,e]时,f (x )<g (x )恒成立,求实数a 的取值范围.4.已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x . (1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)成立,求a 的取值范围.5.(2020·衡水中学检测)设函数f (x )=1-a 2x 2+ax -ln x (a ∈R ). (1)当a =1时,求函数f (x )的极值;(2)若对任意a ∈(4,5)及任意x 1,x 2∈[1,2],恒有a -12m +ln 2>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.第2课时利用导函数研究函数的零点1.已知函数f(x)=e x(ax+1),曲线y=f(x)在x=1处的切线方程为y=bx-e.(1)求a,b的值;(2)若函数g(x)=f(x)-3e x-m有两个零点,求实数m的取值范围.2.已知f(x)=ax2(a∈R),g(x)=2ln x.(1)讨论函数F(x)=f(x)-g(x)的单调性;(2)若方程f(x)=g(x)在区间[1,e]上有两个不相等的解,求a的取值范围.3.已知函数f(x)=e x+ax-a(a∈R且a≠0).(1)若函数f(x)在x=0处取得极值,求实数a的值,并求此时f(x)在[-2,1]上的最大值;(2)若函数f(x)不存在零点,求实数a的取值范围.4.(2020·潍坊检测)已知函数f(x)=ln x-x2+ax,a∈R.(1)证明:ln x≤x-1;(2)若a≥1,讨论函数f(x)的零点个数.5.已知函数f(x)=e x+1-kx-2k(其中e是自然对数的底数,k∈R).(1)讨论函数f(x)的单调性;(2)当函数f(x)有两个零点x1,x2时,证明x1+x2>-2.第3课时利用导数证明不等式1.(2021·莆田模拟)已知函数f(x)=x e x-1-ax+1,曲线y=f(x)在点(2,f(2))处的切线l的斜率为3e-2.(1)求a的值及切线l的方程;(2)证明:f(x)≥0.2.(2021·沧州七校联考)设a为实数,函数f(x)=e x-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.3.已知函数f(x)=eln x-ax(a∈R).(1)讨论f(x)的单调性;(2)当a=e时,证明:xf(x)-e x+2e x≤0.4.已知函数f (x )=ln x -ax (a ∈R ).(1)讨论函数f (x )在(0,+∞)上的单调性;(2)证明:e x -e 2ln x >0恒成立.5.(2018·全国Ⅰ)已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.。
高中数学选择性必修二(人教版)《习题课 导数及其应用》课件

[集训冲关]
1.函数 f(x)=1+3x-x3
()
A.有极小值,无极大值
B.无极小值,有极大值
C.无极小值,无极大值
D.有极小值,有极大值
解析: f′(x)=-3x2+3,由 f′(x)=0,得 x=±1.当 x∈(-1,1)时,
f′(x)>0,∴f(x)的单调递增区间为(-1,1);同理,f(x)的单调递减区
[方法技巧] 1.利用导数解决不等式问题的策略 利用导数解决不等式问题(如:证明不等式,比较大小等),其实质 就是利用求导数的方法研究函数的单调性,而证明不等式(或比较大小) 常与函数最值问题有关.因此,解决该类问题通常是构造一个函数,然 后考查这个函数的单调性,结合给定的区间和函数在该区间端点的函数 值使问题得以求解.其实质是这样的: 要证不等式 f(x)>g(x),则构造函数 φ(x)=f(x)-g(x),只需证 φ(x)>0 即可,由此转化成求 φ(x)最小值问题,借助于导数解决.
所以 0<a<27. 当 a<0 时,f(x)在-2,23上单调递减,在23,1上单调递增,又 f(- 2)=-32a>f(1)=a. 所以 f(x)的最大值为 f(-2)=-32a<32,即 a>-1. 所以-1<a<0. 综上可得,a 的取值范围为(-1,0)∪(0,27).
