考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题5 数列、推理与证明 第23练

合集下载

2021全国甲卷理科数学解析

2021全国甲卷理科数学解析

2021全国甲卷理科数学解析一、概述2021年全国普通高等学校招生全国统一考试(简称全国“高考”)于近日举行,其中理科数学卷是许多考生所关注的焦点。

本文将对2021年全国甲卷理科数学试题进行深入解析,帮助考生和教师更好地理解试题背后的思想,掌握解题技巧。

二、试题分析1. 分析题型2021年全国甲卷理科数学试卷的题型主要包括选择题、填空题、解答题和证明题。

其中解答题和证明题涉及的知识点较多,需要考生具备较高的数学思维和解题能力。

2. 知识点分布试题涵盖的知识点主要包括函数与导数、平面向量、立体几何、数列和数学归纳法、概率统计等内容。

这些知识点是高中数学的重点和难点,考生需要熟练掌握相关概念和解题方法。

三、试题解析1. 选择题解析选择题主要考查了考生对基本概念和定理的理解和掌握情况,有一定的难度。

有一道关于函数和导数的选择题,考查了函数定义域和单调性的应用,需要考生对函数概念的理解和导数的计算方法有较为深入的掌握。

2. 填空题解析填空题主要考查了学生对数学公式和定理的应用能力,要求考生熟练掌握数学知识并能在一定时间内准确地应用到具体问题中。

有一道关于平面向量的填空题,考查了向量共线和垂直的性质,考生需要根据向量的性质进行运算和推导。

3. 解答题解析解答题主要考查了考生对数学概念的理解和运用能力,要求考生能够深入分析问题、独立解答并给出合理的解题思路。

有一道关于数列和数学归纳法的解答题,考查了考生对数列的性质和规律的理解,以及数学归纳法的应用能力,需要考生结合实际情况分析问题、提出解决方法并进行证明。

4. 证明题解析证明题主要考查了考生的逻辑思维和推理能力,要求考生能够通过严密的推导和论证得出结论。

有一道关于概率统计的证明题,考查了考生对概率计算和统计规律的理解和运用能力,需要考生运用数学知识和逻辑推理得出正确的结论。

四、备考建议1. 系统复习考生在备考期间应该系统复习,重点复习高中数学的各个知识点,特别是考试的重点和难点知识,比如函数与导数、平面向量、立体几何、数列和数学归纳法、概率统计等内容。

考前三个月高考数学(全国甲卷通用理科)考前抢分必做考前回扣回扣10含答案

考前三个月高考数学(全国甲卷通用理科)考前抢分必做考前回扣回扣10含答案

回扣10 复数、算法、推理与证明1.复数的相关概念及运算法则 (1)复数z =a +b i(a ,b ∈R )的分类 ①z 是实数⇔b =0. ②z 是虚数⇔b ≠0.③z 是纯虚数⇔a =0且b ≠0. (2)共轭复数复数z =a +b i 的共轭复数z =a -b i. (3)复数的模:复数z =a +b i 的模|z |=a 2+b 2. (4)复数相等的充要条件a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). 特别地,a +b i =0⇔a =0且b =0(a ,b ∈R ). (5)复数的运算法则加减法:(a +b i)±(c +d i)=(a ±c )+(b ±d )i ; 乘法:(a +b i)(c +d i)=(ac -bd )+(ad +bc )i ; 除法:(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -ad c 2+d 2i ;其中a ,b ,c ,d ∈R . 2.复数的几个常见结论 (1)(1±i)2=±2i ; (2)1+i 1-i =i ,1-i1+i=-i ; (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈Z ); (4)ω=-12±32i ,且ω0=1,ω2=ω,ω3=1,1+ω+ω2=0.3.程序框图的三种基本逻辑结构 (1)顺序结构:如图(1)所示. (2)条件结构:如图(2)和图(3)所示. (3)循环结构:如图(4)和图(5)所示.程序框图由程序框和流程线组成,一个或几个程序框的组合表示算法中的一个步骤;流程线带有方向箭头,按照算法进行的顺序将程序框连接起来.程序框图的基本逻辑结构包括顺序结构、条件结构和循环结构三种.4.推理推理分为合情推理与演绎推理,合情推理包括归纳推理和类比推理;演绎推理的一般模式是三段论.合情推理的思维过程(1)归纳推理的思维过程:实验、观察―→概括、推广→猜测一般性结论(2)类比推理的思维过程:实验、观察―→联想、类推→猜测新的结论5.证明方法(1)分析法的特点:从未知看需知,逐步靠拢已知.推理模式:框图表示:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件(2)综合法的特点:从已知看可知,逐步推出未知.推理模式:框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证明的结论).(3)反证法在假定命题结论成立的前提下,经过推理,若推出的结果与定义、公理、定理矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此判定命题结论成立的方法叫反证法.1.复数z 为纯虚数的充要条件是a =0且b ≠0(z =a +b i ,a ,b ∈R ).还要注意巧妙运用参数问题和合理消参的技巧.2.复数的运算与多项式运算类似,要注意利用i 2=-1化简合并同类项.3.在解决含有循环结构的框图时,要弄清停止循环的条件.注意理解循环条件中“≥”与“>”的区别.4.解决程序框图问题时,要注意流程线的指向与其上文字“是”“否”的对应.5.类比推理易盲目机械类比,不要被表面的假象(某一点表面相似)迷惑,应从本质上类比.用数学归纳法证明时,易盲目以为n 0的起始值n 0=1,另外注意证明传递性时,必须用n =k 成立的归纳假设.6.在循环结构中,易错误判定循环体结束的条件,导致错求输出的结果.1.复数z =1+i1-2i 的虚部为( )A.-15B.15C.-35D.35答案 D解析 z =1+i 1-2i =(1+i )(1+2i )(1-2i )(1+2i )=-15+35i ,所以其虚部为35.2.复数z 满足z (2-i)=1+7i ,则复数z 的共轭复数为( ) A.-1-3i B.-1+3i C.1+3i D.1-3i 答案 A解析 z (2-i)=1+7i ,∴z =1+7i 2-i =(1+7i )(2+i )(2-i )(2+i )=-5+15i5=-1+3i ,共轭复数为-1-3i.3.阅读如图所示的程序框图,若m =8,n =10,则输出的S 的值等于( )A.28B.36C.45D.120 答案 C解析 第一次循环:S =10,k =1; 第二次循环:S =10×92=45,k =2;第三次循环:S =45×83=120,k =3;第四次循环:S =120×74=210,k =4;第五次循环:S =210×65=252,k =5;第六次循环:S =252×56=210,k =6;第七次循环:S =210×47=120,k =7;第八次循环:S =120×38=45,k =8=m ;结束循环,输出S =45.4.已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比有x +ax n ≥n +1 (n ∈N *),则a 等于( ) A.n B.2n C.n 2 D.n n 答案 D解析 第一个式子是n =1的情况,此时a =1, 第二个式子是n =2的情况,此时a =4, 第三个式子是n =3的情况,此时a =33,归纳可以知道a=n n.5.“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等”,补充以上推理的大前提是()A.正方形都是对角线相等的四边形B.矩形都是对角线相等的四边形C.等腰梯形都是对角线相等的四边形D.矩形都是对边平行且相等的四边形答案 B解析用三段论形式推导一个结论成立,大前提应该是结论成立的依据,∵由四边形ABCD 为矩形,得到四边形ABCD的对角线相等的结论,∴大前提一定是矩形的对角线相等.6.用反证法证明命题:“已知a,b∈N*,如果ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为()A.a,b都被5整除B.a,b都不能被5整除C.a,b不能被5整除D.a不能被5整除答案 B解析由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N*,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.7. 以下是解决数学问题的思维过程的流程图:在此流程图中,①,②两条流程线与“推理与证明”中的思维方法匹配正确的是()A.①—综合法,②—分析法B.①—分析法,②—综合法C.①—综合法,②—反证法D.①—分析法,②—反证法答案 A解析根据已知可得该结构图为证明方法的结构图:∵由已知到可知,进而得到结论的应为综合法,由未知到需知,进而找到与已知的关系为分析法,故①②两条流程线与“推理与证明”中的思维方法为:①—综合法,②—分析法.8.执行如图所示的程序框图,若输出的是n=6,则输入整数p的最小值为()A.15B.16C.31D.32 答案 B解析 列表分析如下是否继续循环 S n 循环前 0 1 第一圈 是 1 2 第二圈 是 3 3 第三圈 是 7 4 第四圈 是 15 5 第五圈 是 31 6 第六圈 否故当S 值不大于15时继续循环,大于15但不大于31时退出循环,故p 的最小正整数值为16. 9.在平面上,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是______________.答案 S 21+S 22+S 23=S 24解析 将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24.10.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________________. 答案x 0x a 2-y 0y b 2=1 解析 设P 1(x 1,y 1),P 2(x 2,y 2), 则P 1,P 2的切线方程分别是 x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1. 因为P 0(x 0,y 0)在这两条切线上, 故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1,这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0yb2=1上,故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0yb2=1.合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。

高考数学总复习第五章数列、推理与证明第7讲直接证明与间接证明课件文

高考数学总复习第五章数列、推理与证明第7讲直接证明与间接证明课件文

考点 3 反证法 例 3:(2014 年广东广州一模)已知数列{an}的前 n 项和为 Sn,且 a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*). (1)求数列{an}的通项公式; (2)若 p,q,r 是三个互不相等的正整数,且 p,q,r 成等 差数列,试判断 ap-1,aq-1,ar-1 是否成等比数列?并说明 理由.
证明:当 a,b>0 时,a+2 b≥ ab>0,当且仅当 a=b 时取 等号.
两边取对数,得 lga+2 b≥lg ab. 又 lg ab=lg2ab=lga+2 lgb, ∴当 a,b>0 时,lga+2 b≥lga+2 lgb.
考点 2 分析法
例 2:已知 a>0,求证: a2+a12- 2≥a+1a-2.
—反证法;了解反证法的思考过 决的问题的类型,同时也要加强
程、特点.
训练,达到熟能生巧,有效运用
它们的目的.
1.直接证明 (1)综合法. ①定义:利用已知条件和某些数学定义、公理、定理等, 经过一系列的推理论证,最后推导出所要证明的结论成立,这 种证明方法叫做综合法.
②框图表示:P⇒Q1 → Q1⇒Q2 → Q2⇒Q3 →…→ Qn⇒Q (其 中 P 表示已知条件、已有的定义、公理、定理等,Q 表示要证 明的结论).
1.要证明 3+ 7<2 5,可选择的方法有以下几种,其中 最合理的是( B )
A.反证法 B.分析法 C.综合法 D.前面三种方法都不合适
2.用反证法证明命题:“三角形三个内角中至少有一个不 大于 60°”时,应假设( B )
A.三个内角都不大于 60° B.三个内角都大于 60° C.三个内角中至多有一个大于 60° D.三个内角中至多有两个大于 60°

