高考数学导数题型归纳(文科)-

合集下载

导数常见题型归纳

导数常见题型归纳

导数常见题型归纳1.高考命题回顾例1.(2013全国1)已知函数()f x =2x ax b ++,()g x =()xe cx d +,若曲线()yf x =和曲线()yg x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

分析:⑴2d c b 4,a ==== ⑵由⑴知()24x f 2++=x x ,()()12+=x ex g x设()()()()24122---+=-=x x x ke x f x kg x F x,则()()()122-+='xke x x F 由已知()100≥⇒≥k F ,令()k x x x F ln ,20-==⇒='①若21e k <≤则021≤<-x ,从而当()1,2x x -∈时,()0<'x F ,()x F 递减()+∞∈,1x x 时,()>'x F 0,()x F 递增。

()()()02x 111≥+-=≥x x x F F故当2-≥x 时()0≥x F 即()()x kg x f ≤恒成立。

②若2e k = 则()()()02222>-+='-ee x e x F x 。

()2->x 。

所以()x F 在()+∞-,2上单调递增,而()02=-F .所以-2x ≥时,()0≥x F 恒成立。

③若2e k >,则()()02222222<--=+-=---e k e ke F ,从而()0≥x F 不可能恒成立即()()x kg x f ≤不恒成立。

综上所述。

k 的取值范围[]2,1e例2.(2013全国2)已知函数)ln()(m x e x f x+-=.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(Ⅱ)当2m ≤时,证明()0f x >. 分析:(Ⅰ)1m =。

高考复习文科数学之导数(2)

高考复习文科数学之导数(2)

各地解析分类汇编:导数(2)1 【山东省烟台市莱州一中2013届高三10月月考(文)】函数()32f x x 3x 3x a =++-的极值点的个数是 A.2B.1C.0D.由a 确定【答案】C【解析】函数的导数为222'()3633(21)3(1)0f x x x x x x =++=++=+≥,所以函数()f x 在定义域上单调递增,所以没有极值点,选C.2 【云南省玉溪一中2013届高三上学期期中考试文】若a >0,b >0,且函数32()422f x x ax bx =--+在x =1处有极值,则ab 的最大值等于( )A .2B . 9C .6D .3【答案】B【解析】函数的导数为2'()1222f x x ax b =--,因为函数在1x =处取得极值,所以'(1)12220f a b =--=,即6a b +=,所以6a b =+≥,所以9ab ≤,当且仅当3a b ==时取等号,所以ab 的最大值为9,选B.3 【云南师大附中2013届高三高考适应性月考卷(三)文】已知()f x 为R 上的可导函数,且x R ∀∈,均有()()f x f x '>,则有A .2013(2013)(0)e f f -<,2013(2013)(0)f e f > B .2013(2013)(0)e f f -<,2013(2013)(0)f e f < C .2013(2013)(0)ef f ->,2013(2013)(0)f e f > D .2013(2013)(0)ef f ->,2013(2013)(0)f e f <【答案】D【解析】构造函数()(),x f x g x e=则2()()()()()()()x x x x f x e e f x f x f x g x e e '''--'==,因为,x ∀∈R 均有()()f x f x '>,并且0x e >,所以()0g x '<,故函数()()x f x g x e=在R 上单调递减,所以(2013)(0)(2013)(0)g g g g -><,,即20132013(2013)(2013)(0)(0)f f f f e e--><,, 也就是20132013(2013)(0)(2013)(0)e f f f e f -><,,故选D .4 【山东省烟台市莱州一中2013届高三10月月考(文)】下面为函数y xsinx cos x =+的递增区间的是 A.3,22ππ⎛⎫⎪⎝⎭B.(),2ππC.35,22ππ⎛⎫⎪⎝⎭D.()2,3ππ【答案】C【解析】y 'sinx x cos x sin x x cos =+-=,当0x >时,由'0y >得cos 0x x >,即cos 0x >,所以选C.5 【天津市新华中学2012届高三上学期第二次月考文】已知函数))((R x x f ∈满足1)1(=f ,且)(x f 的导函数21)('<x f ,则212)(+<x x f 的解集为 A. {}11<<-x x B. {}1-<x x C. {}11>-<x x x 或 D. {}1>x x 【答案】D【解析】设1()()()22xF x f x =-+, 则11(1)(1)()11022F f =-+=-=,1'()'()2F x f x =-,对任意x R ∈,有1'()'()02F x f x =-<,即函数()F x 在R 上单调递减,则()0F x <的解集为(1,)+∞,即212)(+<x x f 的解集为(1,)+∞,选D.6 【山东省烟台市2013届高三上学期期中考试文】某厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为),50(831)(23≤≤+-=x x x x f ,那么原油温度的瞬时变化率的最小值为 A .8 B .320C .-1D .-8 【答案】C【解析】原油温度的瞬时变化率为),50(1)1(2)('22≤≤--=-=x x x x x f 故最小值为-1.因此选C.7 【天津市耀华中学2013届高三第一次月考文科】已知函数2()=-f x x cos x ,则(0.6),(0),(-0.5)f f f 的大小关系是A 、(0)<(0.6)<(-0.5)f f fB 、(0)<(-0.5)<(0.6)f f fC 、(0.6)<(-0.5)<(0)f f fD 、(-0.5)<(0)<(0.6)f f f 【答案】B 【解析】因为函数2()=f x x cos x -为偶函数,所以(0.5)(0.5)f f -=,()=2f 'x x sin x +,当02x π<<时,()=20f 'x x s i n x +>,所以函数在02x π<<递增,所以有(0)<(0.5)<(0.6)f f f ,即(0)<(0.5)<(0.6)f f f -,选B.8 【山东省烟台市莱州一中20l3届高三第二次质量检测 (文)】设在函数sin cos y x x x =+的图象上的点()00,x y 处的切线斜率为k ,若()0k g x =,则函数()[]00,,k g x x ππ=∈-的图像大致为【答案】A【解析】'sin cos sin cos y x x x x x x =+-=,即切线斜率000()cos k g x x x ==,则函数000()cos g x x x =为奇函数,图象关于原点对称,排除B,C.当0x π=时,()cos 0g πππ=<,排除D ,选A.9【山东省烟台市2013届高三上学期期中考试文】设动直线m x =与函数x x g x x f ln )(,)(2==的图象分别交于点M 、N ,则|MN|的最小值为A .2ln 2121+ B .2ln 2121- C . 2ln 1+ D .12ln - 【答案】A【解析】x x MN ln ||2-=,令x x x f ln )(2-=x x x x x f 1212)('2-=-=,当220<<x时,0)('<x f ;当22>x 时,0)('>x f ;∴当22=x 时,)(x f 有极小值也有极大值,即.2ln 212121ln 21)22()(min +=-==f x f 故选A 10 【天津市新华中学2012届高三上学期第二次月考文】已知点P 在曲线14+=x e y 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是___________________ 【答案】0135180α≤<或3[,)4ππ 【解析】2'(1)xxe y e -=+,即切线的斜率为24(1)xxe k e -=+,所以224441(1)212x x x x x x x e e k e e e e e --===-+++++,因为1224x x e e ++≥+=,所以10k -≤<,即1tan 0α-≤<,所以00135180α≤<,即α的取值范围是00135180α≤<。