2.已知函数 f(x)=ax2+exx-1. (1)求曲线 y=f(x)在点(0,-1)处的切线方程; (2)证明:当 a≥1 时,f(x)+e≥0. 解:(1)因为 f′(x)=-ax2+2eax-1x+2, 所以 f′(0)=2, 所以曲线 y=f(x)在(0,-1)处的切线方程是 y+1=2x,即 2x-y-1=0. (2)证明:当 a≥1 时, f(x)+e≥(x2+x-1+ex+1)e-x. 令 g(x)=x2+x-1+ex+1, 则 g′(x)=2x+1+ex+1. 当 x<-1 时,g′(x)<0,g(x)单调递减; 当 x>-1 时,g′(x)>0,g(x)单调递增. 所以 g(x)≥g(-1)=0. 因此 f(x)+e≥0.
第一章导数及其应用练习题

第一章导数及其应用1.1变化率与导数1.1.1变化率问题1.1.2导数的概念1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy),则ΔyΔx等于().A.4 B.4x C.4+2Δx D.4+2(Δx)22.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是().A.4 B.4.1 C.0.41 D.33.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在1.2 s末的瞬时速度为().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s4.已知函数y=2+1x,当x由1变到2时,函数的增量Δy=________.5.已知函数y=2x,当x由2变到1.5时,函数的增量Δy=________.6.利用导数的定义,求函数y=1x2+2在点x=1处的导数.7.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为().A.0.40 B.0.41 C.0.43 D.0.448.设函数f(x)可导,则limΔx→0f(1+Δx)-f(1)3Δx等于().A.f′(1) B.3f′(1) C.13f′(1) D.f′(3)9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________.10.某物体作匀速运动,其运动方程是s=v t,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度.12.(创新拓展)已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.导数练习题 2015年春第 3 页 共 16 页1.1.3 导数的几何意义1.已知曲线y =12x 2-2上一点P ⎝ ⎛⎭⎪⎫1,-32,则过点P 的切线的倾斜角为( ).A .30°B .45°C .135°D .165°2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ). A .2 B .4 C .6+6Δx +2(Δx )2 D .63.设y =f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx=-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为( ). A .2 B .-1 C .1 D .-24.曲线y =2x -x 3在点(1,1)处的切线方程为________. 5.设y =f (x )为可导函数,且满足条件 lim x →0f (1)-f (1-x )2x=-2,则曲线y =f (x )在点(1,f (1))处的切线的斜率是________.6.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.7.设函数f (x )在x =x 0处的导数不存在,则曲线y =f (x )( ).A .在点(x 0,f (x 0))处的切线不存在B .在点(x 0,f (x 0))处的切线可能存在C .在点x 0处不连续D .在x =x 0处极限不存在 8.函数y =-1x 在⎝ ⎛⎭⎪⎫12,-2处的切线方程是( ).A .y =4xB .y =4x -4C .y =4x +4D .y =2x -49.若曲线y=2x2-4x+p与直线y=1相切,则p的值为________.10.已知曲线y=1x-1上两点A⎝⎛⎭⎪⎫2,-12、B(2+Δx,-12+Δy),当Δx=1时割线AB的斜率为________.11.曲线y=x2-3x上的点P处的切线平行于x轴,求点P的坐标.12.(创新拓展)已知抛物线y=ax2+bx+c通过点P(1,1),Q(2,-1),且在点Q 处与直线y=x-3相切,求实数a、b、c的值.导数练习题2015年春1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则第1课时基本初等函数的导数公式1.已知f(x)=x2,则f′(3)().A.0 B.2x C.6 D.92.f(x)=0的导数为().A.0 B.1 C.不存在D.不确定3.曲线y=x n在x=2处的导数为12,则n等于().A.1 B.2 C.3 D.44.设函数y=f(x)是一次函数,已知f(0)=1,f(1)=-3,则f′(x)=________. 5.函数f(x)=x x x的导数是________.6.在曲线y=x3+x-1上求一点P,使过P点的切线与直线y=4x-7平行.7.设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x),n∈N,则f2010(x)=().A.sin x B.-sin x C.cos x D.-cos x第 5 页共16 页8.下列结论①(sin x )′=-cos x ;②⎝ ⎛⎭⎪⎫1x ′=1x 2;③(log 3x )′=13ln x ;④(ln x )′=1x .其中正确的有( ).A .0个B .1个C .2个D .3个 9.曲线y =4x 3在点Q (16,8)处的切线的斜率是________. 