2024年 全国甲卷 数学(理)高考真题(含解析)

2024年 全国甲卷 数学(理)高考真题(含解析)

2024年普通高等学校招生全国统一考试全国甲卷(理科数学)(使用范围:陕西、宁夏、青海、内蒙古、四川)注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A .10iB.2iC.10D.2-2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9 C.{}1,2,3 D.{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A.2- B.73C.1D.25.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.237.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+ B.1- C.32D.19.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥ ”的充分条件D.“1x =-+”是“//a b”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.212.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.15.已知1a >,8115log log 42a a -=-,则=a ______.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.82818.记n S为数列{}n a的前n项和,且434n nS a=+.(1)求{}n a的通项公式;(2)设1(1)nn nb na-=-,求数列{}n b的前n项和为n T.19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF====,ED FB==M为AD的中点.(1)证明://BM平面CDE;(2)求二面角F BM E --的正弦值.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.参考答案(含解析)一、选择题题号123456789101112答案ADDBCABBCACC1.【答案】A【解析】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=,故选:A2.【答案】D【解析】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð,故选:D3.【答案】D【解析】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y =-可得1155y x z =-,即z 的几何意义为1155y x z =-的截距的15-,则该直线截距取最大值时,z 有最小值,此时直线1155y x z =-过点A ,联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫ ⎪⎝⎭,则min 375122z =-⨯=-.故选:D.4.【答案】B【解析】由105678910850S S a a a a a a -=++++==,则80a =,则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.5.【答案】C【解析】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.6.【答案】A 【解析】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()2e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7.【答案】B【解析】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.8.【答案】B【解析】因为cos cos sin ααα=-,所以11tan =-α,tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==α+⎪-α⎝⎭,故选:B .9.【答案】C【解析】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥ ,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±,即必要性不成立,故B 错误;对D ,当1x =-+时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.10.【答案】A【解析】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11.【答案】C 【解析】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则7sin sin 2A C +=.故选:C.12.【答案】C【解析】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===24AB AP ====.故选:C二、填空题13.【答案】5【解析】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33r rr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.14.【答案】64【解析】由题可得两个圆台的高分别为)12h r r ==-甲,)12h r r ==-乙,所以((2121163143S S h V h V h S S h ++-===++甲甲甲乙乙乙.故答案为:64.15.【答案】64【解析】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16.【答案】715【解析】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:715.三、解答题(一)必考题17.【答案】(1)答案见解析;(2)答案见解析;【解析】(1)根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.(2)由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=,用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.18.【答案】(1)14(3)n n a -=⋅-;(2)(21)31nn T n =-⋅+【解析】(1)当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13nn a a -=-,∴数列{}n a 是以4为首项,3-为公比的等比数列,所以()143n n a -=⋅-.(2)111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ ,故1233438312343nn T n =⋅+⋅+⋅++⋅ ,所以1212443434343n nn T n --=+⋅+⋅++⋅-⋅ ()1313444313n nn --=+⋅-⋅-()14233143n nn -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.19.【答案】(1)证明见解析;(2)4313【解析】(1)因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;(2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF =,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m =,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则43sin ,13m n =,故二面角F BM E --的正弦值为13.20.【答案】(1)22143x y +=;(2)证明见解析【解析】(1)设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程为22143x y +=.(2)直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k kk=-+->,故1122k -<<,又22121222326412,3434k k x x x x k k -+==++,而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=-⎪⎝⎭-,故22223325252Qy y y x x --==--,所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.21.【答案】(1)极小值为0,无极大值;(2)12a ≤-.【解析】(1)当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x +'=++-=+-+++,因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数,故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>,故()f x 在0x =处取极小值且极小值为()00f =,无极大值.(2)()()()()11ln 11ln 1,011a x axf x a x a x x x x+-=-+'+-=-+->++,设()()()1ln 101a xs x a x x x+=-+->+,则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+,当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<,故()s x 在210,a a +⎛⎫-⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫-⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立;同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍;综上,12a ≤-.(二)选考题[选修4-4:坐标系与参数方程]22.【答案】(1)221y x =+;(2)34a =.【解析】(1)由cos 1ρρθ=+,将ρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.(2)对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为222x s y a s⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =.法2:联立221y x ay x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =.[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;(2)222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=.。

四川新高考考前三个月数学理二轮专题复习4.3推理与证明(含答案详析)

四川新高考考前三个月数学理二轮专题复习4.3推理与证明(含答案详析)

