高考理科数学数学导数专题复习

高考理科数学数学导数专题复习
高考理科数学数学导数专题复习

高考理科数学数学导数专题复习

高考数学导数专题复习

考试内容

导数的背影.导数的概念.多项式函数的导数.

利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立

考试要求:

(1)了解导数概念的某些实际背景.

(2)理解导数的几何意义.

(3)掌握常用函数导数公式,会求多项式函数的导数.

(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.

(5)会利用导数求某些简单实际问题的最大值和最小值.

(6)会利用导数证明不等式恒成立问题及相关问题

知识要点

导数导数的概念

导数的运算

导数的应用

导数的几何意义、物理意义

函数的单调性

函数的极值

函数的最值

常见函数的导数

导数的运算法则

1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值

x

x f x x f x y ?-?+=

??)

()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x

x f x x f x y

x x ?-?+=??→?→?)()(lim

lim

0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即

)(0'x f =x

x f x x f x y

x x ?-?+=??→?→?)()(lim

lim

0000. 注:

①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:

⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000

00

x f x f x x f x x f x f x x x x +-+=?+=→?→?→

).

()(0)()(lim lim )

()(lim )]()()([

lim 000'0000000000

x f x f x f x f x

x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x

x x y ??=

??|

|,当x ?>0时,1=??x y ;当x ?<0时,1-=??x

y ,故x y

x ??→?0lim

不存在. 注:

①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义和物理意义:

(1)几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点

))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点

P ))(,(0x f x 处的切线的斜

率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-

(2)物理意义:位移的导数是速度,速度的导数是加速度。

4. 求导数的四则运算法则:

''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=?

''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

)0(2

'''

≠-=??

?

??v v u v vu v u 注:

①v u ,必须是可导函数.

②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、 积、商不一定不可导.

例如:设x

x x f 2

sin 2)(+=,x

x x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导.

5. 复合函数的求导法则:)()())(('''x u f x f x ??=或x u x u y y '''?= 复合函数的求导法则可推广到多个中间变量的情形.

6. 函数单调性:

⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.

⑵常数的判定方法;

如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数. 注:

①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.

②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.

7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时:

①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同). 注

①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.

②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点. 8. 极值与最值的区别:

极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较. 注:函数的极值点一定有意义. 9. 几种常见的函数导数:

I.0'=C (C 为常数) x x cos )(sin '

= 2

'11)(arcsin x

x -=

1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2

'

11)(arccos x

x --

=

II. x x 1)(ln '= e x

x a a log 1

)(log '= 1

1)(arctan 2

'+=

x x

x x e e =')( a a a x x ln )('=

1

1)cot (2

'+-

=x x arc

III. 求导的常见方法: ①常用结论:x

x 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或)

)...()(()

)...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可

转化求代数和形式.

③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,

对两边求导可得x x x x x y y x y y x x x y y +=?+=??+=ln ln 1

ln '''.

经典例题剖析

考点一:求导公式。

例1. ()f x '是31

()213

f x x x =++的导函数,则(1)f '-的值是 。

解析:()2'2+=x x f ,所以()3211'=+=-f 答案:3

考点二:导数的几何意义。

例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1

22

y x =

+,则(1)(1)f f '+= 。

解析:因为21=

k ,所以()2

1

1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()25

1=f ,所以()()31'1=+f f

答案:3

例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。

解析:443'2--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x

点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。

例4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点

()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000

≠=

x x y k 。由点()00,y x 在曲线C 上,则02

030023x x x y +-=,∴

2302

00

0+-=x x x y 。又263'2+-=x x y ,∴ 在()00,y x 处曲线C 的切线斜率为()263'02

00+-==x x x f k ,∴

2632302

0020+-=+-x x x x ,整理得:03200=-x x ,解得:2

30=

x 或00=x (舍),此时,830-=y ,41-=k 。所以,直线l 的方程为x y 41

-=,

切点坐标是??

?

??-83,23。

答案:直线l 的方程为x y 41-=,切点坐标是??

?

??-83,23

点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既

在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。

例5.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

解析:函数()x f 的导数为()163'2-+=x ax x f 。对于R x ∈都有()0'

()x f 为减函数。由()R x x ax ∈<-+01632

可得?