10.曲线y =9x 在点M (3,3)处的切线方程是________.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值.12.(创新拓展)求下列函数的导数:(1)y =log 4x 3-log 4x 2;(2)y =2x 2+1x -2x ;(3)y =-2sin x 2(2sin 2x4-1).导数练习题 2015年春第 7 页 共 16 页第2课时 导数的运算法则及复合函数的导数1.函数y =cos x1-x的导数是( ). A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x (1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( ). A.193 B.103 C.133 D.163 3.已知f ⎝ ⎛⎭⎪⎫1x =x 1+x ,则f ′(x )等于( ).A.11+x B .-11+x C.1(1+x )2 D .-1(1+x )24.若质点的运动方程是s =t sin t ,则质点在t =2时的瞬时速度为________. 5.若f (x )=log 3(x -1),则f ′(2)=________.6.过原点作曲线y =e x 的切线,求切点的坐标及切线的斜率.7.函数y=(x-a)(x-b)在x=a处的导数为().A.ab B.-a(a-b) C.0 D.a-b8.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=().A.a B.±a C.-a D.a29.若f(x)=(2x+a)2,且f′(2)=20,则a=________.10.函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为________.11.曲线y=e2x·cos 3x在(0,1)处的切线与直线L的距离为5,求直线L的方程.12.(创新拓展)求证:可导的奇函数的导函数是偶函数.导数练习题 2015年春第 9 页 共 16 页1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数1.在下列结论中,正确的有( ). (1)单调增函数的导数也是单调增函数; (2)单调减函数的导数也是单调减函数; (3)单调函数的导数也是单调函数;(4)导函数是单调的,则原函数也是单调的. A .0个 B .2个 C .3个 D .4个 2.函数y =12x 2-ln x 的单调减区间是( ).A .(0,1)B .(0,1)∪(-∞,-1)C .(-∞,1)D .(-∞,+∞)3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( ). A .a ≥1 B .a =1 C .a ≤1 D .0<a <1 4.函数y =ln(x 2-x -2)的递减区间为________.5.若三次函数f (x )=ax 3+x 在区间(-∞,+∞)内是增函数,则a 的取值范围是________.6.已知x >1,证明:x >ln(1+x ).7.当x >0时,f (x )=x +2x 的单调递减区间是( ).A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2) 8.已知函数y =f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则y =f (x )的图象可能是( ).9.使y =sin x +ax 为R 上的增函数的a 的范围是________. 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.已知函数f (x )=x 3+ax +8的单调递减区间为(-5,5),求函数y =f (x )的递增区间.12.(创新拓展)求下列函数的单调区间,并画出大致图象: (1)y =x +9x ; (2)y =ln(2x +3)+x 2.导数练习题 2015年春第 11 页 共 16 页1.3.2 函数的极值与导数1.下列函数存在极值的是( ).A .y =1xB .y =x -e xC .y =x 3+x 2+2x -3D .y =x 32.函数y =1+3x -x 3有( ).A .极小值-1,极大值1B .极小值-2,极大值3C .极小值-2,极大值2D .极小值-1,极大值33.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ).A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点4.设方程x 3-3x =k 有3个不等的实根,则常数k 的取值范围是________.5.已知函数y =x 2x -1,当x =________时取得极大值________;当x =________时取得极小值________.6.求函数f (x )=x 2e -x 的极值.7.函数f (x )=2x 3-6x 2-18x +7( ).A .在x =-1处取得极大值17,在x =3处取得极小值-47B .在x =-1处取得极小值17,在x =3处取得极大值-47C.在x=-1处取得极小值-17,在x=3处取得极大值47D.以上都不对8.三次函数当x=1时有极大值4,当x=3时有极小值0,且函数过原点,则此函数是().A.y=x3+6x2+9x B.y=x3-6x2+9xC.y=x3-6x2-9x D.y=x3+6x2-9x9.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,则实数a的取值范围是________.10.函数y=x3-6x+a的极大值为________,极小值为________.11.已知函数y=ax3+bx2,当x=1时函数有极大值3,(1)求a,b的值;(2)求函数y的极小值.12.(创新拓展)设函数f(x)=a3x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.