析氢腐蚀和吸氧腐蚀
第 4 章 析氢腐蚀与吸氧

4.2 吸氧腐蚀
二. 氧的阴极还原过程及过电势
氧从空气中进入溶液并迁移到阴极表面发生还原反应,包括 个过程 氧从空气中进入溶液并迁移到阴极表面发生还原反应,包括4个过程 阴极极化曲线的三个区域: 阴极极化曲线的三个区域: 1. 当阴极电流密度较小,且供氧充分时,阴极极化过程的速度决定氧的离子化反应 当阴极电流密度较小,且供氧充分时, 2. 阴极电流密度增大,出现了浓差极化 阴极电流密度增大, 3. 当阴极反应速度=极限扩散电流密度时,出现新的阴极极化 当阴极反应速度=极限扩散电流密度时,
3. 当V输=V反时,吸氧腐蚀同时受电化学极化和扩散浓差极化控制。 反时,吸氧腐蚀同时受电化学极 吸氧腐蚀的过程及特点 1. 如腐蚀金属在溶液中的电势较高,腐蚀过程中氧的传递速度大,金 如腐蚀金属在溶液中的电势较高,腐蚀过程中氧的传递速度大, 属腐蚀速度主要由氧在电极上的放电速度决定; 属腐蚀速度主要由氧在电极上的放电速度决定;阳极极化曲线与阴 极极化曲线相交于氧还原反应的活化区。 极极化曲线相交于氧还原反应的活化区。 2. 如腐蚀金属在溶液中的电势很低,腐蚀过程中氧的传递速度太小, 如腐蚀金属在溶液中的电势很低,腐蚀过程中氧的传递速度太小, 阴极过程将由氧去极化和氢离子去极化两个反应共同组成; 阴极过程将由氧去极化和氢离子去极化两个反应共同组成;此时腐 蚀电流大于氧的极限扩散电流 3. 如腐蚀金属在溶液中的电势较低,且处于活性溶解状态,而氧的传 如腐蚀金属在溶液中的电势较低,且处于活性溶解状态, 输速度又有限,则金属腐蚀速度将由氧的极限扩散电流密度决定。 输速度又有限,则金属腐蚀速度将由氧的极限扩散电流密度决定。 阳极极化曲线与阴极极化曲线相交于氧的扩散控制区。 阳极极化曲线与阴极极化曲线相交于氧的扩散控制区。
1. 当V输》V反时,阴极去极化反应是控制因素,即有充足的氧化剂到达阴极。 阴极去极化反应是控制因素,即有充足的氧化剂到达阴极。 2. 当V输《V反时,氧向阴极表面的输送是控制步骤。 氧向阴极表面的输送是控制步骤。 空气中的氧输送到被腐蚀件的阴极表面上,要经历一个复杂的过程。 空气中的氧输送到被腐蚀件的阴极表面上,要经历一个复杂的过程。
析氢腐蚀和吸氧腐蚀的区别

析氢腐蚀和吸氧腐蚀的区别
1.性质不同。
析氢腐蚀:金属在酸性溶液中发生电化学腐蚀时会释放出氢气。
吸氧腐蚀:金属在空气中最常见的腐蚀形式,可在酸性、碱性和中性条件下发生。
2.发生机理不同。
析氢腐蚀:钢铁产品中通常含有碳。
在潮湿的空气中,水蒸气会被吸收在钢表面形成一层薄薄的水膜。
当二氧化碳溶解在水膜中时,它变成电解质溶液,增加水中的氢离子。
它是以铁为负极,碳为正极,酸性水膜为电解质溶液的众多小型原电池。
在高中化学中属于电化学腐蚀。
吸氧腐蚀:由于金属表面潮湿,后通过原电池原理发生作用,金属(如钢)被空气中的氧气腐蚀,导致生锈。
在这个过程中,由于需要消耗氧气,故名为:吸氧腐蚀或者耗氧腐蚀。
原电池吸氧腐蚀和析氢腐蚀

原电池吸氧腐蚀和析氢腐蚀
原电池是一种将化学能转化为电能的装置,它由两个不同金属和一个电解质组成。
在使用过程中,原电池可能发生吸氧腐蚀和析氢腐蚀,这会影响其性能和寿命。
吸氧腐蚀是指当原电池处于开路状态时,电解质中的氧气会与金属发生反应,导致金属表面产生氧化物。
这种腐蚀会降低原电池的电势差和电流输出,甚至导致电池失效。
为了避免吸氧腐蚀,可以在电池使用后及时加盐水或其他还原剂。
