分式的化简专题训练
分式的化简求值专项练习

分式的化简求值专项训练化简求值:1.先化简,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.2.先化简,再求值:,其中a=2013.3.先化简,再求值:,其中,a=1+,b=1﹣.4.先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.5.先化简,再求值:,其中,.6.先化简,再求值:(﹣)÷,其中m=﹣3,n=5.7.先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.8.先化简,再求值:,其中x是不等式3x+7>1的负整数解.9.先化简,再求值:a﹣2+,其中a=3.11.先化简,再求值:,其中a=.12.先化简,再求值:,其中x=﹣2.13.先化简,后求值:,其中a=3.14.先简化,再求值:,其中x=.15.先化简,再求值:,其中x=2.16.先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.17.先化简,再求值:,其中x=3.18.先化简,再求值:÷(a﹣),其中a、b满足式子|a﹣2|+(b﹣)2=0.19.先化简,再求值:(﹣)÷,其中x=4.20.先化简,再求值:,其中a=﹣1.参考答案与试题解析一.解答题(共20小题)1.(2013•巴中)先化简,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.×=52.(2013•普洱)先化简,再求值:,其中a=2013.•=﹣==.3.(2013•襄阳)先化简,再求值:,其中,a=1+,b=1﹣.÷÷×,,﹣=﹣4.(2013•自贡)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.×﹣=5.(2013•孝感)先化简,再求值:,其中,.6.(2013•连云港)先化简,再求值:(﹣)÷,其中m=﹣3,n=5.﹣)÷÷××==7.(2013•重庆)先化简,再求值:÷(﹣a﹣2b)﹣,其中a,b满足.÷﹣×﹣,∵∴﹣﹣8.(2013•重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解.﹣]×××代入中得:9.(2013•岳阳)先化简,再求值:a﹣2+,其中a=3.10.(2013•永州)先化简,再求值:(+)÷,其中x=2.+÷+•11.(2013•遂宁)先化简,再求值:,其中a=.•时,原式12.(2013•湘潭)先化简,再求值:,其中x=﹣2.÷﹣13.(2013•鄂州)先化简,后求值:,其中a=3.÷÷14.(2013•张家界)先简化,再求值:,其中x=.+1.15.(2013•宜宾)先化简,再求值:,其中x=2.16.(2013•乌鲁木齐)先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.﹣÷×=17.(2013•宿迁)先化简,再求值:,其中x=3.•=18.(2013•齐齐哈尔)先化简,再求值:÷(a﹣),其中a、b满足式子|a﹣2|+(b﹣)2=0.÷﹣÷•)=2+19.(2013•广安)先化简,再求值:(﹣)÷,其中x=4.﹣)÷×,﹣﹣20.(2013•抚顺)先化简,再求值:,其中a=﹣1.==,=.©2010-2014 菁优网。
初二数学分式化简法练习题

初二数学分式化简法练习题分式化简是初中数学中的一个重要知识点,也是解决复杂算式的基础。
下面通过一些练习题来帮助你巩固和提升分式化简的能力。
练习题一:将下列分式化简为最简形式:1. $\frac{12x^2+18x}{6x}$解析:这个分式可以先将分子和分母同时除以6,得到$\frac{2x^2+3x}{x}$。
然后可以继续化简分式,得到2x+3。
答案:2x+32. $\frac{24a^2+30a+36}{12a+18}$解析:这个分式可以先将分子和分母同时除以6,得到$\frac{4a^2+5a+6}{2a+3}$。
然后可以继续化简分式,得到2a+3。
答案:2a+3练习题二:将下列分式化简为最简形式:1. $\frac{x^2-9}{x^2-x-6}$解析:这个分式可以先将分子和分母进行因式分解,得到$\frac{(x+3)(x-3)}{(x-3)(x+2)}$。
然后可以约去分子分母的公因式(x-3),得到最终答案为x+2。
答案:x+22. $\frac{16a^2-9b^2}{4a+3b}$解析:这个分式可以先将分子进行因式分解,得到$\frac{(4a+3b)(4a-3b)}{4a+3b}$。