第三讲推理与证明(1)概括推理的一般步骤:①经过察看某些个别状况发现某些同样性质;②从已知的同样性质中推出一个明确表述的一般性命题(猜想 ).(2)类比推理的一般步骤:①找出两类事物之间的相像性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想 ).(3)综合法的特色是:从“已知”看“可知”,逐渐推向“未知”,要求逐渐推理,实际上是找寻它的必需条件.(4)剖析法的特色是:从“未知”看“需知”,逐渐聚拢“已知”,即从要证明的结论出发,逐渐追求使它建立的充足条件,直至最后,即把要证明的结论归纳为判断一个明显建立的条件为止.(5)适适用反证法证明的四类数学命题:①独一性命题;②结论波及“至多”“起码”“无穷”的命题;③否认性命题;④直接证明较繁琐或困难的命题.(6)数学概括法数学概括法证明的步骤①证明当 n 取第一个值 n0 0∈N*)时结论建立;(n②假定 n= k(k∈N*,且 k≥ n0)时结论建立,证明n= k+1 时结论也建立.由①②可知,对随意n≥n0,且 n∈N*时,结论都建立.1. (2013 ·建福 )设 S, T 是R的两个非空子集,假如存在一个从S 到 T 的函数 y= f(x)知足:(1)T={ f(x)|x∈ S} ;(2) 对随意 x1,x2∈S,当 x1<x2时,恒有 f(x1)<f(x2).那么称这两个会合“保序同构”.以下会合对不是“保序同构”的是() A. A=N*,B=NB. A= { x|- 1≤ x≤3} , B= { x|x=- 8 或 0<x≤ 10}C. A= { x|0<x<1} , B=RD. A=Z,B=Q答案D分析关于 A,取 f(x)= x+ 1,知足题意.- 8, x=- 1,关于 B ,取 f(x)=x+ 1,- 1< x<0,知足题意 .2x + 1, 0≤ x≤ 3,1关于 C,取 f(x)= tan[ π(x-2)] ,知足题意.清除法,选 D.2. (2013 陕·西 )察看以下等式12= 112- 22=- 312- 22+ 32= 612- 22+ 32- 42=- 10,,照此规律,第n 个等式可为 ________.答案2222n+1 2n+1n n+ 1 1 - 2+3 -4+, + (-1)n = (- 1)·2分析察看等式左侧的式子,每次增添一项,故第n 个等式左侧有 n 项,指数都是2,且正、负相间,所以等式左侧的通项为(- 1)n+1n2.等式右侧的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21 , ,.设此数列为 { a n} ,则 a2- a1= 2, a3-a2=3, a4- a3= 4,a5- a4= 5,,, a n- a n-1= n,各式相加得a n- a1=2+ 3+ 4+ ,+ n,即 a n= 1+2+3+ ,+ n =n n+ 1.所以第n个等式为22+ 32- 42+, +(- 1)n+1 21)n+2 1 - 2n = (-1n n+12.3. (2013 湖·北 )古希腊毕达哥拉斯学派的数学家研究过各样多边形数,如三角形数1,3,6,10,, ,第 n 个三角形数为n n+1=121n,记第 n 个 k 边形数为 N(n,k)(k≥ 3),22n +2以以下出了部分k 边形数中第 n 个数的表达式:三角形数121N(n,3)= n+ n,22正方形数N(n,4)=n2,五边形数321N(n,5)= n- n,22六边形数N(n,6)=2n2- n ,,,,,,,,,,,,,,,能够推测 N( n,k)的表达式,由此计算N(10,24)= ___________.答案 1 000分析22k - 224- k由 N( n,4)= n ,N( n,6)= 2n - n ,能够推测: 当 k 为偶数时, N(n ,k)=2n +2n ,∴ N(10,24) =24- 2× 100+4- 24× 1022= 1 100- 100=1 000.4. (2012 陕·西 )察看以下不等式:1 3 1+22<2,1 1 51+22+ 32<3,1 1 1 71+22+ 32+42<4,,,照此规律,第五个不等式为 ________....答案11 111 111+ 22222< 62 +3 +4 +5 +6分析概括察看法.察看每行不等式的特色, 每行不等式左端最后一个分数的分母与右端值的分母相等,且每行右端分数的分子组成等差数列.∴ 第五个不等式为 1+ 1 1 1 1 1 112 + 2+ 2+ 2+ 2< 6 .2 3 4 5 62ab为 a ,b 的调解均匀数.如图,C 为线段 AB 上的点, 5. (2010 湖·北 )设 a >0,b > 0,称 a + b且 AC =a , CB = b ,O 为 AB 中点,以 AB 为直径作半圆.过点C 作 AB 的垂线交半圆于 D ,连接 OD ,AD ,BD.过点 C 作 OD 的垂线,垂足为E.则图中线段 OD 的长度是 a ,b 的算术均匀数, 线段 ________的长度是 a ,b 的几何均匀数, 线段 ________的长度是 a ,b 的调解均匀数.答案CD DE分析 在 Rt △ ABD 中, CD 是斜边 AB 上的高,所以 CD 2 =AC ·CB ,所以 CD = AC ·CB = ab ,所以线段 CD 的长度是 a , b 的几何均匀数.在 Rt △OCD 中,由于 CE ⊥ OD ,所以DE = CD,CD OD 2CDab2ab所以线段 DE 的长度=== .2所以线段 DE 的长度是 a ,b 的调解均匀数.题型一 合情推理 1 x - a n 例 1(1)设数列 { a n 是首项为 0 * ,f nsin ,x ∈ n , a n +1 ],} 的递加数列, n ∈ N (x)= n[a知足:关于随意的b ∈ [0,1) ,f n (x)= b 总有两个不一样的根, 则{ a n } 的通项公式为 _______.x 2 y 2(2)若 P 0(x 0,y 0)在椭圆 a 2+b 2= 1(a>b>0) 外,则过 P 0 作椭圆的两条切线的切点为 P 1,P 2,则切点弦 P 1P 2 所在直线方程是 x 0 x y 0y= 1.那么关于双曲线则有以下命题: 若 P 0(x 0,y 0)a 2 + 2 在双曲线 x 22 b 2 y 2P 0 作双曲线的两条切线的切点为 P ,P ,则切a -b = 1(a>0, b>0)外,则过1 2点弦 P 1P 2 所在的直线方程是 ________.审题破题(1) 先求数列 { a n } 的前几项,概括项的规律,作出猜想; (2) 双曲线和椭圆方程对比,形式近似,只需注意到椭圆的切线方程中x 2,y 2 分别换成了 x 0x , y 0y 即可.答案 (1) a =n n - 1 π(2)x 0x - y 0 yn 2a 2 2 =1b分析 (1) ∵a 1= 0,当 n = 1 时, f 1(x) =|sin(x - a 1)|= |sin x|,x ∈ [0, a 2] ,又 ∵ 对随意的 b ∈ [0,1) , f 1(x)= b 总有两个不一样的根,∴ a 2= π;2sin 1 x - a 2 = sin 1 x - πf ( x)= 2 2= cos x , x ∈ [ π, a 3],2∵ 对随意的 b ∈[0,1) ,f 2(x)= b 总有两个不一样的根,1 ∴ a 3= 3π; f 3 (x)= sin 3 x - a 31 1= sin 3 x - 3π = sin 3x , x ∈ [3 π, a 4],∵ 对随意的 b ∈[0,1) ,f 3(x)= b 总有两个不一样的根,∴ a 4= 6π.由此可得 a n + 1- a n = n π, ∴a n = n n - 1 π2.x 2 y 2x 0x y 0y所在直线方程 22 →yy2 2 P 1P 2 2 2 = 1,x→ xx ,y0.类比,(2)关于椭圆 a + b = 1,切点弦 a +bx 2 y 2 x 0x y 0 y双曲线 a 2- b 2= 1 的切点弦 P 1P 2 所在直线方程为 a2- b 2 =1.反省概括 应用合情推理应注意的问题:(1)在进行概括推理时,要先依据已知的部分个体,把它们合适变形,找出它们之间的联系,进而概括出一般结论.(2)在进行类比推理时,要充足考虑已知对象性质的推理过程,而后类比推导类比对象的性质.注意:概括推理重点是找规律,类比推理重点是看共性.变式训练 1(1) 若从点 O 所作的两条射线OM 、 ON 上分别有点 M 1、 M 2 与点 N 1、 N 2,则三S 角形面积之比SOM 1N 1=OM 1 ON 1O 所作的不在同一平面内的三条射线· .如图,若从点OM 2 ON 2OM 2N 2OP 、OQ 和 OR 上分别有点 P 1、P 2,点 Q 1、Q 2 和点 R 1、R 2,则近似的结论为 ________.答案 V O P 1Q 1 R 1= OP 1 OQ 1 OR 1· ·VO P 2Q 2 R 2OP 2 OQ 2 OR 2分析考察类比推理问题,由图看出三棱锥P 1-OR 1Q 1 及三棱锥 P 2- OR 2Q 2 的底面面积之比为 OQ 1 OR 1 ,又过极点分别向底面作垂线,获得高的比为 OP 1,故体积之比为OQ 2 ·OP 2 OR 2VO P 1Q 1R 1= OP 1 OQ 1 OR 1V O P 2 Q 2R 2 · · .OP 2 OQ 2 OR 2(2)已知命题:若数列 { a n } 为等差数列,且 a m = a , a n = b (m ≠ n , m 、 n ∈ N *),则 a m +n = bn - am;现已知等比数列 { b n } ( b ≠0, n ∈N * ), b m = a ,b n = b (m ≠n , m 、 n ∈ N * ),若类n -m比上述结论,则可获得b m + n = __________.答案 n - m b na m分析等差数列中的 bn 和 am 能够类比等比数列中的b n 和 a m ,等差数列中的 bn - amb nbn - amn - m b n能够类比等比数列中的am,等差数列中的 n - m 能够类比等比数列中的am,故 b m + n = n -m b na m . 题型二 直接证明与间接证明例 2设实数数列 { a n } 的前 n 项和 S n 知足 S n + 1= a n +1S n (n ∈ N * ). (1)若 a 1, S 2,- 2a 2 成等比数列,求 S 2 和 a 3;(2)求证:对 k ≥ 3 4有 0≤ a k + 1≤ a k ≤ .3审题破题 (1) 依据 S 22=- 2a 1a 2 及 S 2= a 2a 1 从方程的角度求出 S 2.再由 S 3= a 3S 2= S 2+ a 3,求出 a 3.(2)依据 S n + 1= a n +1S n (n ∈ N * )的关系,找寻 a n + 1 与 a n 的递推关系,再用不等式放缩法、剖析法、反证法的思想方法求解.(1)解 S 22=- 2a 1a 2 ,由题意 得 S 22=- 2S 2,S 2= a 2S 1= a 1a 2,由 S 2 是等比中项知 S 2≠ 0.所以 S 2=- 2.由 S 2+ a 3=S 3=a 3S 2 解得 a 3=S 2- 222-1=- 2-1=3.S(2)证明由题设条件有 S n + a n +1= a n +1S n ,Sa n +1n故 S n ≠ 1, a n +1≠ 1 且 a n +1=S n - 1, S n = a n + 1- 1,进而对 k ≥ 3 有S k - 1= a k - 1+S k - 2a k =S k -1- 1 a k - 1+ S k - 2- 1a k -1+ a k - 1 2a k -1- 1= a k -1a k 1= 2 -a - + 1.①--a k -1+ a k 1k 1a k -1- - 1121 2 3 2因 a k -1 -a k - 1+1= a k - 1- + >0 且 a k - 1≥ 0,2 4由 ①得 a k ≥0.2要证 a ≤ 4,由 ① 只需证 2≤ 4,a k - 1k3k -1- a k-1+ 1 3a即证 3a k 2- 1≤ 4(a k 2 -1- a k -1+ 1),即 (a k - 1- 2)2≥ 0,此式明显建立.所以a k ≤ 4(k ≥ 3).a k 23>a k ,最后证 a k + 1≤ a k ,若否则 a k + 1= 2a k - a k +1又因 a k ≥ 0,故 2 a k >1,即 ( a k - 1)2<0. 矛盾.a k - a k +1 所以 a k + 1≤ a k (k ≥ 3).综上,当 k ≥ 3 时有 0≤ a k + 1≤a k ≤ 4.3反省概括综合法与剖析法是直接证明中的“ 姊妹证明 ” 方法.往常状况下, 运用剖析法,由果索因,找到一个正确的结论或已知条件,而后运用综合法正确推理书写.在进 行立体几何证明中, 我们常从结论出发找寻问题的打破口, 但在逆推时也可能遇到阻碍,这时再从已知出发顺推搜寻中间细节, 问题即可得以解决. 自然,若所证命题从正面难以下手时,不如使用反证法.变式训练 2 (2013 ·陕西 )设 { a n } 是公比为 q 的等比数列.(1)推导 { a n } 的前 n 项和公式;(2)设 q ≠ 1,证明:数列 { a n +1} 不是等比数列. (1)解设 { a n } 的前 n 项和为 S n ,当 q =1 时, S n =a 1+a 1+, + a 1= na 1;2n - 1①当 q ≠1 时, S n =a 1+a 1q + a 1q + , + a 1q .qS n = a 1q +a 1 q 2+a 1q 3+ , + a 1q n ,②① - ②得, (1- q)S n = a 1- a 1 q n ,n∴ S n =a 1 1- q ,1- qna 1, q = 1,n∴ S n = a 1 1- q,q ≠ 1.1-q(2)证明假定 { a n + 1} 是等比数列,则对随意的k ∈ N * ,(a k +1+ 1)2= (a k + 1)(a k + 2+ 1),2a k + 1+ 2a k + 1+1= a k a k + 2+a k + a k +2 +1,a 21q 2k + 2a 1 q k = a 1q k - 1·a 1q k +1+ a 1q k -1+ a 1q k +1,kk - 1k + 1∵ a 1≠ 0, ∴ 2q = q + q .∵ q ≠0, ∴ q 2- 2q + 1= 0, ∴ q =1,这与已知矛盾.∴ 假定不建立,故 { a n +1} 不是等比数列.题型三 数学概括法例 3已知数列 { a n } 知足关系式 a n +1= n+ 2, n ∈ N * ,且 a 1= 2.a n(1)求 a 2, a 3, a 4;(2)求证: n + 1≤ a n < n + 1+ 1;(3)求证:n + 1- 1< 1 + 1 +, + 1<2( n + 3- 3).a 1 a 2 a na + = n审题破题(1) 依据递推式和初始值求解即可; (2)依据已知的递推式+ 2,使用n 1 a n数学概括法进行证明;(3)依据 (2) 的结果进行证明.(1)解由题意,知 a 2=5, a 3= 14,a 4= 43.25 14(2)证明由 a n + 1= n+2 及 a 1= 2,知 a n >0.a n下边用数学概括法证明:① 当 n = 1 时, a 1= 2 知足 1+ 1≤ a 1< 1+1+ 1,建立. ② 假定当 n = k (k ∈N * )时,k + 1≤ a k < k +1+ 1 建立,则当 n = k + 1 时, a + = k+ 2> k + 2= k + 1+ 1.k 1 a kk + 1+ 1a k + 1= k+ 2≤ k + 2.a k k + 1下边用剖析法证明: k+ 2< k + 2+ 1.k + 1欲证k + 2<k +2+ 1,k +1只需证 k + k + 1<( k + 1) k + 2,只需证 (k + k + 1)2 <[( k + 1) k + 2] 2, 只需证 2 k + 1>0 ,此式明显建立.所以 k + 2< k +2+ 1 建立.k +1进而 a + = k+ 2≤ k + 2< k + 2+ 1.k 1a kk + 1由 ①② 可知,对全部 k ∈N *, n + 1≤a n < n + 1+1 建立.(3)证明 由(2) 知 1 < 1 ≤1 ,n n + 1 n + 1+1 a而 1 ≥ 1 = n +1- n ,n + 1+ 1 n + 1+ n 1 =2<2n +1n +1 +n + 3+ n + 2n + 1= 2( n + 3- n + 2),所以 n + 1- n< 1<2( n + 3- n + 2),a n所以 ( 2- 1)+, +(n + 1- n)< 1 + 1 + , + 1a 1 a 2 a n <2( 4- 3)+ ,+ 2( n + 3- n + 2),所以 n + 1- 1< 1 + 1+, + 1 <2( n + 3- 3).a 1 a 2 a n反省概括 在递推数列问题中,假如给出的是形如 a n + 1= f(a n )的递推式,则能够考虑用数学概括法进行证明, 这是由于在设出 a k 知足的结论后, 能够依据 a n + 1= f(a n )获得 a k +1知足的结论.在使用数学概括法证明问题时,在概括假定后,概括假定就是证明n = k+ 1 时的已知条件, 把概括假定当已知条件证明后续结论时, 能够使用综合法、 剖析法、反证法,也能够再次使用数学概括法.变式训练 1 1 1 1 3 1 *3 已知 f(n)= 1+ 3 3 3 3 , g(n)= - 2n 22 +3 +4 + , + n 2 , n ∈ N . (1)当 n = 1,2,3 时,试比较 f(n)与 g(n)的大小关系;(2)猜想 f(n)与 g(n)的大小关系,并给出证明.解 (1)当 n = 1 时, f(1)= 1, g(1)= 1,所以 f(1)= g(1);当 n =2 时, f(2) =98, g(2)= 118,所以 f(2)< g(2) ; 当 n =3 时, f(3) = 251, g(3) =312,所以 f(3)< g(3).216216(2)由 (1),猜想 f(n)≤ g(n),下边用数学概括法给出证明:① 当 n = 1,2,3 时,不等式明显建立.