析氢腐蚀是指当原电池处于闭路状态时,电解质中的水分解产生氢气,并在金属表面析出。
这种腐蚀会导致金属表面出现气孔、气泡和裂纹,甚至引起电池爆炸。
为了避免析氢腐蚀,可以选择合适的金属材料和电解质,以及控制电流密度和电池温度。
总之,吸氧腐蚀和析氢腐蚀是原电池使用过程中需要注意的问题,正确的使用和维护可以延长电池寿命并保证其正常工作。
- 1 -。
原电池吸氧腐蚀和析氢腐蚀

原电池吸氧腐蚀和析氢腐蚀
原电池是一种由两种不同金属通过电解液相联系形成的电化学
系统。
在这种系统中,其中一种金属被氧化,另一种金属被还原,从而产生电能。
然而,当原电池处于开路状态时,金属表面会与电解液中的氧气和水分子发生反应,导致腐蚀现象的发生。
在原电池中,金属表面与氧气反应形成的氧化物称为吸氧腐蚀。
在这种腐蚀中,金属表面会被氧化,并且会形成一层氧化物覆盖在金属表面上。
吸氧腐蚀的程度取决于金属的活性和氧气的浓度。
例如,铁、镁和锌在氧气中容易吸氧腐蚀,而铜和铝则比较耐腐蚀。
与吸氧腐蚀不同的是,原电池中金属表面与水分子反应形成氢气的腐蚀称为析氢腐蚀。
在这种腐蚀中,金属表面与水分子反应形成氢气,并且在金属表面上形成小气泡。
析氢腐蚀的程度取决于金属的活性和水的浓度。
例如,锌和铝在酸性水中容易析氢腐蚀,而铜则比较耐腐蚀。
原电池吸氧腐蚀和析氢腐蚀都会导致金属表面的损失和腐蚀产
物的形成,从而影响到原电池的性能和寿命。
为了减少这种腐蚀,可以采取一些措施。
例如,可以在金属表面涂上一层保护膜,以防止金属表面与电解液发生反应。
此外,可以选择更耐腐蚀的金属材料,以延长原电池的使用寿命。
总之,原电池吸氧腐蚀和析氢腐蚀是原电池中常见的腐蚀现象。
了解这些腐蚀现象的原因和措施,对于保护原电池的性能和延长寿命非常重要。
材料腐蚀与防护-第五章-析氢腐蚀和吸氧腐蚀.

氧去极化的阴极极化曲线: 由于氧去极化的阴极过程与氧向金属表面输送过程及 氧的离子化反应有关.所以氧去极化的阴极极化曲线比较 复杂。 分为四个部分: (1)阴极过程由氧离子化反应控制,即反应速度< <传输速度。 (2) 阴极过程由氧的扩散过程控制,即传输速度< <反应速度。 随着电流密度的不断增大,氧扩散过程缓慢引起浓差 极化。 (3)阴极过程由氧的离子化反应与氧的扩散过程混 合控制,即传输速度=反应速度。 (4)阴极过程由氧去极化及氢去极化共同控制。
析氢腐蚀的特征: 1.阴极反应浓度极化较小,一般可以忽略,原因: • (1)去极化剂是带电的半径很小的氢离子,在 溶液中有较大的迁移和扩散能力; • (2)去极化浓度较大,在酸性溶液中是氢离子, 在中性和碱性溶液中是水分子;H2O+e—H+OH• (3)氢气泡的搅拌作用; 2.与PH值关系较大。 3.与金属材料的本质和表面状态有关。 4.与阴极面积有关。 5.与温度有关。
影响氧去极化腐蚀的因素: (1)氧的浓度: 极限扩散电流密度随溶解氧的浓度增加 而增加,氧去极化腐蚀速度随着氧的浓度增加而增加。 (2)流动速度: 在氧浓度一定的情况下,极限扩散电流 密度与扩散层厚度呈成反比。溶液流速增加使扩散层 厚度减小,腐蚀速度增加。腐蚀速度随溶液流速的增 加而增加。 (3)温度:通常溶液温度升高有利于提高界面反应速度。 因此,在一定的温度范围内腐蚀速度将随温度升高而 加速。 (4)盐浓度:随着盐浓度增加,溶液的电导率增大,腐 蚀速度明显加快。