导数练习题 2015年春第 13 页 共 16 页1.3.3 函数的最大(小)值与导数1.函数y =x e -x ,x ∈[0,4]的最大值是( ).A .0 B.1e C.4e 4 D.2e 22.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ).A .0≤a <1B .0<a <1C .-1<a <1D .0<a <123.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( ).A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )4.函数y =x +2cos x 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是________. 5.函数f (x )=sin x +cos x 在x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大、最小值分别是________. 6.求函数f (x )=x 5+5x 4+5x 3+1在区间[-1,4]上的最大值与最小值.7.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ).A .-173B .-103C .-4D .-6438.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为().A.-37 B.-29 C.-5 D.-119.函数f(x)=4xx2+1,x∈[-2,2]的最大值是________,最小值是________.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是________.11.已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.12.(创新拓展)已知函数f(x)=x2e-ax(a>0),求函数在[1,2]上的最大值.导数练习题 2015年春第 15 页 共 16 页1.4 生活中的优化问题举例1.如果圆柱截面的周长l 为定值,则体积的最大值为( ).A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43πD.14⎝ ⎛⎭⎪⎫l 43π 2.若一球的半径为r ,作内接于球的圆柱,则其侧面积最大为( ).A .2πr 2B .πr 2C .4πr D.12πr 2 3.某公司生产一种产品, 固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧ -x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润最大时,每年生产产品的单位数是( ). A .150 B .200 C .250 D .3004.有矩形铁板,其长为6,宽为4,现从四个角上剪掉边长为x 的四个小正方形,将剩余部分折成一个无盖的长方体盒子,要使容积最大,则x =________.5.如图所示,某厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为________.6.如图所示,已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这个矩形面积最大时的边长.7.设底为正三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为().A.3V B.32V C.34V D.23V8.把长为12 cm的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是().A.32 3 cm2B.4 cm2 C.3 2 cm2D.2 3 cm29.在半径为r的圆内,作内接等腰三角形,当底边上的高为________时它的面积最大.10.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.11.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?12.(创新拓展)如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?。
导数计算习题课

求复合函数的导数,关键在于分清函数的复合关系,合 理选定中间变量,明确求导过程中每次是哪个变量对哪个 变量求导,一般地,如果所设中间变量可直接求导,就不必再 选中间变量.
例题选讲
例1:求下列函数的导数:
(1) y (2x 1)5
1 (2) y (1 3x)4
回顾与总结
3.复合函数的求导法则: 复合函数 对于两个函数 y f (u) 和 u g(x) ,如果
通过变量 u, y 可以表示成 x 的函数,那么称这个函 数 y f (u) 和 u g(x) 的复合函数,记作 y f (g(x))
复合函数 y f (g(x)) 的导数为 yx ' yu 'ux ' , 即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的积.
(3) y (1 sin2 x)4
解:(1)设y=u5,u=2x+1,则:
yx yu ux (u5 )u (2x 1)x 5u4 2 5(2x 1)4 2 10(2x 1)4 .
解: (2)设y=u-4,u=1-3x,则:
yx
yu
ux
(u4 )u
(1 3x)x
4u5
证:由于曲线的图形关于坐标轴对称,故只需证明其中一 个交点处的切线互相垂直即可.
联立两曲线方程解得第一象限的交点为P(3,2),不妨
证明过P点的两条切线互相垂直.
由于点P在第一象限,故由x2-y2=5得 y x2 5, y x ,
k1
y
|x3
3; 2
同理由4x2+9y2=72得
y
x2 5
8 4 x2 , y 4x ;
1 x2
1.2导数的计算(4课时)

作业: P18习题1.2A组:1.