② 假定当 n = k(k ≥ 3, k ∈ N * )时,不等式建立,1 1 1 1 3 1 即 1+23+ 33+ 43+ , +k 3<2-2k 2,那么,当 n = k +1 时, f(k + 1)= f(k)+13<3- 12+ 1 1 3,k +1 2 2k k +1 1 1 k + 3 1 - 3k - 1 由于2 k +1 2 - 2k 2- k + 13 =2 k + 1 3- 2k 2= 2 k + 1 3k 2<0, 所以 f(k + 1)<3- 1 2= g(k + 1).2 2 k + 1∴ 当 n = k + 1 时 f(n)≤ g(n)建立.由 ①② 可知对全部 n ∈N * ,都有 f(n)≤ g(n)建立.典例 (1)(2012·江西 )察看以下各式: a + b = 1, a 2 + b 2 = 3, a 3+ b 3= 4, a 4+ b 4= 7, a 5+ b 5= 11,, ,则 a 10+ b 10 等于()A . 28B .76C .123D .199分析察看规律,概括推理.从给出的式子特色察看可推知, 等式右端的值, 从第三项开始, 后一个式子的右端值等于它前方两个式子右端值的和,照此规律,则 a 10+ b 10= 123.答案C(2)记等差数列 { a n } 的前 n 项和为 S n ,利用倒序乞降的方法,可将S n 表示成首项 a 1、末 项 a n 与项数 n 的一个关系式, 即公式 S n = n a 1+ a n;近似地, 记等比数列 { b n } 的前 n 项2积为 T n ,且 b n >0 (n ∈ N * ),试类比等差数列乞降的方法,可将 T n 表示成首项 b 1、末项b n 与项数 n 的一个关系式,即公式 T n = ________.分析 利用等比数列的性质:若m + n = p + q ,则 b m ·b n = b p ·b q ,利用倒序求积方法有T n =b 1b 2·, ·b n ,n两式相乘得 T n 2= ( b 1 b n )n ,即 T n = (b 1b n ) 2 .T n =b n b n - 1·, ·b 1,n答案(b 1b n )2得分技巧合情推理的重点是追求规律, 明确已知结论的性质或特色. 高考取此类问题的指向性很强,要获得正确结论的概括或类比.阅卷老师提示(1)在进行概括推理时,要先依据已知的部分个体,把它们合适变形,找出它们之间的联系,进而概括出一般结论.(2)在进行类比推理时,要充足考虑已知对象性质的推理过程,而后经过类比,推导出类比对象的性质.(3)概括推理重点是找规律,类比推理重点是看共性.1. 已知数列 { a n } 的前 n 项和 S n = n 2a n ( n ≥2),而 a 1= 1,经过计算a 2, a 3,a 4,猜想 a n 等于()22A. n + 1 2B.n n + 122 C.2n- 1D.2n - 1答案 B分析a n = S n - S n - 1=n 2a n -( n -1) 2a n -1,∴ (n - 1)2n - 1a n - 1= ( n -1)( n + 1)a n .∴ a n =a n -1.n + 1由 a 1=1 知: a 2= 1,a 3=1.3 6∴ 猜想 a n = 2,应选 B.n n + 12. 以下四个图形中, 着色三角形的个数挨次组成一个数列的前4 项,则这个数列的一个通项公式为()A . a n = n -1B .a n = 3 n3C . a n = 3n - 2nD . a n = 3n -1+2n - 3答案 A分析a 1= 1, a 2= 3,a 3= 9, a 4= 27,故猜 a n = 3n -1.3. 以下推理中属于概括推理且结论正确的选项是()A .设数列 { a n } 的前 n 项和为 S n ,由 a n = 2n - 1,求出 S 1= 12, S 2= 22, S 3= 32,, ,推断: S n = n 2B .由 f(x) = xcos x 知足 f(- x)=- f(x)对 ?x ∈ R 都建立,推测: f(x)= xcos x 为奇函数2222x 2 y 2C .由圆 x + y = r 的面积 S = πr ,推测:椭圆 a 2+ b 2= 1(a>b>0)的面积 S = πabD .由 (1+ 1)2>21, (2+ 1)2>2 2, (3+ 1)2>23,, ,推测:对全部 n ∈N * , (n + 1)2>2n 答案 A分析注意到,选项 A 由一些特别案例得出一般性结论, 且注意到数列 { a n } 是等差数列,其前 n 项和等于 S n = n 1+ 2n - 1= n 2,选项 D 中的推理属于概括推理, 但结论不正确. 因2 此选 A.2Sa 、b 、c ,△ ABC 的面积为 S ,内切圆半径为 r ,则 r = ;a + b + c类比这个结论可知:四周体S — ABC 的四个面的面积分别为S 1 、S 2 、S 3、 S 4,内切球的半径为 R ,四周体 P — ABC 的体积为 V ,则 R 等于()V2VA. +S +S +SB.+S +S +SS 12 3 4 S 1 2343V4VC.+S +S +SD.+S +S +SS 1 234S 1234答案 C分析此题考察类比推理,用体积切割的方法,能够得出3VR =+S +S +S.S 1 2345. 察看等式: 1+1=2,1+1+1=3,1+1+1+1=4,根1×2 2×3 31× 2 2×3 3× 44 1× 22×3 3×4 4×55据以上规律,第四个等式为________.答案1 +1× 212× 3+1 + 3× 41 + 4× 51 =5 5×6 66. 设等差数列 { a n } 的前 n 项和为S n ,则 S 4, S 8- S 4 , S 12- S 8, S 16- S 12 成等差数列.类比以上结论有:设等比数列 { b n } 的前 n 项积为 T n ,则 T 4,________,________,T 16成等比数T 12列.答案T 8 T 12T 4 T 8分析等差数列类比于等比数列,和类比于积,减法类比于除法,可得类比结论为:设等比数列 { b n } 的前 n 项积为 T n ,则 T 4,T 8, T 12,T 16成等比数列.T 4 T 8 T 12专题限时规范训练一、选择题1. 察看以下各式: 72= 49,73= 343,74= 2 401,, ,则 72 014 的末两位数字为()A . 01B .43C .07D . 49答案 D分析由于 71= 7,72 =49,73= 343,74= 2 401,7 5= 16 807,76= 117 649, , ,所以这些数的末两位数字呈周期性出现, 且周期 T = 4.又由于 2 014= 4× 503+ 2,所以 72 014 的末两位 数字与 72 的末两位数字同样,应选D.2. 定义一种运算“ * ”:关于自然数n 知足以下运算性质: (ⅰ )1*1=1,( ⅱ )(n+1)*1= n*1+1,则 n*1 等于()A . nB .n + 1C .n - 1D . n 2答案 A分析由 (n + 1)*1 = n*1 + 1,得 n*1 = (n - 1)*1 + 1= (n - 2)*1 + 2= , = 1]3. 定义 A* B ,B*C ,C*D ,D * A 的运算分别对应以下图中的 (1)(2)(3)(4) ,那么以下图中的(A)(B)所对应的运算结果可能是( )A .B*D ,A* DB .B*D , A*C C .B*C ,A*D D .C*D ,A*D答案 B分析由 (1)(2)(3)(4) 图得 A 表示 |,B 表示 □ ,C 表示 — ,D 表示 ○,故图 (A)(B) 表示 B* D和 A*C.1,2, 1, 3,2, 1, 4, 3,2, 1,, ,依它的前10 项的规律,这个数列的4. 已知数列: 1 1 21 2 3 1 2 3 4第 2 013 项 a2 013知足()11≤ a2 013<1A. 0<a2 013< B.1010C. 1≤ a2 013≤ 10D. a2 013>10答案A分析数列中项的规律:分母每一组中从小到大摆列:(1) , (1,2) ,(1,2,3) ,(1,2,3,4) , ,;分子每一组中从大到小摆列(1), (2,1), (3,2,1) , (4,3,2,1) ,, ,由上规律4 1知 a2 013=60=15.5.给出若干数字按以下图排成倒三角形,此中第一行各数挨次是1,2,3, , , 2 011,从第二行起每个数分别等于上一行左、右两数之和,最后一行只有一个数M,则这个数M 是()2 009A. 2 012 2·2 010B. 2 011 2·2 011C. 2 010 2·2 007D. 2 010 2·答案A分析第一行公差为1;第二行公差为2;,,;第 2010 行公差为22 009,第 2011 行只有 M,发现规律,得M= (1+ 2 011)2 0092·.或从第一行为 1,2,3 及 1,2,3,4,5 的两个“小三角形”联合选项概括得结果为 (3+1及 (5+ 1)×3n- 2.1)×2 2 ,猜一般规律为 (n+ 1) ·2+,若 a+ d= b+ c且 |a- d|<|b-c|,则有() 6.设 a,b, c, d∈RA. ad= bc B .ad<bc C.ad>bc D. ad≤ bc答案C分析|a - d|<|b- c|?( a-d)2<(b- c)2?a2+ d2-2ad<b2+ c2- 2bc,又∵a+ d= b+ c? (a +d)2= (b+ c)2? a2+ d2+ 2ad= b2+ c2+ 2bc,∴- 4ad<- 4bc,∴ ad>bc.a2+ b2127.已知 a>b>0,且 ab= 1,若 0<c<1, p= log c, q= log c() ,则 p, q 的大小2a+ b关系是()A. p>q B .p<qC. p= q D. p≥ q答案 Ba 2+b 2a 2+b 2分析∵>ab = 1, ∴ p = log c 22<0.12111又 q =log c () = log c>log c= log c >0, ∴q>p.a + ba +b + 2 ab4 ab4378. 对大于1 的自然数 m 的三次幂可用奇数进行以下方式的“分裂”:23, 3 3 9,511134315,, .仿此,若 m 3 的“分裂数”中有一个是59,则 m 的值为()17 19A . 5B .6C .7D . 8答案 D分析由已知可察看出m 3 可分裂为 m 个连续奇数,最小的一个为 (m - 1)m + 1.当 m =8时,最小的数为 57,第二个即是59.∴ m = 8.二、填空题9.察看以下等式1= 12+ 3+ 4= 9 3+ 4+5+ 6+ 7= 254+ 5+ 6+7+ 8+ 9+ 10= 49,,照此规律,第 n 个等式为 ________.答案n + (n + 1)+ (n + 2)+, + (3n - 2)= (2n - 1)2分析 第 n 个等式是首项为n ,公差为 1,项数为 2n - 1 的等差数列,即 n + (n + 1)+ (n+ 2)+, + (3n - 2)= (2n - 1) 2.110.若数列 { a n } 的通项公式 a n = n + 1 2,记 f(n)= 2(1-a 1 ) ·(1- a 2), (1- a n ),试经过计算f(1),f(2) ,f(3)的值,推测出 f(n)= ________.n + 2答案n + 13 1+ 2分析 f(1) = 2(1-a 1)=2= 1+ 1,1 1f(2) =2(1- a 1)(1 -a 2)= 2 1- 4 1- 9=4=2+ 2,3 2+1f(3) =2(1- a 1)(1 -a 2)(1 - a 3)=2 1- 1 1-1 1- 1=5= 3+2,4 9 16 4 3+1n + 2可猜想 f(n)=n + 1.11.二维空间中圆的一维测度(周长 )l = 2πr ,二维测度 (面积 )S = πr 2,察看发现 S ′= l ;三维空间中球的二维测度 (表面积 )S = 4πr 2,三维测度 (体积 )V =43,察看发现 V ′= S.则四3πr维空间中“超球”的四维测度 W = 2πr 4,猜想其三维测度 V = ________.答案 8πr 3分析 由已知, 可得圆的一维测度为二维测度的导函数; 球的二维测度是三维测度的导函数.类比上述结论, “ 超球 ”的三维测度是四维测度的导函数, 即 V = W ′ = (2πr 4)′= 8πr 3.12.函数 f(x)的定义域为 A ,若 x 1,x 2∈ A ,且 f(x 1 )= f(x 2)时总有 x 1= x 2,则称 f(x)为单函数. 例如 f(x)= 2x + 1 (x ∈ R )是单函数,以下命题:①函数f(x)= x 2 (x ∈ R )是单函数;②指数函数 f(x)= 2x (x ∈ R )是单函数,③若 f(x)为单函数, x 1, x 2∈ A 且 x 1≠ x 2,则 f(x 1)≠ f(x 2);④在定义域上拥有单一性的函数必定是单函数.此中的真命题是 __________( 写出全部真命题的编号 ). 答案 ②③④分析由 x 12= x 22,未必有 x 1= x 2,故 ① 不正确;关于 f(x)= 2x ,当 f(x 1)= f(x 2 )时必定有 x 1= x 2,故 ② 正确;当 f(x)为单函数时,有 f(x 1)= f( x 2)? x 1= x 2,则其逆否命题 f(x)为单函数时,x 1≠ x 2? f(x 1)≠ f(x 2) 为真命题,故 ③ 正确;当函数在其定义域上单一时, 必定有 f(x 1)= f(x 2) ? x 1= x 2,故 ④ 正确.三、解答题13. (2012 ·建福 )某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:① sin 213°+ cos 217°- sin 13 cos ° 17 ;°2 2 °- sin 15 cos ° 15 ;°② sin 15 °+ cos 15 22°- sin 18 cos ° 12 ;°③ sin 18 °+ cos 12④ sin 2(- 18°)+cos 248°-sin(- 18°)cos 48 ;°⑤ sin 2(- 25°)+cos 255°-sin(- 25°)cos 55 . °(1)试从上述五个式子中选择一个,求出这个常数;(2)依据 (1) 的计算结果,将该同学的发现推行为三角恒等式,并证明你的结论.解方法一 (1)选择 ② 式,计算以下:sin 215°+ cos 215°- sin 15 cos ° 15 °1 sin 30 =°1- 1 3= 1- 4 = .2 4 (2)三角恒等式为322sin α+ cos (30 °- α)- sin αcos(30 -°α)= 4.证明以下:sin 2α+ cos 2(30 °- α)- sin αcos(30 -°α)= sin 2α+(cos 30 cos ° α+ sin 30 sin ° α)2- sin α(cos 30 °cos α+ sin 30 sin ° α)23231 23 1 23 2323.= sin α+ cos α+2 sin αcos α+ sin α-2sin αcos α- sin α= sin α+ cos α= 442 4 4 4方法二 (1)同解法一.223 (2)三角恒等式为 sin α+ cos (30 °- α)- sin αcos(30 -°α)= 4. 证明以下:22sin α+ cos (30 °- α)- sin αcos(30 -°α)= 1-cos 2α 1+ cos 60°- 2αα(cos 30 cos ° α+ sin 30 sin ° α)2+2- sin= 1-1 1+ 1 312α2 2cos 2α+ 2 2(cos 60 cos ° 2α+ sin 60 sin ° 2α)- 2 sin αcos α- 2sin1 1 cos 2α+ 1 + 1 3 sin 2α- 3= - 2 2 cos 2α+ 4 4sin 2α-2 41 1 1 1 3(1 -cos 2α)= 1- cos 2α-+ cos 2α= .44 4 4414.设会合 W 是知足以下两个条件的无量数列 { a n } 的会合.① a n + a n +2≤ a n +1;② a n ≤ M ,此中 n ∈ N * , M 是与 n 没关的常数.2(1)若 { a n } 是等差数列, S n 是其前 n 项的和, a 3= 4, S 3= 18,尝试究 { S n } 与会合 W 之间的关系;(2)若数列 { b n } 的通项为 b n = 5n - 2n ,且 { b n } ∈ W , M 的最小值为 m ,求 m 的值;(3)在 (2)的条件下,设 1 nc n = [ b n + (m - 5) ] + 2,求证:数列 { c n } 中随意不一样的三项都不5 能成为等比数列. (1)解 ∵ a 3= 4, S 3= 18,∴ a 1= 8, d =- 2,2 S n + S n + 2∴ S n =- n + 9n , 2 <S n + 1 知足条件 ① ,9S n =- n - 2 + 81,当 n = 4 或 5 时, S n 取最大值 20.2 4 ∴ S n ≤ 20 知足条件 ② ,∴ { S n } ∈ W.(2)解b n + 1- b n = 5- 2n 可知 { b n } 中最大项是 b 3= 7,∴M ≥7, M 的最小值为 7.(3)证明 由(2) 知 c n =n + 2,假定 { c n } 中存在三项 c p 、c q 、 c r (p 、 q 、 r 互不相等 )成等比数列,则 c 2q = c p ·c r ,∴ (q + 2)2= (p + 2)(r + 2),∴ (q 2- pr)+ (2q - p - r ) 2= 0.q 2 = pr ,∵ p 、q 、 r ∈ N * , ∴2q - p - r = 0,消去 q 得 (p- r )2= 0,∴p=r ,与 p≠ r 矛盾.∴{ c n} 中随意不一样的三项都不可以成为等比数列.。