5.2 吸氧腐蚀 当电解质溶液中有氧存在时,在阴极上发生氧去极化反应, 在中பைடு நூலகம்或碱性溶液中: 在酸性溶液中:
由此引起阳极金属不断溶解的现象称作氧去极化腐蚀。
许多金属及其合金在中性或碱性溶液中,在潮湿大气、 海水、土壤中都可能发生氧去极化腐蚀,甚至在流动的弱 酸性溶液中也会发生氧去极化反应。因此,与析氢腐蚀比 较,氧去极化腐蚀更为普遍和重要。
36 析氢腐蚀和吸氧腐蚀

16
3.6.2 氧去极化腐蚀(吸氧腐蚀)
必要条件: 金属的氧化电位比氧还原反应的电位负。 EM<EO2 中、碱性溶液中氧还原反应 O2+2H2O+4e 4OH酸性溶液中反应 O2+4H++4e 2H2O
相较于氢去极化腐蚀,氧还原反应可以在正 得多的电位下进行,因此氧去极化腐蚀要更为 普遍。
9
杂质对Zn在0.25M的H2SO4溶
液中腐蚀速度的影响
吸氧图
1 2
( ) 铝
速(
率 ;
) 铜
不 同 的
、 、杂
铅 铁质
、 、对
汞 锑锌
降 、腐
低 砷蚀
了 、速
锌 锡度
的 、的
腐 镉影
蚀 加响
速 速是
率 了不
。 锌同
的的
动力学数据
腐。 蚀 10
的 腐 蚀 过 程 。
是 高 氢 过 电 位 金 属 , 属 于 阴 极 控 制
17
氧向金属(电极)表面的输送过程-消耗型
18
吸氧腐蚀中氧气传输的特点
• 对于氧去极化的阴极过程,浓度极化很突出,常 常占有主要地位。这是因为作为阴极去极化剂的 氧分子与氢离子的本质不同所决定的。
• (1)氧分子向电极表面的输送只能依靠对流和扩 散;
• (2)由于氧的溶解度不大,所以氧在溶液中的浓 度很小,一般为10-4mol/L;
8
四、氢去极化腐蚀概况
• 一般来说,电势较负金属在氧化性较弱的 酸和非氧化性酸中以及电极电位很负的金 属(如Mg)在中性或碱性溶液中的腐蚀都 属于氢去极化的腐蚀。
• 当金属中含有电位比金属电位更正的杂质 时,如果杂质上的氢过电位低,则阴极反 应过程将主要发生在杂质表面上进行,杂 质就成为阴极区。此时,杂质的氢过电位 的高低对基体金属的腐蚀有很大影响。
金属腐蚀与防护概论 第四章 析氢腐蚀与吸氧腐蚀

蚀生成金属离子的电极电位显著降低,此时也将发生析氢腐蚀。
第四章 析氢腐蚀与吸氧腐蚀
3 析氢反应的步骤与机理
第四章 析氢腐蚀与吸氧腐蚀
4 氢去极化的阴极极化曲线
氢去极化反应在一般情况下都是电化学步骤所控制
不同的金属电极上,氢的去极化 曲线不同
许多金属电极上的析氢反应 的控制步骤是电化学反应
第四章 析氢腐蚀与吸氧腐蚀
4.2 吸氧腐蚀
溶液中的中性氧分子(O2)在阴极上进行还原反应引起的电化学腐蚀 吸氧腐蚀往往比析氢腐蚀普遍和更加容易发生
1 吸氧腐蚀体系
➢ 发生析氢腐蚀的体系基本都能发生吸氧腐蚀。 ➢ 一些具有较高电位的正电性金属(如Cu)在含溶解氧的酸性和中性溶液中都能
发生吸氧腐蚀。
1 吸氧反应的步骤与机理
第四章 析氢腐蚀与吸氧腐蚀
➢ 阴极上氢气泡的产生对电极附近溶液的搅拌作用可以使扩散层厚度减小,因此,H+ 还原反应的极限扩散电流密度比较大。同时,由于H+带电,除扩散外,其电迁移过 程一般不可忽视,H+还原的浓差极化可以忽略,主要以活化极化控制为主。
第四章 析氢腐蚀与吸氧腐蚀
(2) 铁在酸溶液中的腐蚀动力学
第四章 析氢腐蚀与吸氧腐蚀
第四章 析氢腐蚀与吸氧腐蚀
4.1 析氢腐蚀 4.2 吸氧腐蚀
ห้องสมุดไป่ตู้
析氢、吸氧腐蚀

金属的电化学腐蚀的实质是金属、金属中的杂质(或合金)与金属表面的水膜形成了无数微小的原电池,较活泼的金属作为负极,失去电子被氧化而发生腐蚀。