??<+=?<012360

a a ,解得

3-

23+??? ?

?

--=+-+-=x x x x x f 。

由函数3x y =在R 上的单调性,可知当3-=a 是,函数()x f 对R x ∈为减函数。

10. 当3->a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在R 上不是单调递减函数。

综合(1)(2)(3)可知3-≤a 。 答案:3-≤a

点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。

考点五:函数的极值。

例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值;

(2)若对于任意的[03]x ∈,

,都有2()f x c <成立,求c 的取值范围。 解析:(1)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有

(1)0f '=,(2)0f '=.即6630241230a b a b ++=??

++=?,

.,解得3a =-,4b =。 (

2

32()29128f x x x x c

=-++,

2()618126(1)(2)f x x x x x '=-+=--。

当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>。所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+。则当[]03x ∈,时,()f x 的最大值为(3)98f c =+。因为对于任意的[]03x ∈,,有

2()f x c <恒成立,

所以 298c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞U ,,。

答案:(1)3a =-,4b =;(2)(1)(9)-∞-+∞U ,,。

点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f ';

②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。 考点六:函数的最值。

例7. 已知a 为实数,()()()a x x x f --=42。求导数()x f ';(2)若()01'=-f ,求()x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 4423+--=,∴ ()423'2--=ax x x f 。

(2)()04231'=-+=-a f ,2

1

=

∴a 。()()()14343'2+-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3

4

=x , 则()x f 和()x f '在区间

[]2,2-上随x 的变化情况如下表:

x

2-

()1,2--

1-

??? ??

-34,1

34

??

? ??2,34 2

()x f ' + 0 — 0 + ()x f

增函数

极大值

减函数

极小值 增函数

()291=

-f ,275034-=???

??f 。所以,()x f 在区间[]2,2-上的最大值为

275034-=??

?

??f ,

最小值为()2

9

1=

-f 。 答案:(1)()423'2--=ax x x f ;(2)最大值为275034-=??

?

??f ,最小值为

()2

9

1=

-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。

例8. 设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。 解析: (1)∵()f x 为奇函数,∴()()f x f x -=-,即33ax bx c ax bx c --+=---

∴0c =,∵2'()3f x ax b =+的最小值为12-,∴12b =-,又直线

670x y --=的斜率为1

6

,因此,'(1)36f a b =+=-,∴2a =,12b =-,0c =.

(2)3()212f x x x =-。 2'()6126(2)(2)f x x x x =-=+-,列表如下:

x

(,2)-∞- 2- (2,2)- 2 (2,)+∞

'()f x + 0 -

0 + ()f x

增函数

极大

减函数

极小

增函数

所以函数()f x 的单调增区间是(,2)-∞和2,)+∞,∵(1)10f -=,

2)2f =-(3)18f =,∴()f x 在[1,3]-上的最大值是(3)18f =,最小值是

2)2f =-

答案:(1)2a =,12b =-,0c =;(2)最大值是(3)18f =,最小值是2)82f =- 点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。

导数强化训练 1. 选择题

1. 已知曲线24x y =的一条切线的斜率为1

2

,则切点的横坐标为( )

A .1

B .2

C .3

D .4

2. 曲线1323+-=x x y 在点(1,-1)处的切线方程为 ( )

A .43-=x y

B .23+-=x y

C .34+-=x y

D .54-=x y

3. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( D )

A .1

B .2

C .3

D .4

4. 已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为 ( )

A .)1(3)1()(2-+-=x x x f

B .)1(2)(-=x x f

C .2)1(2)(-=x x f

D .1)(-=x x f

5. 函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )

(A )2

(B )3

(C )4

(D )5

6. 函数32()31f x x x =-+是减函数的区间为( ) (A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)

7. 若函数()c bx x x f ++=2的图象的顶点在第四象限,则函数()x f '的图象是( )

x

y o A

x

y

o D

x y

o C

x y

o B

8. 函数231()23

f x x x =-在区间[0,6]上的最大值是( ) A .

323

B .