然后可以约去分子分母的公因式(4a+3b),得到最终答案为4a-3b。
答案:4a-3b练习题三:将下列分式化简为最简形式:1. $\frac{3m^2-27}{m^2-9}$解析:这个分式可以先将分子和分母进行因式分解,得到$\frac{3(m+3)(m-3)}{(m+3)(m-3)}$。
然后可以约去分子分母的公因式(m+3)(m-3),得到最终答案为3。
答案:32. $\frac{x^2+2xy+y^2}{x^2-xy}$解析:这个分式可以先将分子进行因式分解,得到$\frac{(x+y)^2}{x(x-y)}$。
然后约去分子和分母的公因式x,得到最终答案为$\frac{(x+y)^2}{x(x-y)}$。
分式的化简练习题

分式的化简练习题以“分式的化简练习题”为题,本文将提供一系列关于分式化简的练习题,并提供详尽的解答。
请注意,文中不会再次重复标题或其他任何内容。
一、练习题1. 将分式 $\frac{20}{30}$ 化简为最简形式。
2. 将分式 $\frac{72}{108}$ 化简为最简形式。
3. 将分式 $\frac{24}{60}$ 化简为最简形式。
4. 将分式 $\frac{36}{48}$ 化简为最简形式。
5. 将分式 $\frac{9}{15}$ 化简为最简形式。
6. 将分式 $\frac{63}{105}$ 化简为最简形式。
7. 将分式 $\frac{16}{64}$ 化简为最简形式。
8. 将分式 $\frac{8}{12}$ 化简为最简形式。
9. 将分式 $\frac{48}{72}$ 化简为最简形式。
10. 将分式 $\frac{15}{20}$ 化简为最简形式。
二、解答1. $\frac{20}{30}$ 的最大公约数是10,将分子和分母同时除以10,得到最简形式 $\frac{2}{3}$。
2. $\frac{72}{108}$ 的最大公约数是 36,将分子和分母同时除以 36,得到最简形式 $\frac{2}{3}$。
3. $\frac{24}{60}$ 的最大公约数是12,将分子和分母同时除以12,得到最简形式 $\frac{2}{5}$。
4. $\frac{36}{48}$ 的最大公约数是12,将分子和分母同时除以12,得到最简形式 $\frac{3}{4}$。
5. $\frac{9}{15}$ 的最大公约数是 3,将分子和分母同时除以 3,得到最简形式 $\frac{3}{5}$。
6. $\frac{63}{105}$ 的最大公约数是 21,将分子和分母同时除以 21,得到最简形式 $\frac{3}{5}$。
7. $\frac{16}{64}$ 的最大公约数是16,将分子和分母同时除以16,得到最简形式 $\frac{1}{4}$。
120道分式化简求值练习题库

化简求值题1. 先化简,再求值:12112---x x ,其中x =-2.2、先化简,再求值:,其中a=﹣1.3、先化简,再求值:,其中x=.4、先化简,再求值:,其中.5先化简,再求值,其中x 满足x 2﹣x ﹣1=0.6、化简:b a b a b a b 3a -++--7、先化简,再求值:,其中a=.8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、先化简,再求值:(+1)÷,其中x=2.10、先化简,再求值:3x –3 – 18x 2 – 9 ,其中x = 错误!–311、先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:12-x x (x x 1--2),其中x =2.13、先化简,再求值:,其中.14、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、先化简,再求值:232()111x x x x x x --÷+--,其中32x =.17先化简。
再求值: 2222121111a a a a a a a +-+⋅---+,其中12a =-。