以钢铁在潮湿的空气中生锈威力,在潮湿的空气里,钢铁的表面会吸附一层薄薄得水膜,水膜里溶有CO2、SO2、H2S等气体,使水膜里含有一定量的H+,如果水膜的酸性较弱或呈中性,也会溶有一定量的氧气。
结果在钢铁表面形成了一层电解质溶液的薄膜,它跟钢铁里的铁和少量的碳恰好构成原电池。
这些微小的原电池遍布钢铁的表面,在这些原电池里,铁是负极,碳是正极,因此,铁被氧化而生锈。
通常有两类腐蚀:
1、析氢腐蚀:若电解质溶液酸性较强,则发生析氢腐蚀。
负极:Fe—2e— = Fe2+ 正极:2H++2e—= H2↑
总:Fe+2H+=Fe2++H2↑
2、吸氧腐蚀:若电解质溶液酸性很弱或呈中性,则发生吸氧腐蚀。
负极:2Fe—4e— = 2Fe2+ 正极:2H2O+O2+4e— = 4OH—
总:2Fe+O2+2H2O=2Fe(OH)2
Fe(OH)2继续与空气中的O2反应生成Fe(OH)3,再进一步形成铁锈(Fe3O4·H2O)铁锈稀松的覆盖在钢铁表面,不能阻止钢铁进一步被腐蚀。
吸氧腐蚀是金属腐蚀的主要形式。
纯铁的抗腐蚀能力很强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
析氢腐蚀的基本原理
金属发生析氢腐蚀时,阴极上将进行如下 反应:
由反应式可知,其最终产物是氢分子。当 电极电位比氢的平衡电位负时,上式的平 衡就向右移动,发生氢离子放电,溢出氢 气;若电极电位比氢的平衡电位略正时, 平衡将向左移动,氢气转变为氢离子。
发生析H2腐蚀的必要条件: EH>EM
对于
阴极过程由氧的去极化和氢去极化共同组 成。
当i=id时,ηO→∞,极化曲线将有着FSN
走向。但实际上,电位向负方向移动不可能 无限制的继续下去,因为当电位负到一定程 度时,在电极上除了氧的还原外,某种新的 电极过程也可以进行了。
在水溶液中,这一过程通常是析氢反应
的还原过程,该反应的平衡电位比氧还原反 应的平衡电位要负1.23V。在达到氢电极的平 衡电位Ee,H后,氢离子去极化过程就开始与氧 去极化过程加和起来(曲线FSQG)
Had+ H+•H2O+e→H2↑+H2O
④ H2分子聚集成H2泡逸出。 H2的不断逸出,吸收了阴极极化而积累的大量电子,完 成去极化作用。
H+去极化过程的阴极极化曲线
减小析氢腐蚀的途径
析氢腐蚀多数为阴极控制或阴、阳极混合 控制,腐蚀速度主要决定于析氢过电位的 大小。
ηO = ao + bo lg ic
ao:与电极材料、表面状态、溶液组成和温度有关; bo:与电极材料无关。
• 氧离子化过电位越小,氧与电子结合越容易,腐蚀速率越大; 一般金属上氧离子化过电位都较高,多在1V以上。
当电流密度较小时,氧过电位与电流密度呈直线关系
ηO=ωi = RFi
在一定的阴极电流密度下氧还原反应的实际电位与该溶液中 氧电极的平衡电位间的差值,称为该电流密度下氧离子化过 电位,简称氧过电位,以η 表示。
析氢腐蚀发生的场合:酸性介质+非氧化性
中性、碱性——某些低电位金属
中性或碱性介质中,H+浓度低,析氢平衡电位低,若 金属阳极溶解平衡电位高,则阴极反应不是析氢反 应,而是溶解氧的还原反应
EEO2 o2
==0.E40o021
++02.0.44359FR1Tlgl[g100[.−2O71]pH4 O=−2
为了减小或防止析氢腐蚀,应设法减小阴 极面积,提高析氢过电位。对于阳极钝化 控制的析氢腐蚀,则应加强其钝化,防止 其活化。