考前三个月高考数学(全国甲卷通用,理科)知识·方法篇 专题5 数列、推理与证明专题5 第25练

考前三个月高考数学(全国甲卷通用,理科)知识·方法篇 专题5 数列、推理与证明专题5 第25练

解析答案
1 2 3 4 5 6 7 8 9 10 11 12
8.对于实数x,[x]表示不超过x的最大整数,观察下列等式:
[ 1]+[ 2]+[ 3]=3,
[ 4]+[ 5]+[ 6]+[ 7]+[ 8]=10,
[ 9]+[ 10]+[ 11]+[ 12]+[ 13]+[ 14]+[ 15]=21. … 按照此规律,第n个等式的等号右边的结果为_2_n_2_+__n__.
V C.2K
V D.3K
解析
1 2 3 4 5 6 7 8 9 10 11 12
3.若数列{an}是等差数列,则数列{bn}(bn=a1+a2+n …+an)也为等差数列.
类比这一性质可知,若正项数列{cn}是等比数列,且{dn}也是等比数列,
则 dn 的表达式应为( )
A.dn=c1+c2+n …+cn
解析
答案
123
2.(2016·课标全国甲)有三张卡片,分别写有1和2,1和3,2和3.甲,乙, 丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同 的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字 不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数 字是__1_和__3__.
专题5 数列、推理与证明
第 25 练 归纳推理与类比推理
题型分析 高考展望
归纳推理与类比推理是新增内容,在高考中,常以选择题、填空题的 形式考查.题目难度不大,只要掌握合情推理的基础理论知识和基本 方法即可解决.
栏目 索引
体验高考 高考必会题型 高考题型精练
体验高考
123
1.(2015·陕西)观察下列等式: 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, …据此,规律,第n个等式可为_1_-__12_+_13_-__14_+__…__+_2_n_1-__1_-__21_n_=_n_+_1_1_+__n_+1__2_+_…__+__21_n_.