163

C .12

D .9

9. 函数x x y 33-=的极大值为m ,极小值为n ,则n m +为 ( ) A .0 B .1 C .2

D .4

10. 三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则 ( )

A . 0>a

B .0

C .1=a

D .3

1

=

a 11. 在函数x x y 83-=的图象上,其切线的倾斜角小于

4

π

的点中,坐标为整数的点的个数是 ( ) A .3 B .2 C .1 D .0

12. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值

点( )

A .1个

B .2个

C .3个

D . 4个

2. 填空题

13. 曲线3x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为__________。

14. 已知曲线314

33

y x =+,则过点(2,4)P “改为在点(2,4)P ”的切线方程是

______________

15. 已知()()n f x 是对函数()f x 连续进行n 次求导,若65()f x x x =+,对于任意

x R ∈,都有()()n f x =0,则n 的最少值为 。

16. 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一

a b x y )(x f y ?=O

年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.

3. 解答题

17. 已知函数()c bx ax x x f +++=23,当1-=x 时,取得极大值7;当3=x 时,

取得极小值.求这个极小值及c b a ,,的值.

18. 已知函数.93)(23a x x x x f +++-= (1)求)(x f 的单调减区间;

(2)若)(x f 在区间[-2,2].上的最大值为20,求它在该区间上的最小值.

19. 设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线。 (1)用t 表示c b a ,,;

(2)若函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围。

20. 设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数。 (1)求b 、c 的值。

(2)求()g x 的单调区间与极值。

21. 用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多

少?

22. 已知函数3211

()32f x x ax bx =++在区间[11)-,,(13],

内各有一个极值点. (1)求24a b -的最大值;

(1) 当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A

处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 强化训练答案:

1.A

2.B

3.D

4.A

5.D

6.D

7.A

8.A

9.A 10.A 11.D 12.A 4. 填空题

13. 3

8

14. 044=+-x y 15. 7 16. 20

5. 解答题

17. 解:()b ax x x f ++=23'2。

据题意,-1,3是方程0232=++b ax x 的两个根,由韦达定理得

???

???

?

=?--=+-3313

231b a ∴9,3-=-=b a

∴()c x x x x f +--=9323 ∵()71=-f ,∴2=c

极小值()25239333323-=+?-?-=f ∴极小值为-25,9,3-=-=b a ,2=c 。

18. 解:(1).963)(2++-='x x x f 令0)(<'x f ,解得,31>-

所以函数)(x f 的单调递减区间为).,3(),1,(+∞--∞

(2)因为,218128)2(a a f +=+-+=- ,2218128)2(a a f +=+++-=

所以).2()2(->f f 因为在(-1,3)上0)(>'x f ,所以)(x f 在[-1,2]上单调递增,又由于)(x f 在[-2,-1]上单调递减,因此)2(f 和)1(-f 分别是)(x f 在区间[]2,2-上的最大值和最小值.于是有2022=+a ,解得.2-=a

故.293)(23-++-=x x x x f 因此,72931)1(-=--+=-f 即函数)(x f 在区间[]2,2-上的最小值为-7.

19. 解:(1)因为函数)(x f ,)(x g 的图象都过点(t ,0),所以0)(=t f , 即03=+at t .因为,0≠t 所以2t a -=. .,0,0)(2ab c c bt t g ==+=所以即 又因为)(x f ,)(x g 在点(t ,0)处有相同的切线,所以).()(t g t f '=' 而.23,2)(,3)(22bt a t bx x g a x x f =+='+='所以

将2t a -=代入上式得.t b = 因此.3t ab c -==故2t a -=,t b =,.3t c -=

(2)))(3(23,)()(223223t x t x t tx x y t tx x t x x g x f y -+=--='+--=-=.

当0))(3(<-+='t x t x y 时,函数)()(x g x f y -=单调递减. 由0<'y ,若t x t t <<-

>3,0则;若.3

,0t

x t t -<<<则 由题意,函数)()(x g x f y -=在(-1,3)上单调递减,则

).3,()3,1(),3()3,1(t t t t -?--?-或所以.39.333≥-≤≥-≥t t t

t 或即或

又当39<<-t 时,函数)()(x g x f y -=在(-1,3)上单调递减. 所以t 的取值范围为).,3[]9,(+∞?--∞

20. 解:(1)∵()32f x x bx cx =++,∴()232f x x bx c '=++。从而

322()()()(32)g x f x f x x bx cx x bx c '=-=++-++=32(3)(2)x b x c b x c +-+--是一个奇函数,所以(0)0g =得0c =,由奇函数定义得3b =;

(2)由(Ⅰ)知3()6g x x x =-,从而2()36g x x '=-,由此可知, (,2)-∞和2,)+∞是函数()g x 是单调递增区间;

(2,2)-是函数()g x 是单调递减区间;

()g x 在2x =2()g x 在2x =值,极小值为42-。

21. 解:设长方体的宽为x (m ),则长为x 2 (m),高为

??? ?