减小和防止析氢腐蚀的主要途径如下。
(1)减少或消除金属中的有害杂质,特别是 析氢过电位小的阴极性杂质如Pt,W等。溶 液中可能在金属上析出的贵金属离子,在 金属上析出后提供了有效的阴极。如果在 它上面的析氢过电位很小,会加速腐蚀, 也应设法除去。
步骤(1)(2):不成为控制步骤 步骤(3):多数情况下为控制步骤 步骤(4):加强搅拌和流动介质 中可成为控制步骤
氧的扩散成为控制步骤的原因:
(1)氧 |空气-溶液| 溶解平衡:溶液中总含有氧 (除非除去空气的密闭体系和沸点的敞开体系)
(2)溶液对流对氧的传输速度远大于扩散但在电极表 面附近,对流减弱,稳态扩散层0.1-0.5mm
本章运用前面所述的基本理论和概念,着重讨论 这两类腐蚀过程的 产生条件、规律及影响因素,并简
要介绍控制这两类腐蚀常采用的措施。
3-1 析氢腐蚀 (Hydrogen Evolution Corrosion) 3-2 耗氧腐蚀 Oxygen Reduction Corrosion
1. 析氢腐蚀 Hydrogen Evolution
0.805V
]4
发生吸氧腐蚀的必要条件是金属的电位比氧电极的平
衡电位低,即:EM<EO2
在中性和碱性溶液中:
O2+2H2O+4e
Eo2
=
E0 o2
+ 2.3RT 4F
lg
pO2 [OH −
]
4
4OH-
E0O2=0.401V(SHE),PO2=0.021MPa,当溶液pH=7时
EO2
= 0.401+
0.0591 4
显然,pH越小,氧的平衡电位越正,金属发
生耗O 2 腐蚀的可能性越大。 中性溶液中,只要金属的电位低于0.805V,
就可能发生耗O 2 腐蚀。
氧的阴极还原过程
①O2穿过空气/溶液界面进入溶液; ②在溶液对流作用下,O2迁移到阴极表面附近; ③在扩散层内,O2在浓差梯度作用下扩散到阴极表面 ④ O2在阴极表面还原。
发生析氢腐蚀的体系 (1) 标准电位很负的活泼金属
(2) 大多数工程上使用的金属,如碳钢、铸 铁、锌、铝、不锈钢等金属和合金在酸性 介质中常发生这种腐蚀。
(3) 正电性金属一般不会发生析氢腐蚀。但是 当金溶属液离中子含(如有C络u2合+、剂A(g如+)N的H活3,度C保N-持)很,低使 时,正电性金属(如Cu,Ag)也可能发生析 氢腐蚀。
2H++2e H2
25℃时 E2H + / H 2 = −0.059 pH (V , 相对于 SHE )
一种金属在给定的腐蚀介质中是否会发生析氢腐蚀,可通过上述计算
来判断。
对于pH=7的中性溶液,E0,H=0.059×(-7)=-0.413V 阴极上的析H2反应:
酸性介质中 2H++2e → H2 中性介质中 2H2O+2e → 2OH- + H2 碱性介质中 Zn+2OH- → ZnO22-+H2 腐蚀原动力(EH-EM)越大,析H2腐蚀的可能性越大。 溶液pH↓,阴极电位越正;aMn+越小,阳极电位越负,发生析
随着电流密度的增大,由于扩散过程的阻滞而引 起的极化不断增加,极化曲线就开始很陡的上 升。当i=id时,就形成垂直的走向FSN。在这种情 况下,因为电极电位大大的向负方向移动,氧离 子化的电极反应已经被大大活化,只要氧一到达 电极表面就立即被还原,所以氧离子化反应与氧 的扩散步骤比较,已不再是缓慢步骤,此时整个 阴极过程的速度仅仅由氧的扩散过程所控制。
阴极上发生的析H2反应主要由几个连续步骤组成: ① 水化氢离子H+•H2O向阴极表面移动