考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣1

考前三个月高考数学(全国甲卷通用理科)考前抢分必做 考前回扣 回扣1

考前回扣回扣1集合与常用逻辑用语1.集合(1)集合的运算性质:①A∪B=A⇔B⊆A;②A∩B=B⇔B⊆A;③A⊆B⇔∁U A⊇∁U B.(2)子集、真子集个数计算公式:对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.(3)数轴和Venn图是进行交、并、补运算的有力工具,在具体计算时不要忘记集合本身和空集这两种特殊情况.补集思想常运用于解决否定型或正面较复杂的有关问题.2.四种命题及其相互关系(1)(2)互为逆否命题的两命题同真同假.3.含有逻辑联结词的命题的真假(1)命题p∨q:若p、q中至少有一个为真,则命题为真命题,简记为:一真则真.(2)命题p∧q:若p、q中至少有一个为假,则命题为假命题,p、q同为真时,命题才为真命题,简记为:一假则假,同真则真.(3)命题綈p与命题p真假相反.4.全称命题、特称命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称命题綈p:∃x0∈M,綈p(x0).(2)特称命题p:∃x0∈M,p(x0),其否定为全称命题綈p:∀x∈M,綈p(x).5.充分条件和必要条件(1)若p⇒q且q⇏p,则p是q的充分不必要条件;(2)若p⇏q且q⇒p,则称p是q的必要不充分条件;(3)若p⇔q,则称p是q的充要条件;(4)若p⇏q且q⇏p,则称p是q的既不充分也不必要条件.1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x|y=lg x}——函数的定义域;{y|y=lg x}——函数的值域;{(x,y)|y=lg x}——函数图象上的点集.2.易混淆0,∅,{0}:0是一个实数;∅是一个集合,它含有0个元素;{0}是以0为元素的单元素集合,但是0∉∅,而∅⊆{0}.3.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.4.空集是任何集合的子集.由条件A⊆B,A∩B=A,A∪B=B求解集合A时,务必分析研究A =∅的情况.5.区分命题的否定与否命题,已知命题为“若p,则q”,则该命题的否定为“若p,则綈q”,其否命题为“若綈p,则綈q”.6.在对全称命题和特称命题进行否定时,不要忽视对量词的改变.7.对充分、必要条件问题,首先要弄清谁是条件,谁是结论.1.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于()A.0或 3B.0或3C.1或 3D.1或3答案 B解析∵A∪B=A,∴B⊆A,∴m∈{1,3,m},∴m=1或m=3或m=m,由集合中元素的互异性易知m=0或m=3.2.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是()A.{a|a≥2}B.{a|a≤1}C.{a|a≥1}D.{a|a≤2}答案 A解析若A⊆B,则a≥2,故选A.3.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于()A.{x|-3<x<5}B.{x|-5<x<5}C.{x|x<-5或x>-3}D.{x|x<-3或x>5}答案 C解析在数轴上表示集合M、N,则M∪N={x|x<-5或x>-3},故选C.4.满足条件{a }⊆A ⊆{a ,b ,c }的所有集合A 的个数是( ) A.1 B.2 C.3 D.4 答案 D解析 满足题意的集合A 可以为{a },{a ,b },{a ,c },{a ,b ,c },共4个.5.已知集合U =R (R 是实数集),A ={x |-1≤x ≤1},B ={x |x 2-2x <0},则A ∪(∁U B )等于( ) A.[-1,0] B.[1,2] C.[0,1] D.(-∞,1]∪[2,+∞) 答案 D解析 B ={x |x 2-2x <0}=(0,2),A ∪(∁UB )=[-1,1]∪(-∞,0]∪[2,+∞)=(-∞,1]∪[2,+∞),故选D. 6.下列命题正确的是( )(1)命题“∀x ∈R ,2x >0”的否定是“∃x 0∈R ,2x ≤0”;(2)l 为直线,α,β为两个不同的平面,若l ⊥β,α⊥β,则l ∥α; (3)给定命题p ,q ,若“p ∧q 为真命题”,则綈p 是假命题; (4)“sin α=12”是“α=π6”的充分不必要条件.A.(1)(4)B.(2)(3)C.(1)(3)D.(3)(4) 答案 C解析 命题“∀x ∈R ,2x >0”的否定是“∃x 0∈R ,2x ≤0”;l 为直线,α,β为两个不同的平面,若l ⊥β,α⊥β,则l ∥α或l ⊂α;给定命题p ,q ,若“p ∧q 为真命题”;则p 且q 是真命题,綈p 且綈q 是假命题;“sin α=12”是“α=π6”的必要不充分条件,因此(1)(3)为真,选C.7.设命题p :∃x 0∈R ,使x 20+2x 0+a =0(a ∈R ),则使得p 为真命题的一个充分不必要条件是( )A.a >-2B.a <2C.a ≤1D.a <0 答案 D解析 设f (x )=x 2+2x +a ,则p 为真命题⇔f (x )在R 内有零点⇔Δ≥0⇔a ≤1.8.已知命题p :在△ABC 中,若AB <BC ,则sin C <sin A ;命题q :已知a ∈R ,则“a >1”是“1a <1”的必要不充分条件.在命题p ∧q ,p ∨ q ,(綈p )∨q ,(綈p )∧q 中,真命题的个数为( )A.1B.2C.3D.4 答案 A解析 由题意得,在△ABC 中,若AB <BC ,即c <a ,由正弦定理可得sin C <sin A ,所以p 真,又已知a ∈R ,则“a >1”是“1a <1”的充分不必要条件,所以q 假,只有p ∨q 为真命题,故选A.9.已知命题p :∀m ∈[0,1],x +1x ≥2m ,则綈p 为( )A.∀m ∈[0,1],x +1x <2mB.∃m 0∈[0,1],x +1x≥20mC.∃m 0∈(-∞,0)∪(1,+∞),x +1x ≥20mD.∃m 0∈[0,1],x +1x <20m答案 D解析 根据全称命题与特称命题的关系,可知命题p :∀m ∈[0,1],x +1x ≥2m ,则綈p 为“∃m 0∈[0,1],x +1x <20m”,故选D.10.下列结论正确的是________.(1)f (x )=a x -1+2(a >0,且a ≠1)的图象经过定点(1,3); (2)已知x =log 23,4y =83,则x +2y 的值为3;(3)若f (x )=x 3+ax -6,且f (-2)=6,则f (2)=18; (4)f (x )=x (11-2x -12)为偶函数; (5)已知集合A ={-1,1},B ={x |mx =1},且B ⊆A ,则m 的值为1或-1. 答案 (1)(2)(4)解析 (1)当x =1时,f (1)=a 0+2=1+2=3,则函数的图象经过定点(1,3),故(1)正确;(2)已知x =log 23,4y =83,则22y =83,2y =log 283,则x +2y =log 23+log 283=log 2(83×3)=log 28=3,故(2)正确;(3)若f (x )=x 3+ax -6,且f (-2)=6,则(-2)3-2a -6=6,即a =-10,则f (2)=23-2×10-6=-18,故(3)错误;(4)函数的定义域为{x |x ≠0},关于原点对称, f (x )=x (11-2x -12)=x ·1+2x 2(1-2x ),则f (-x )=-x ·1+2-x 2(1-2-x )=-x ·2x +12(2x -1)=x ·1+2x2(1-2x )=f (x ),即有f (x )为偶函数,则f (x )=x (11-2x -12)为偶函数,故(4)正确;(5)已知集合A ={-1,1},B ={x |mx =1},且B ⊆A ,当m =0时,B =∅,也满足条件,故(5)错误,故正确的是(1)(2)(4).11.已知M 是不等式ax +10ax -25≤0的解集且5∉M ,则a 的取值范围是________________.答案 (-∞,-2)∪[5,+∞)解析 若5∈M ,则5a +105a -25≤0,∴(a +2)(a -5)≤0且a ≠5,∴-2≤a <5,∴5∉M 时,a <-2或a ≥5.12.若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c ,则称a ,b ,c 是调和的;若满足a +c=2b ,则称a ,b ,c 是等差的.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2 014,x ∈Z },集合P ={a ,b ,c }⊆M ,则(1)“好集”P 中的元素最大值为________;(2)“好集”P 的个数为________. 答案 2 012 1 006解析 因为a =-2b ,c =4b ,若集合P 中元素a 、b 、c 既是调和的,又是等差的,则1a +1b =2c且a +c =2b ,故满足条件的“好集”为形如{-2b ,b ,4b }(b ≠0)的形式,则-2 014≤4b ≤2 014,解得-503≤b ≤503,且b ≠0,P 中元素的最大值为4b =4×503=2 012.符合条件的b 值可取1 006个,故“好集”P 的个数为1 006.13.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0,若q 是p 的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,-4]解析 由命题q :实数x 满足x 2+2x -8>0,得x <-4或x >2,由命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,得(x -3a )(x -a )<0,∵a <0,∴3a <x <a , ∵q 是p 的必要不充分条件, ∴a ≤-4,∴a ∈(-∞,-4].14.已知命题p :⎪⎪⎪⎪1-x +12≤1,命题q :x 2-2x +1-m 2<0(m >0),若p 是q 的充分不必要条件,则实数m 的取值范围是________. 答案 (2,+∞)解析 ∵⎪⎪⎪⎪1-x +12≤1⇔-1≤x +12-1≤1⇔0≤x +12≤2⇔-1≤x ≤3,∴p :-1≤x ≤3; ∵x 2-2x +1-m 2<0(m >0)⇔[x -(1-m )][x -(1+m )]<0 ⇔1-m <x <1+m , ∴q :1-m <x <1+m . ∵p 是q 的充分不必要条件,∴[-1,3]是(1-m ,1+m )的真子集,则⎩⎪⎨⎪⎧1-m <-1,1+m >3, 解得m >2.。