?

-=-=

230(m)35.44

1218<<x x x

h .

故长方体的体积为

()()()

??? ?

?

<<-=-=2306935.423

322x m x x x x x V

从而).1(18)35.4(1818)(2x x x x x x V -=--='

令()0'=x V ,解得0=x (舍去)或1=x ,因此1=x . 当10<x V ;当2

3

1<

答:当长方体的长为2 m 时,宽为1 m ,高为1.5 m 时,体积最大,最大体积为

33m 。

22. 解:(1)因为函数3211

()32f x x ax bx =++在区间[11)

-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],

内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-2104x x <-≤.于是

2044a b <-,20416a b <-≤,且当11x =-,

23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.

(2)解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是

(1)(1)(1)y f f x '-=-,即21

(1)32

y a b x a =++--,

因为切线l 在点(1())A f x ,处空过()y f x =的图象,

所以21

()()[(1)]32

g x f x a b x a =-++--在1x =两边附近的函数值异号,则

1x =不是()g x 的极值点.

而()g x 321121

(1)3232

x ax bx a b x a =++-++++,且

22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.

若11a ≠--,则1x =和1x a =--都是()g x 的极值点.

所以11a =--,即2a =-,又由248a b -=,得1b =-,故321

()3

f x x x x =--.

解法二:同解法一得21

()()[(1)]32

g x f x a b x a =-++--

2133

(1)[(1)(2)]322

a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<). 当11m x <<时,()0g x <,当21x m <<时,()0g x >; 或当11m x <<时,()0g x >,当21x m <<时,()0g x <.

设233()1222a a h x x x ???

?=++-+ ? ??

???,则

当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当11m x <<时,()0h x <,当21x m <<时,()0h x <. 由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102

a

h =?++

=, 所以2a =-,又由248a b -=,得1b =-,故321

()3

f x x x x =--.

高考数学导数解法知识分享

高考中数学导数的解法 1、导数的背景: (1)切线的斜率;(2)瞬时速度. 如一物体的运动方程是21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3t =时的瞬时速度为_____(答:5米/秒) 2、导函数的概念:如果函数()f x 在开区间(a,b )内可导,对于开区间(a,b )内的每一个0x ,都对应着一个导数 ()0f x ' ,这样()f x 在开区间(a,b )内构成一个新的函数,这一新的函数叫做()f x 在开区间(a,b )内的导函数, 记作 ()0 lim x y f x y x ?→?'='=?()() lim x f x x f x x ?→+?-=?, 导函数也简称为导数。 提醒:导数的另一种形式0 0x x 0)()(lim )(0 x x x f x f x f y x x --='='→= 如(1)*?? ?>+≤== 1 1)(2 x b ax x x x f y 在1=x 处可导,则=a =b 解:?? ?>+≤==1 1)(2 x b ax x x x f y 在1=x 处可导,必连续1)(lim 1 =-→x f x b a x f x +=+ →)(lim 1 1)1(=f ∴ 1=+b a 2lim 0 =??- →?x y x a x y x =??+→?0lim ∴ 2=a 1-=b (2)*已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限: (1)h h a f h a f h 2) ()3(lim --+→?; (2)h a f h a f h ) ()(lim 20-+→? 分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。利用函数f(x)在a x =处可导的条件,可以将已给定的极限式恒等变形转化为导数定义的结构形式。 解:(1)h h a f h a f h 2) ()3(lim --+→

高考真题理科数学导数

2012年高考真题理科数学解析汇编:导数与积分 一、选择题 1 .(2012年高考(新课标理))已知函数1 ()ln(1)f x x x = +-;则()y f x =的图像大致为 2 .(2012年高考(浙江理))设a >0,b >0. ( ) A .若2223a b a b +=+,则a >b B .若2223a b a b +=+,则a b D .若2223a b a b -=-,则a