18. 先化简,再求值:⎝⎛⎭⎫1+1x -2÷x 2-2x +1x 2-4,其中x =-5.19. 先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根.20 化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =3.21、(1)化简:÷. (2)化简:22a b ab b a (a b )a a ⎛⎫--÷-≠ ⎪⎝⎭22、先化简,再求值:,其中.23请你先化简分式2223691,x 1211x x x x x x x +++÷+--++再取恰的的值代入求值.24、(本小题8分)先化简再求值()121112222+--++÷-+a a a a a a 其中a=3+125、化简,其结果是.26.先化简,再求值:(x x -2-2)÷x 2-16x 2-2x,其中x =3-4.27、 先化简,再求值:x 2+4x +4x 2-16÷x +22x -8-2x x +4,其中x =2.28、先化简,再求值:232()224x x x x x x -÷-+-,其中34x =.29.先化简,再求值:2()11a a a a a +÷--,其中2 1.a =30、先化简,再求值:2211()11a a a a++÷--,其中2a31、(1)化简:. (2)2111x x x -⎛⎫+÷ ⎪⎝⎭(3)a a a a 1)1(-÷-32.(1)a b a b a b b a +⋅++-)(2。
50道分式化简取值计算试题附答案

日期:_______50题搞定分式易错点(中考必考)分式化简求值_计时:________姓名:________成绩:________一、解答题(共50小题)1.先化简,再求值:÷(x+2﹣),其中x =.2.先化简,再求值:(+)÷,其中x =3.3.先化简,再求值:(),其中a =2.4.化简式子÷(x﹣),并在﹣1,0,1,2中选一个合适的数字代入求值.5.先化简,再求值:,其中.6.先化简,再求值:.其中x=3+3.7.化简求值:()÷,其中x是不等式组的解,请从中选择一个合适的值代入求值.8.化简,并选一个你喜欢的数作为x的值代入求值.9.先化简÷(﹣x﹣1),再从﹣2,﹣1,0,1,2中选取一个你喜爱的x值代入求值.10.先化简,再求值:(+)÷,其中x=.11.先化简再求值:(x+1﹣)÷,且x=2017.12.先化简,再求值:,其中x=﹣2.13.先化简,再求值:÷(1+),其中x=2020.14.先化简,再求值:(1﹣)÷,当x=2019时,求代数式的值.15.先化简,再求值:,其中x的值从解集﹣2<x<3的整数解中选取.16.先化简,再求值:(1+)÷,其中x取满足﹣1≤x<3的整数.17.先化简,再求值:﹣÷,其中x=﹣1.18.先化简,再求值:(﹣)÷,其中a=﹣.19.先化简,再求值:,其中x=﹣1.20.先化简,再求值:(+)÷,其中a=+1.21.先化简,再求值:,其中.22.先化简:+÷在从﹣1≤x≤3的整数中选取一你喜欢的x的值代入求值.23.先化简,再求值:,其中24.先化简,再求值:÷(﹣1),其中x=﹣﹣1.25.先化简、再求值:(﹣)÷,其中x=﹣2.26.先化简,再求值:(x﹣1+)÷,其中x的值是从﹣2<x<3的整数值中选取.27.先化简,再求值:,其中a=﹣2.28.先化简,再求值:•(﹣1),其中x=3.29.先化简,再求值:(2﹣)÷,其中x=5.30.如果x2+x﹣3=0,求代数式的值.31.先化简,再求值:÷(﹣x﹣2),其中x=﹣132.先化简,再求值:(+)•,其中m=1.33.先化简,再求值:+÷,其中x=3.34.先化简(﹣1),然后从0,1,2中选一个合适的数作为a的值代入求值.35.先化简,再求值:,其中a=﹣2.36.先化简,再求值:(+)÷,其中m =9.37.先化简,再求代数式(+1)÷的值,其中x =13+.38.先化简÷(1﹣),再从﹣1,2,3三个数中选一个合适的数作为x 的值代入求值.39.先化简,再求值:9331963322--÷-++--a a a a a a a ,并在3,﹣3,4这三个数中取一个合适的数作为a 的值代入求值.40.先化简,再求值:(m ﹣)÷,其中m =﹣20.41.先化简再求值:(),其中x =﹣3.42.先化简,再求代数式÷的值,其中x=.43.先化简,再求值:•,其中x=2020.44.先化简再求值:÷(1+),其中a=﹣2,b=1.45.先化简,再求值:,其中x=2.46.先化简,再求值:÷,其中x=3.47.化简并计算:,其中x=3.48.先化简,再求值(1﹣)÷,其中a=﹣2.49.先化简,再求值:(x+1﹣)÷,其中x=()﹣1﹣(3﹣π)0.50.先化简,再求值:,其中.50道分式化简求值计算参考答案部分答案可能有误仅供参考一、解答题(共50小题)1.【答案】==.2.【答案】=1.3.【答案】a2+3a=10.4.【答案】=.5.【答案】=.6.【答案】=.7.【答案】=3.8.【答案】=.9.【答案】=.10.【答案】x﹣1=﹣1.11.【答案】x+4,=2017+4=2021.12.【答案】,=.13.【答案】x+1,=2021.14.【答案】,=.15.【答案】,=.16.【答案】x,=﹣1.17.【答案】﹣,=.18.