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题5 数列、推理与证明 第24练

考前三个月高考数学(全国甲卷通用理科)知识 方法篇 专题5 数列、推理与证明 第24练

第24练 数列求和问题[题型分析·高考展望] 数列求和是数列部分高考考查的两大重点之一,主要考查等差、等比数列的前n 项和公式以及其他求和方法,尤其是错位相减法、裂项相消法是高考的热点内容,常与通项公式相结合考查,有时也与函数、方程、不等式等知识交汇,综合命题.体验高考1.(2015·安徽)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于______.答案 27解析 由已知数列{a n }是以1为首项,以12为公差的等差数列.∴S 9=9×1+9×82×12=9+18=27.2.(2016·浙江)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=______,S 5=______. 答案 1 121解析 由⎩⎪⎨⎪⎧a 2=2a 1+1,a 2+a 1=4,解得a 1=1,a 2=3,当n ≥2时,由已知可得: a n +1=2S n +1, ① a n =2S n -1+1,②①-②得a n +1-a n =2a n ,∴a n +1=3a n ,又a 2=3a 1, ∴{a n }是首项为1,公比为3的等比数列. ∴S n =12(3n -1).∴S 5=121.3.(2015·课标全国Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3, ① 可知a 2n +1+2a n +1=4S n +1+3.②②-①可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n =12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=n3(2n +3).4.(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .解 (1)由题意知,当n ≥2时,S n -1=3n 2+2n -5,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,符合{a n }通项公式,所以a n =6n +5.设数列{b n }的公差为d .由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3,所以b n =3n +1. (2)由(1)知,c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2 =-3n ·2n +2,所以T n =3n ·2n +2.高考必会题型题型一 分组转化法求和例1 (2016·天津)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 与log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 解 (1)设数列{a n }的公比为q . 由已知,有1a 1-1a 1q =2a 1q 2,解得q =2或q =-1.又由S 6=a 1·1-q 61-q =63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1.(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n )=n -12, 即{b n }是首项为12,公差为1的等差数列.设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2n (b 1+b 2n )2=2n 2. 点评 分组求和常见的方法:(1)根据等差、等比数列分组,即分组后,每一组可能是等差数列或等比数列;(2)根据正号、负号分组;(3)根据数列的周期性分组;(4)根据奇数项、偶数项分组.变式训练1 (2016·浙江)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解 (1)由题意得⎩⎪⎨⎪⎧ a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n , 得a n +1=3a n .所以数列{a n }的通项公式为a n =3n -1,n ∈N *. (2)设b n =|3n -1-n -2|,n ∈N *, 则b 1=2,b 2=1,当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3. 设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,所以T n=⎩⎪⎨⎪⎧2, n =1,3, n =2,3n-n 2-5n +112,n ≥3,n ∈N *.题型二 错位相减法求和例2 (2015·湖北)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解 (1)由题意有,⎩⎪⎨⎪⎧ 10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1或⎩⎨⎧a n =19(2n +79),b n=9·⎝⎛⎭⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .②①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.点评 错位相减法的关注点(1)适用题型:等差数列{a n }乘以等比数列{b n }对应项“{a n ·b n }”型数列求和. (2)步骤:①求和时先乘以数列{b n }的公比; ②把两个和的形式错位相减; ③整理结果形式.变式训练2 (2015·山东)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解 (1)因为2S n =3n +3,所以2a 1=3+3,故a 1=3, 当n >1时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n -3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n >1.(2)因为a n b n =log 3a n ,所以,当n =1时,b 1=13,所以T 1=b 1=13;当n >1时,b n =31-n log 33n -1=(n -1)·31-n . 所以,当n >1时,T n =b 1+b 2+b 3+…+b n =13+(1×3-1+2×3-2+…+(n -1)×31-n ), 所以3T n =1+(1×30+2×3-1+…+(n -1)×32-n ), 两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n ,所以T n=1312-6n +34×3n , 经检验,n =1时也适合. 综上可得T n =1312-6n +34×3n .题型三 裂项相消法求和例3 若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =log 21a n ,求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34. (1)解 ∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=16-13a 1,∴a 1=18,∴a n =18(14)n -1=(12)2n +1.(2)证明 由c n +1-c n =log 21a n =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1).∴1c 2+1c 3+1c 4+…+1c n =122-1+132-1+142-1+…+1n 2-1=12×[(1-13)+(12-14)+(13-15)+…+(1n -1-1n +1)] =12[(1+12)-(1n +1n +1)] =34-12(1n +1n +1)<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.点评 (1)裂项相消法:把数列和式中的各项分别裂开后,消去一部分从而计算和的方法,适用于求通项为1a n ·a n +1的前n 项和,其中{a n }若为等差数列,则1a n ·a n +1=1d ·(1a n -1a n +1).其余还有公式法求和等.(2)利用裂项相消法求和时,应注意抵消后并不一定只剩第一项和最后一项,也可能前面剩两项,后面也剩两项.变式训练3 等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数, 知等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0. 解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎡⎦⎤⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛⎭⎫110-3n -113-3n =13⎝⎛⎭⎫110-3n -110=n10(10-3n ).高考题型精练1.已知数列112,314,518,7116,…,则其前n 项和S n 为( )A.n 2+1-12nB.n 2+2-12nC.n 2+1-12n -1D.n 2+2-12n -1答案 A解析 因为a n =2n -1+12n ,则S n =1+2n -12n +⎝⎛⎭⎫1-12n ·121-12=n 2+1-12n .2.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( ) A.n n +1 B.4n n +1 C.3n n +1 D.5nn +1 答案 B解析 ∵a n =1+2+3+…+n n +1=n 2,∴b n =1a n a n +1=4n (n +1)=4⎝⎛⎭⎫1n -1n +1,∴S n =4⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1 =4(1-1n +1)=4n n +1. 3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A.200 B.-200 C.400 D.-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.已知函数f (n )=⎩⎪⎨⎪⎧n 2, 当n 为奇数时,-n 2, 当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A.0B.100C.-100D.10 200 答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012 =-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.故选B.5.若数列{a n }的通项公式为a n =2n (n +2),则其前n 项和S n 为( )A.1-1n +2B.32-1n -1n +1 C.32-1n -1n +2 D.32-1n +1-1n +2答案 D解析 因为a n =2n (n +2)=1n -1n +2,所以S n =a 1+a 2+…+a n=1-13+12-14+13-15+…+1n -1-1n +1+1n -1n +2=1+12-1n +1-1n +2=32-1n +1-1n +2.故选D.6.已知数列{a n }为等比数列,前三项为:a ,12a +12,13a +13,且S n =a 1+a 2+…+a n ,则T n =a 21+a 22+…+a 2n 等于( )A.9⎣⎡⎦⎤1-⎝⎛⎭⎫23n B.81⎣⎡⎦⎤1-⎝⎛⎭⎫23n C.815⎣⎡⎦⎤1-⎝⎛⎭⎫49n D.81⎣⎡⎦⎤1-⎝⎛⎭⎫49n 答案 C解析 由⎝⎛⎭⎫12a +122=a ⎝⎛⎭⎫13a +13 解得a =3(a =-1舍去), T n =a 21+a 22+…+a 2n=a 21⎣⎡⎦⎤1-(49)n 1-49=815⎣⎡⎦⎤1-(49)n . 7.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=1,{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =________. 答案 2n +1-n -2解析 因为a n +1-a n =2n ,应用累加法可得a n =2n -1, 所以S n =a 1+a 2+a 3+…+a n =2+22+23+…+2n -n =2(1-2n )1-2-n =2n +1-n -2.8.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n =________. 答案 2n +1-2+n 2解析 S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.9.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________. 答案 1 830解析 ∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234=15×(10+234)2=1 830.10.在等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和S n =________. 答案n n +1解析 设等比数列{a n }的公比为q , 则a 4a 1=q 3=27,解得q =3. 所以a n =a 1q n -1=3×3n -1=3n , 故b n =log 3a n =n ,所以1b n b n +1=1n (n +1)=1n -1n +1.则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.11.设数列{a n }的前n 项和为S n ,点⎝⎛⎭⎫n ,S nn (n ∈N *)均在函数y =3x -2的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解 (1)依题意得,S nn=3n -2,即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5. 当n =1时,a 1=S 1=3×12-2×1=1=6×1-5, 所以a n =6n -5(n ∈N *).(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12⎝⎛⎭⎫16n -5-16n +1.故T n =∑i =1nb n =12⎣⎡⎦⎤⎝⎛⎭⎫1-17+⎝⎛⎭⎫17-113+…+⎝⎛⎭⎫16n -5-16n +1=12⎝⎛⎭⎫1-16n +1. 因此,使得12⎝⎛⎭⎫1-16n +1<m 20(n ∈N *)成立的m 必须满足12≤m20,即m ≥10,故满足要求的最小正整数m 为10.12.在数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列. (1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n . 解 (1)∵{a n -1}是等比数列且a 1-1=2, a 2-1=4,a 2-1a 1-1=2,∴a n -1=2·2n -1=2n , ∴a n =2n +1.(2)b n =na n =n ·2n +n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n )+(1+2+3+…+n ). 令T =2+2×22+3×23+…+n ·2n , 则2T =22+2×23+3×24+…+n ·2n +1.两式相减,得-T =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1, ∴T =2(1-2n )+n ·2n +1=2+(n -1)·2n +1. ∵1+2+3+…+n =n (n +1)2,∴T n =(n -1)·2n +1+n 2+n +42.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第23练 常考的递推公式问题的破解方略[题型分析·高考展望] 利用递推关系式求数列的通项公式及前n 项和公式是高考中常考题型,掌握常见的一些变形技巧是解决此类问题的关键.一般这类题目难度较大,但只要将已知条件转化为几类“模型”,然后采用相应的计算方法即可解决.体验高考1.(2015·湖南)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 答案 3n -1解析 由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3, 可得a 3=3a 2,∴公比q =3,故等比数列通项a n =a 1q n -1=3n -1.2.(2015·课标全国Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________. 