H+•H2O(溶液)→H+•H2O(电极) ② H+•H2O在电极表面还原,同时脱掉H2O分子,生成H 原子并吸附在阴极上:
H+•H2O+e→Had+H2O
③ Had少部分进入金属内部,大部分在表面生成H2: Had+Had→H2↑ 或Had发生电化学脱附
2.氧的阴极还原过程及其过电位 Cathode Deoxidize Process of Oxygen and over-potential
3.耗氧腐蚀的控制过程及其影响因素 Control Process of Oxygen Reduction
and Influence Factors
3.1 耗氧腐蚀的控制过程 Control Process of Oxygen
Corrosion
2. 析氢腐蚀的控制过程 Control Process of Hydrogen Evolution Corrosion
(1)发生析氢腐蚀的必要条件 Necessary Condition of Hydrogen Evolution
(2)析氢过电位ηH
Hydrogen Evolution Over-Potential
(2)改变金属材料的成分,加入氢过电位大 的成分,如Hg、Zn、Pb等。
(3)加入缓蚀剂,增大析氢过电位。如酸洗 缓蚀剂若丁,有效成分为二邻甲苯基硫 脲。
(4)降低活性阴离子成分,如Cl-、S2-等。
1.耗氧腐蚀的必要条件 Necessary Condition of Oxygen
Reduction Corrosion
液中的腐蚀。
(ii)如果腐蚀金属在溶 液中的电位非常低, 不论氧的传输速度大 小,阴极过程将由氧 去极化和氢离子去极 化两个反应共同组 成。
由上图可知,这时阳
极极化曲线和阴极极 化曲线相交于SQG 段,腐蚀电流密度大 于氧的极限扩散电流 密度。例如,镁在中 性介质中的腐蚀。
lg
0.21 [10−7 ]4
=
0.805V
在酸性溶液中:
O2 + 4H+ + 4e
2H 2 O
Eo2
=
E0 o2
+
2.3RT 4F
lg PO2 [H + ]4
E0O2=1.229V(SHE),PO2=0.021Mpa,因此氧的平衡电 位与溶液pH值的关系为:
EO2/H2O=1.229 - 0.059pH ( 25℃)
H2腐蚀的可能性越大。
电位较低的金属,如Fe、Zn等在不含氧的
非氧化性酸中;以及电位非常低的金属, 如Mg,在中性或碱性溶液中都发生析氢腐 蚀。但是对于一些强钝化性金属,如Ti、 Cr,从热力学计算可满足析氢腐蚀条件,
但由于钝化膜在稀酸中仍很稳定,实际电 位高于析氢电位,因而不发生析氢腐蚀。
析H 2 反应发生在阴极,η H 越大,P c 越大,i corr 越小。故阴极 活化极化控制析氢η Control
(2)阳极控制 Anode Control
(3)混合控制 Mixed Control
3. 减小析氢腐蚀的途径 Methods of Decreasing Hydrogen Evolution corrosion
溶液中的氢离子作为去极剂,在阴极上放 电,促使金属阳极溶解过程持续进行而引 起的金属腐蚀,称为氢去极化腐蚀。
化腐蚀或耗氧腐蚀等。
•与氢离子还原反应相比,氧还原反 应可在正得多的电位下进行,因此 氧去极化腐蚀比氢去极化腐蚀更为 普遍。 •大多数金属在中性和碱性溶液中以 及少数正电性金属在含有溶解氧的 弱酸性溶液中的腐蚀都属于氧去极 化腐蚀。