5 .(2012年高考(山东理))设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是 “函数3 ()(2)g x a x =-在R 上是增函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6 .(2012年高考(湖北理))已知二次函数()y f x =的图象如图所示,则它与x 轴 所围图形的面积为 ( ) A . 2π 5 B . 43 C . 32 D . π2 7 .(2012年高考(福建理))如图所示,在边长为1的正方形OABC 中任取一点 P,则点P 恰好取自阴影部分的概率为 ( ) A . 14 B . 15 C . 16 D . 17 8 .(2012年高考(大纲理))已知函数3 3y x x c =-+的图像与x 轴恰有两个 公共点,则c = ( ) A .2-或2 B .9-或3 C .1-或1 D .3-或1 二、填空题 9 .(2012年高考(上海理))已知函数 )(x f y =的图像是折线段ABC ,若中 A (0,0), B (21,5), C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为_______ . 10.(2012年高考(山东理))设0a >.若曲线y x = 与直线,0x a y ==所围成封闭图形 的面积为2 a ,则a =______. 11.(2012年高考(江西理))计算定积分 1 21 (sin )x x dx -+=? ___________. 12.(2012年高考(广东理))曲线33y x x =-+在点()1,3处的切线方程为 ___________________. 三、解答题 13.(2012年高考(天津理))已知函数 ()=ln (+)f x x x a -的最小值为0,其中>0a . (Ⅰ)求a 的值; (Ⅱ)若对任意的[0,+)x ∈∞,有2 ()f x kx ≤成立,求实数k 的最小值; 1-y x O 第3题图 1 1

高三数学专题复习:导数及其应用

【考情解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 一是导数的基本公式和运算法则,以及导数的几何意义; 二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题; 三是应用导数解决实际问题. 【知识梳理】 1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点处的切线的,其切线方程是. 注意:函数在点P0处的切线与函数过点P0的切线的区别:. 2.导数与函数单调性的关系 (1)() '>0是f(x)为增函数的条件. f x 如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0. (2)() '≥0是f(x)为增函数的条件. f x 当函数在某个区间内恒有() '=0时,则f(x)为常数,函数不具有单调 f x 性. 注意:导数值为0的点是函数在该点取得极值的条件.

3. 函数的极值与最值 (1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题. (2)函数在其定义区间的最大值、最小值最多有 个,而函数的极值可能不止一个,也可能没有. (3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的 . 4. 几个易误导数公式及两个常用的运算法则 (1)(sin x )′= ; (2)(cos x )′= ; (3)(e x )′= ; (4)(a x )′= (a >0,且a ≠1); (5)(x a )′= ; (6)(log e x )′= ; (7)(log a x )′= (a >0,且a ≠1); (8)′= ; (9)??????? ? f (x ) g (x )′= (g (x )≠0) .

高考数学导数题型归纳(文科)-

文科导数题型归纳 高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常 数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330 g m g m <-? ?<--

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

高考理科数学数学导数专题复习

高考理科数学数学导数专题复习

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立 考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数. (4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值. (5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点 导数导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值 x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注: ①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时,1-=??x y ,故x y x ??→?0lim 不存在. 注: ①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义和物理意义:

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考数学导数题型归纳

导数题型归纳 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 例2:设函数),10(323 1)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值; (Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.

例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+ -++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例4:已知R a ∈,函数x a x a x x f )14(2 1121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是), (∞+-∞上的单调函数,求a 的取值范围.

例5、已知函数3211()(2)(1)(0).32 f x x a x a x a =+-+-≥ (I )求()f x 的单调区间; (II )若()f x 在[0,1]上单调递增,求a 的取值范围。子集思想 例6、已知函数232 )1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围; (2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数,为的导数.证明: (1)在区间 存在唯一极大值点; (2)有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ???时,单调递减,而()00,02g g π?? ''>< ??? , 可得在1,2π?? - ?? ?有唯一零点,设为. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,. 所以在()1,α-单调递增,在,2πα?? ???单调递减,故在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当时, ,故()f x 在单调递减,又,从而是()f x 在的唯 一零点. ()sin ln(1)f x x x =-+()f x '()f x ()f x '(1,)2 π-()f x ()g'x ()g'x α()0g'x <()g x ()g x (1,)-+∞(1,0)x ∈-()0f 'x <(1,0)-(0)=0f 0x =(1,0]-