【答案】a+4,=.19.【答案】,=.20.【答案】.=.21.【答案】2m+6.=5.22.【答案】,=﹣.23.【答案】﹣1﹣24.【答案】﹣x﹣1,=25.【答案】.=﹣.26.【答案】.=.27.【答案】,=3.28.【答案】,=.29.【答案】,=.30.【答案】=.31.【答案】﹣,=﹣.32.【答案】4m+4,=8.33.【答案】,=﹣4.34.【答案】,=.35.【答案】,=﹣5.36.【答案】,=.37.【答案】,=.38.【答案】,=2.39.【答案】33--a=﹣3.40.【答案】,=.41.【答案】,=.42.【答案】,=3.243.【答案】,=2018144.【答案】,=﹣2.45.【答案】x +4,=6.46.【答案】,=.47.【答案】,=3.48.【答案】,=.49.【答案】44-+-x x =350.【答案】,=.。
分式化简练习题精选及答案

分式化简练习题精选及答案分式是数学中的基本概念,它在数学中起到了非常重要的作用。
在分式化简练习中,我们需要掌握基本的分式化简原理,并且需要广泛练习各种类型的分式化简题目。
下面是一些常见的分式化简练习题目以及解答方法,希望对大家的学习有所帮助。
一、简单的分式化简题目1. 将 $\frac{2x+4}{x+2}$ 化简为最简分式。
解:这个分式可以化简为 $\frac{2(x+2)}{x+2}$,然后可以简化为 $2$。
2. 将 $\frac{x^2-4}{x+2}$ 化简为最简分式。
解:这个分式可以化简为 $\frac{(x-2)(x+2)}{x+2}$,然后可以简化为 $x-2$。
3. 将 $\frac{x^2+4x+4}{x^2-4x+3}$ 化简为最简分式。
解:这个分式可以化简为 $\frac{(x+2)^2}{(x-1)(x-3)}$,然后可以简化为 $\frac{(x+2)^2}{(x-1)(x-3)}$。
二、含有多项式的分式化简题目1. 将 $\frac{x^3+8}{x^2-2x-24}$ 化简为最简分式。
解:这个分式可以化简为$\frac{(x+2)(x^2-2x+4)}{(x-6)(x+4)}$,然后可以简化为 $\frac{x^2-2x+4}{x-6}$。
2. 将 $\frac{x^3-4x^2-7x+10}{x^2+4x+4}$ 化简为最简分式。
解:这个分式可以化简为 $\frac{(x-2)(x+1)^2}{(x+2)^2}$,然后可以简化为 $\frac{x-2}{x+2}$。
三、复杂的分式化简题目1. 将$\frac{1}{x^2+4x+3}+\frac{1}{x^2+2x}$ 化简为最简分式。
解:首先找到这两个分式的公共分母,它是$(x+1)(x+3)x(x+2)$。
然后将每个分式乘以合适的因数得到通分式,最后将通分式加起来得到最简分式。
2. 将 $\frac{x+1}{x^3-1}-\frac{1}{x^2-x}$ 化简为最简分式。
120道分式化简求值练习题库

化简求值题1. 先化简,再求值:12112---x x ,其中x =-2.2、先化简,再求值:,其中a=﹣1.`3、先化简,再求值:,其中x=.4、先化简,再求值:,其中.?5先化简,再求值,其中x 满足x 2﹣x ﹣1=0.6、化简:ba b a b a b 3a -++-- "7、先化简,再求值:,其中a=.8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值. :9、先化简,再求值:(+1)÷,其中x=2.10、先化简,再求值:3x –3 – 18x 2 – 9 ,其中x = 错误!–3!11、先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..,12、先化简,再求值:12-x x (x x 1--2),其中x =2.13、先化简,再求值:,其中.,14、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.#15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .@16、先化简,再求值:232()111x x x x x x --÷+--,其中32x =.17先化简。
再求值: 2222121111a a a a a a a +-+⋅---+,其中12a =-。