1.2
导数的计算
1.2.2 基本初等函数的导数 公式及导数的运算法则 第一课时
问题提出 1.如何求函数f(x)的导数?
y= 2.函数y=c,y=x,y=x2,
,
f (x + Vx ) - f (x ) f¢ (x ) = lim Vx ® 0 Vx 1
x 的导数分别是什么?.
思考3:若y=c表示路程关于时间的函数, 则y′=0的物理意义如何解释?
物体的瞬时速度始终为0,即物体处于静 止状态.
探究(二):函数y=f(x)=x的导数 思考1:函数f(x)=x的图象是什么?相 对于x的函数值增量△y等于什么? y y =x
v= h(0.5) - h(0) = 4.05(m / s ) 0.5 - 0
f¢ (x ) = k
思考5:函数f(x)=kx(k≠0)的图象是什 么?其导数表示什么? y=kx的图象是过原点的一条直线
f¢ (x ) = k 表示直线y=kx的斜率.
思考6:函数f(x)=kx(k≠0)增(减)的快 慢与k的取值有什么关系? k>0时,k越大,f(x)增加得越快; k<0时,k越大,f(x)减少得越慢.
= ln x 的
导数是什么?
1 (loga x )¢= x ln a
1 (ln x )¢= x
探究(二):导数的四则运算法则
[f (x ) + g(x )]¢ (x ) + g (x ) 相等吗? 思考1: 与 fⅱ 为什么?
[f (x ) + g(x )]ⅱ = f (x ) + g (x )
(x ), g (x ) 有什么关 [f (x ) - g(x )]¢与 f ⅱ 思考2: 系? [f (x ) - g(x )]ⅱ = f (x ) - g (x )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四次习题课(导数与微分)
一、内容提要
1.导数定义,函数可导与函数连续的关系,
2.导数四则运算、反函数的导数、复合函数求导法则、对数求导方法,
3.导数基本公式,
4.高阶导数概念、高阶导数莱布尼茨公式,参数方程的导数.
一、客观题
1. 设)100)(99()2)(1()(----=x x x x x x f ,则).()0('=f
2.若2)(0-='x f ,则=+--→)
21ln()()2(lim 000h x f h x f h ( ); 3.设)()()(bx a g bx a g x f --+=,其中)(x g 在),(+∞-∞有定义,且在a x =可导,则)0(f '=( );
4.已知xdx x df 2cos )(= ,则)(x f =( )
)(A x 2cos ; )(B x 2sin 2-; )(C x 2sin ; )(D x 2sin 2
1; 5.设⎪⎩⎪⎨⎧=≠+=0
,00 ,1)(1x x e x x f x
,求)0(-'f 及)0(+'f ,又)0(f '是否存在? 二、解答题
1.设函数设⎪⎩⎪⎨⎧>+≤+=1
,1 ,12)(2x b ax x x x f 在1=x 处可导,求b a ,的值
2.设函数)sin(ln 3x x y -=,求y '
3.设函数x x y tan = ()0>x ,求dy
4.设)(x f 是定义在R 上的函数,且对任何R x x ∈21,都有12()f x x +)()(21x f x f =,若2)0(='f ,试求)(x f '.
5.设()()
21ln 1arctan x x x x f +++=,求()x f '. 6.已知)(x ϕ可导,)](arctan[)(2x x f ϕ=,求)(x f ',)(x f ''
7.求分段函数()⎪⎩
⎪⎨⎧>-≤≤<=1,210,0,23x x x x x x x f 的导数()x f '.
8.设参数方程为()⎩⎨⎧-=+=t
t y t x arctan 1ln 2 ,求22dx y d . 9.)
1(1x x y -=,求)(n y 10.用微分近似计算公式求05.0e 的近似值.
11. 设arctan .y x =
(1)证明它满足方程2'''(1)20;x y xy ++=(2)求()0.n x y
= 12.(1)举出一个连续函数,它仅在点12,,n a a a 处不可导;(2)举出一个函数,它仅在点12,,n a a a 处不可导.
13.设ψϕ,为可导函数,)
()(arctan x x y ψϕ=,求y '。