(ii )当0,2x π?? ∈ ??? 时,由(1)知,在单调递增,在单调递减,而 ,02f π??'< ???,所以存在,2πβα?? ∈ ???,使得,且当时, ;当,2x πβ??∈ ???时,.故在单调递增,在,2πβ?? ???单调递 减.又,1ln 1022f ππ???? =-+> ? ???? ?,所以当时,. 从而()f x 在0,2π?? ??? 没有零点. (iii )当,2x ππ??∈ ???时,()0f x '<,所以()f x 在,2ππ?? ???单调递减.而 ()0,02f f ππ??>< ??? ,所以()f x 在,2ππ?? ??? 有唯一零点. (iv )当时,()l n 11x +>,所以<0,从而()f x 在没有零点. 综上, ()f x 有且仅有2个零点. 【变式训练1】【2020·天津南开中学月考】已知函数3()sin (),2 f x ax x a R =-∈且 在,0,2π?? ????上的最大值为32π-, (1)求函数f (x )的解析式; (2)判断函数f (x )在(0,π)内的零点个数,并加以证明 【解析】(1)由已知得()(sin cos )f x a x x x =+对于任意的x∈(0, 2 π), 有sin cos 0x x x +>,当a=0时,f(x)=? 3 2 ,不合题意; 当a<0时,x∈(0, 2π),f′(x)<0,从而f(x)在(0, 2 π )单调递减, 又函数3 ()sin 2f x ax x =- (a∈R)在[0, 2 π]上图象是连续不断的, 故函数在[0, 2 π ]上的最大值为f(0),不合题意; ()f 'x (0,)α,2απ?? ???(0)=0f '()0f 'β=(0,)x β∈()0f 'x >()0f 'x <()f x (0,)β(0)=0f 0,2x ?π?∈ ???()0f x >(,)x ∈π+∞()f x (,)π+∞

高考数学导数的解题技巧

2019年高考数学导数的解题技巧高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。 都有什么题型呢? ①应用导数求函数的单调区间,或判定函数的单调性; ②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。 有没有什么解题技巧啦? 导数的解题技巧还是比较固定的,一般思路为 ①确定函数f(x)的定义域(最容易忽略的,请牢记); ②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间; ③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。 技巧破解+例题拆解 1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x 之间的区别。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

高考文科数学导数全国卷

导数高考题专练 1、(2012课标全国Ⅰ,文21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间 (Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 2、(2013课标全国Ⅰ,文20)(本小题满分12分) 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; (2)讨论f (x )的单调性,并求f (x )的极大值. 3、(2015课标全国Ⅰ,文21).(本小题满分12分) 设函数2()ln x f x e a x =-. (Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅱ)证明:当0a >时,2 ()2ln f x a a a ≥+。 4、(2016课标全国Ⅰ,文21)(本小题满分12分) 已知函数.2)1(2)(-+-= x a e x x f x )( (I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求的取值范围. 5、((2016全国新课标二,20)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;

(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 6(2016山东文科。20)(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间; (Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 2017.(12分) 已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 2018全国卷)(12分) 已知函数()1 ln f x x a x x = -+. ⑴讨论()f x 的单调性; ⑵若()f x 存在两个极值点1x ,2x ,证明: ()()1212 2f x f x a x x -<--. 导数高考题专练(答案) 1 2解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,

2020届高考数学导数的11个专题

目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (53) 导数专题四、零点问题 (77) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (170) 导数专题七、特殊值法判定超越函数的零点问题 (190) 导数专题八、避免分类讨论的参变分离和变换主元 (201) 导数专题九、公切线解决导数中零点问题 (214) 导数专题十、极值点偏移问题 (219) 导数专题十一、构造函数解决导数问题 (227)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论, 讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与 区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数 值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参 变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于 零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较;

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高考理科数学数学导数专题复习

高考理科数学数学导数专 题复习 Last revision date: 13 December 2020.

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立 考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点 在0x 处有增 称为函数,即 f 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ).()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果 )(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的.

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.