】18. 先化简,再求值:⎝⎛⎭⎫1+1x -2÷x 2-2x +1x 2-4,其中x =-5.、19. 先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根.*20 化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =3.21、(1)化简:÷. (2)化简:22a b ab b a (a b )a a ⎛⎫--÷-≠ ⎪⎝⎭|22、先化简,再求值:,其中.:23请你先化简分式2223691,x 1211x x x x x x x +++÷+--++再取恰的的值代入求值.24、(本小题8分)先化简再求值()121112222+--++÷-+a a a a a a 其中a=3+1 ;25、化简,其结果是.[26.先化简,再求值:(x x -2-2)÷x 2-16x 2-2x,其中x =3-4.27、 先化简,再求值:x 2+4x +4x 2-16÷x +22x -8-2x x +4,其中x =2./28、先化简,再求值:232()224x x x x x x -÷-+-,其中34x =.29.先化简,再求值:2()11a a a a a+÷--,其中2 1.a = }30、先化简,再求值:2211()11a a a a++÷--,其中2a31、(1)化简:. (2)2111x x x -⎛⎫+÷ ⎪⎝⎭(3)a a a a 1)1(-÷- /32.(1)a b a b a b b a +⋅++-)(2。
分式化简求值55道练习题

分式化简求值55道练习题1.先化简,再求值:$\frac{12}{2x-1}-\frac{x-1}{x-1}$,其中$x=-2$。
2.先化简,再求值:$\frac{a^2-b^2}{a-b}$,其中$a=-1$。
3.先化简,再求值:$\frac{x^2-2x+1}{x^2+x-2}$,其中$x=\frac{1+\sqrt{5}}{2}$。
4.先化简,再求值:$\frac{a-3b}{a+b}+\frac{a+b}{a-b}$,其中$a=1$。
5.先化简,再求值:$\frac{a-3b}{a+b}-\frac{a-b}{a+b}$,其中$b=2$。
6.化简:$\frac{(x+1)(x-1)}{x(x-1)}$。
7.先化简,再求值:$\frac{a^2-1}{a^2+1}$,其中$a=\frac{1}{2}$。
8.先化简:$\frac{x^2-1}{2x-1}$,其中$a=2$,代入求值。
9.先化简,再求值:$\frac{(x+1)}{(x-2)^2}$,其中$x=2$。
10.先化简,再求值:$\frac{3x+1}{x+3}$,其中$x=-3$。
11.先化简下列式子:$\frac{2}{x+2}-\frac{3}{x-1}$,再从2,-2,1,-1中选择一个合适的数进行计算。
12.先化简,再求值:$\frac{x}{x-1}$,其中$x=-2$。
13.先化简,再求值:$\begin{cases} -x-2\leq 3x \\ x\leq2x^2 \end{cases}$,其中$x=1$。
14.先化简,然后从不等式组$\begin{cases} x-5\leq -x \\x^2-2x-25\leq 2x+12 \end{cases}$的解集中,选取一个你认为符合题意的$x$的值代入求值。
15.先化简,再求值:$\frac{a^2-4a-2}{2a^2+6a+9}$,其中$a=-5$。
16.先化简,再求值:$\frac{3x-x^2}{x^2-2}$,其中$x=\frac{3}{\sqrt{2}}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10再求值: ,其中 .
11.先化简: ,然后从-1≤x≤2中选一个合适的整数作为x的值代入求值.
12)先化简,再求值: ,其中x=1.
13.先化简,后计算: ,其中 .
14.(6分)化简: .
15.化简:(x2﹣2x)÷ .
16. .其中 .
17.先化简,再求值: ,期中a=1
18.先化简,再求值: ,其中m是方程 的根.
29.化简: 其中a=
30. ,其中x=tan60°
分式的化简专题训练
1.先化简,再求值: ,其中 , .
2.先化简,再求值: ,其中 .
3、先化简,再求值: ,a取一个合适的值
4、化简求值: ,其中a=
5、)先化简,再求值: ,其中 .
6、化简: ,然后选择一个使分式有意义的数代入求值.
7.)先化简,再求值: ,其中 .
8.先化简,再求值: ,其中 .
19.先化简,再求值: ,其中 .
20.化简 .
21.化简求值 ,其中 满足 .
22.先化简,再求值 : 其中x=-2
23.先化简,再求值 ,其中x=3
24.先化简,再求值 )其中x=
25.先化简,再求值( ) 其中x=
26.化简求值: ),其中m=
27.先化简,再求值:( ,其求代数式 的值