答案 -1n解析 由题意,得S 1=a 1=-1,又由a n +1=S n S n +1,得S n +1-S n =S n S n +1,因为S n ≠0,所以S n +1-S n S n S n +1=1,即1S n +1-1S n =-1,故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,得1S n =-1-(n -1)=-n , 所以S n =-1n.3.(2015·江苏)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________. 答案2011解析 ∵a 1=1,a n +1-a n =n +1,∴a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,将以上n -1个式子相加得a n -a 1=2+3+…+n =(2+n )(n -1)2,即a n =n (n +1)2.令b n =1a n,故b n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,故S 10=b 1+b 2+…+b 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2011.4.(2016·课标全国丙)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意,得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n , 由a 1≠0,λ≠0得a n ≠0, 所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)解 由(1)得S n =1-⎝⎛⎭⎫λλ-1n . 由S 5=3132,得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.高考必会题型题型一 利用累加法解决递推问题 例1 (1)在数列{a n }中,a 1=1,a n -a n -1=1n (n -1),则a n 等于( )A.2-1nB.1-1nC.1nD.2-1n -1答案 A解析 ∵a n -a n -1=1n (n -1),∴a 2-a 1=11×2,a 3-a 2=12×3,a 4-a 3=13×4,…,a n -a n -1=1n (n -1)(n >1),以上各式左右两边分别相加得a n -a 1=11×2+12×3+13×4+…+1n (n -1)=1-12+12-13+…+1n -1-1n=1-1n ,∴a n =a 1+1-1n =2-1n ,又a 1=1适合上式, ∴a n =2-1n ,故选A.(2)在数列{a n }中,已知a 1=2,a n +1=a n +cn (n ∈N *,常数c ≠0),且a 1,a 2,a 3成等比数列. ①求c 的值;②求数列{a n }的通项公式.解 ①由题意知,a 1=2,a 2=2+c ,a 3=2+3c , ∵a 1,a 2,a 3成等比数列,∴(2+c )2=2(2+3c ), 解得c =0或c =2, 又c ≠0,故c =2.②当n ≥2时,由a n +1=a n +cn ,得a 2-a 1=c ,a 3-a 2=2c ,…,a n -a n -1=(n -1)c , 以上各式相加,得a n -a 1=[1+2+…+(n -1)]c =n (n -1)2c .又a 1=2,c =2,故a n =n 2-n +2(n ≥2), 当n =1时,上式也成立,∴数列{a n }的通项公式为a n =n 2-n +2(n ∈N *).点评 由已知递推关系式,若能转化为a n +1=a n +f (n ),或1a n +1-1a n =f (n )且f (n )的和可求,则可采用累加法.变式训练1 在数列{a n }中,a 1=1,a n +1-a n =ln(1+1n ),则a n 等于( )A.1+n +ln nB.1+n ln nC.1+(n -1)ln nD.1+ln n 答案 D解析 ∵a 1=1,a n +1-a n =ln(1+1n),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =ln(1+1n -1)+ln(1+1n -2)+…+ln(1+1)+1=ln(n n -1×n -1n -2×…×2)+1=1+ln n . 题型二 利用累乘法解决递推问题例2 (1)已知正项数列{a n }满足a 1=1,(n +2)a 2n +1-(n +1)a 2n +a n a n +1=0,则它的通项公式为( )A.a n =1n +1B.a n =2n +1 C.a n =n +12 D.a n =n(2)已知数列{a n }中,a 1=1,a na n +1-a n=n (n ∈N *),则a 2 016=________.答案 (1)B (2)2 016解析 (1)由(n +2)a 2n +1-(n +1)a 2n +a n a n +1=0,得[(n +2)a n +1-(n +1)a n ](a n +1+a n )=0, 又a n >0,所以(n +2)a n +1=(n +1)a n , 即a n +1a n =n +1n +2,a n +1=n +1n +2a n, 所以a n =n n +1·n -1n ·…·23a 1=2n +1a 1(n ≥2),所以a n =2n +1(n =1适合),于是所求通项公式为a n =2n +1.(2)由a na n +1-a n=n (n ∈N *),得a n +1a n =n +1n ,a 2a 1=21,a 3a 2=32,a 4a 3=43,…, a n a n -1=n n -1,各式相乘得a na 1=n ,∴a n =n (n =1适合),∴a 2 016=2 016.点评 若由已知递推关系能转化成a n +1a n =f (n )的形式,且f (n )的前n 项积能求,则可采用累乘法.注意验证首项是否符合通项公式.变式训练2 数列{a n }的前n 项和S n =n2a n (n ≥2),且a 1=1,a 2=2,则{a n }的通项公式a n =______________.答案 ⎩⎪⎨⎪⎧1, n =1,2(n -1), n ≥2解析 ∵S n -1=n -12a n -1 (n ≥3),∴S n -S n -1=n2a n -n -12a n -1,∴a n =n 2a n -n -12a n -1,∴a n a n -1=n -1n -2.∴当n ≥3时,a 3a 2·a 4a 3·…·a n a n -1=2·32·43·…·n -1n -2,∴a na 2=n -1,∴a n =(n -1)·a 2=2(n -1)(n ≥3). ∵a 2=2满足a n =2(n -1),∴a n =⎩⎪⎨⎪⎧1, n =1,2(n -1), n ≥2.题型三 构造法求通项公式例3 (1)数列{a n }中,a 1=12,a n +1=na n(n +1)(na n +2)(n ∈N *),则数列{a n }的通项公式a n =________.(2)已知a 1=1,a n +1=a na n +1,则a n =________.答案 (1)1n (3·2n -1-1)(2)1n解析 (1)由已知可得(n +1)a n +1=na nna n +2, 设na n =b n ,则b n +1=b nb n +2,所以1b n +1=2b n+1,两边都加1可得1b n +1+1=2b n +2=2(1b n +1),即{1b n +1}是公比为2,首项为3的等比数列. 故1b n+1=3·2n -1, 所以1b n =3·2n -1-1=1na n,所以a n =1n (3·2n -1-1)(n =1适合), 于是所求通项公式为a n =1n (3·2n -1-1). (2)由a n +1=a n a n +1,得1a n +1-1a n=1(常数),又1a 1=1,∴{1a n }为以1为首项,1为公差的等差数列, ∴1a n =n ,从而a n =1n ,即所求通项公式为a n =1n. 点评 构造法就是利用数列的递推关系灵活变形,构造出等差、等比的新数列,然后利用公式求出通项.此类问题关键在于条件变形:在“a n =ca n -1+b ”的条件下,可构造“a n +x =c (a n -1+x )”在“a n =ma n -1ka n -1+m”的条件下,可构造“1a n =1a n -1+k m ”.变式训练3 已知数列{a n }中,a 1=2,当n ≥2时,a n =7a n -1-33a n -1+1,求数列{a n }的通项公式.解 因为当n ≥2时,a n -1=4a n -1-43a n -1+1,两边取倒数,得1a n -1=1a n -1-1+34.即1a n -1-1a n -1-1=34, 故数列⎩⎨⎧⎭⎬⎫1a n -1是首项为1a 1-1=1,公差为34的等差数列.所以1a n -1=1a 1-1+34(n -1)=3n +14.所以a n =3n +53n +1.又当n =1时,上式也成立, 故数列{a n }的通项公式是a n =3n +53n +1(n ∈N *). 高考题型精练1.数列{a n }满足a 1=1,a 2=23,且1a n -1+1a n +1=2a n (n ≥2),则a n 等于( )A.1n +1B.(23)n -1C.(23)nD.2n +1答案 D解析 由题意知{1a n }是等差数列,又1a 1=1,1a 2=32, ∴公差为d =1a 2-1a 1=12,∴1a n =1a 1+(n -1)×12=n +12, ∴a n =2n +1,故选D.2.已知数列{a n }中,a 1=1,且1a n +1=1a n +3(n ∈N *),则a 10等于( ) A.28 B.33 C.133 D.128答案 D解析 由已知1a n +1-1a n=3(n ∈N *),所以数列{1a n }是以1为首项,3为公差的等差数列,即1a n =1+(n -1)×3=3n -2, 解得a n =13n -2,a 10=128,故选D.3.已知数列{a n }中,a 1=12,a n +1=a n +1n 2+3n +2(n ∈N *),则数列{a n }的通项为( )A.a n =1n +1B.a n =n n +1C.a n =12+n -1n 2+n +2 D.a n =n +1n +2答案 B解析 由a n +1=a n +1n 2+3n +2可得,a n +1-a n =1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2,所以a 2-a 1=12-13,a 3-a 2=13-14,a 4-a 3=14-15,…,a n -a n -1=1n -1n +1,累加可得a n -a 1=12-1n +1,又a 1=12,所以a n =nn +1,故选B.4.已知f (x )=log 2x 1-x +1,a n =f (1n )+f (2n )+…+f (n -1n ),n 为正整数,则a 2 016等于( )A.2 015B.2 009C.1 005D.1 006 答案 A解析 因为f (x )=log 2x1-x+1,所以f (x )+f (1-x )=log 2x1-x +1+log 21-x x +1=2.所以f (1n )+f (n -1n )=2,f (2n )+f (n -2n )=2,…, f (n -1n )+f (1n)=2, 由倒序相加,得2a n =2(n -1),a n =n -1, 所以a 2 016=2 016-1=2 015,故选A.5.已知数列{a n }满足a 1=1,a n +1=a n +n +2n (n ∈N *),则a n 为( )A.n (n -1)2+2n -1-1B.n (n -1)2+2n -1C.n (n +1)2+2n +1-1D.n (n -1)2+2n +1-1答案 B解析 ∵a n +1=a n +n +2n , ∴a n +1-a n =n +2n .∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+(1+2)+(2+22)+…+[(n -1)+2n -1] =1+[1+2+3+…+(n -1)]+(2+22+…+2n -1) =1+(n -1)n 2+2(1-2n -1)1-2=n (n -1)2+2n-1.6.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2),则a 7等于( ) A.53 B.54 C.55 D.109 答案 C解析 ∵a n -a n -1=2n (n ≥2), ∴a 2-a 1=4, a 3-a 2=6, a 4-a 3=8, …a 7-a 6=14,以上各式两边分别相加得 a 7-a 1=4+6+…+14, a 7=1+(4+14)×62=55.7.数列{a n }中,a 1=1,a n =2·3n -1+a n -1(n ≥2),则a n =________. 答案 3n -2解析 因为a n =2·3n -1+a n -1(n ≥2), 所以a n -a n -1=2·3n -1(n ≥2),由叠加原理知a n -a 1=2(3+32+33+…+3n -1)(n ≥2), 所以a n =a 1+23(1-3n -1)1-3=1+3n -3=3n -2(n ≥2), 因为a 1=1也符合上式, 故a n =3n -2.8.若数列{a n }满足a n =3a n -1+2(n ≥2,n ∈N *),a 1=1,则数列{a n }的通项公式a n =________________.答案 2×3n -1-1解析 设a n +λ=3(a n -1+λ),化简得a n =3a n -1+2λ, ∵a n =3a n -1+2,∴λ=1, ∴a n +1=3(a n -1+1). ∵a 1=1,∴a 1+1=2,∴数列{a n +1}是以2为首项,3为公比的等比数列, ∴a n +1=2×3n -1,∴a n =2×3n -1-1.9.若数列{a n }满足a 1=1,且a n +1=4a n +2n ,则通项a n =________________. 答案 22n -1-2n -1解析 ∵a n +1=4a n +2n ,∴a n +12n +1=2a n 2n +12,设b n =a n 2n ,则b n +1=2b n +12,∴b n +1+12=2(b n +12),即b n +1+12b n +12=2,又b 1+12=1,∴{b n +12}是等比数列,其中首项为1,公比为2, ∴b n +12=2n -1,即b n =2n -1-12,即a n 2n =2n -1-12, ∴a n =2n (2n -1-12)=22n -1-2n -1.10.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________________. 答案 1n解析 对原关系式进行等价变形可得(n +1)a 2n +1-na 2n +a n +1a n =0(n ∈N *)⇒[(n +1)a n +1-na n ](a n +1+a n )=0,因为{a n }是正项数列,所以(n +1)a n +1-na n =0, 从而(n +1)a n +1na n=1,即数列{na n }是首项为1,公比为1的等比数列,所以na n =1,即a n =1n.11.数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.(1)证明 由a n +2=2a n +1-a n +2,得b n +1-b n =a n +2-2a n +1+a n =2a n +1-a n +2-2a n +1+a n =2, 又b 1=a 2-a 1=1,∴{b n }是首项为1,公差为2的等差数列.(2)解 由(1)得b n =2n -1,于是a n +1-a n =2n -1, a n =[(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)]+a 1 =[1+3+…+(2n -3)]+1=(n -1)2+1, 而a 1=1也符合,∴{a n }的通项公式a n =(n -1)2+1.12.已知数列{a n }的首项a 1=1,前n 项和为S n ,且S n +1=2S n +n +1(n ∈N *). (1)证明数列{a n +1}是等比数列,并求数列{a n }的通项公式; (2)求数列{na n +n }的前n 项和T n .解 (1)由已知,S n +1=2S n +n +1(n ∈N *), 当n ≥2时,S n =2S n -1+n , 两式相减得,a n +1=2a n +1, 于是a n +1+1=2(a n +1)(n ≥2). 当n =1时,S 2=2S 1+1+1, 即a 1+a 2=2a 1+1+1,所以a 2=3,此时a 2+1=2(a 1+1), 且a 1+1=2≠0,所以数列{a n +1}是首项为a 1+1=2,公比为2的等比数列. 所以a n +1=2·2n -1, 即a n =2n -1(n ∈N *).(2)令c n =na n +n ,则c n =n ·2n , 于是T n =1·21+2·22+…+n ·2n , 2T n =1·22+…+(n -1)·2n +n ·2n +1, 两式相减得, -T n=2+22+…+2n -n ·2n +1=2(2n -1)2-1-n ·2n +1=(1-n )·2n +1-2, 所以T n =(n -1)·2n +1+2.。

相关文档
最新文档