高考数学导数题型归纳

高考数学导数题型归纳

导数题型归纳例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。

例4:已知R a ∈,函数x a x a x x f )14(21121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值;(Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围.例5、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥ (I )求()f x 的单调区间;(II )若()f x 在[0,1]上单调递增,求a 的取值范围。

子集思想例6、已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围;(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.例7、已知函数321()22f x ax x x c =+-+ (1)若1x =-是()f x 的极值点且()f x 的图像过原点,求()f x 的极值;(2)若21()2g x bx x d =-+,在(1)的条件下,是否存在实数b ,使得函数()g x 的图像与函数()f x 的图像恒有含1x =-的三个不同交点?若存在,求出实数b 的取值范围;否则说明理由。

专题导数及其应用(解答题)(原卷版)(文科专用)-五年(18-22)高考数学真题分项汇编(全国通用)

专题导数及其应用(解答题)(原卷版)(文科专用)-五年(18-22)高考数学真题分项汇编(全国通用)

专题04 导数及其应用(解答题)(文科专用) 1.【2022年全国甲卷】已知函数f(x)=x 3−x,g(x)=x 2+a ,曲线y =f(x)在点(x 1,f (x 1))处的切线也是曲线y =g(x)的切线.(1)若x 1=−1,求a ;(2)求a 的取值范围.2.【2022年全国乙卷】已知函数f(x)=ax −1x −(a +1)lnx . (1)当a =0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a 的取值范围.3.【2021年甲卷文科】设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围. 4.【2021年乙卷文科】已知函数32()1f x x x ax =-++.(1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 5.【2020年新课标1卷文科】已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.6.【2020年新课标2卷文科】已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性. 7.【2020年新课标3卷文科】已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.8.【2019年新课标2卷文科】已知函数()(1)ln 1f x x x x =---.证明: (1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.9.【2019年新课标3卷文科】已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当0<<3a 时,记()f x 在区间[]0,1的最大值为M ,最小值为m ,求M m -的取值范围.10.【2018年新课标1卷文科】【2018年新课标I 卷文】已知函数()e 1x f x a lnx =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0f x ≥. 11.【2018年新课标2卷文科】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.12.【2018年新课标3卷文科】已知函数()21x ax x f x e +-=. (1)求曲线()y f x =在点()0,1-处的切线方程; (2)证明:当1a ≥时,()0f x e +≥.。

高三文科数学常考知识点整理归纳

高三文科数学常考知识点整理归纳

高三文科数学常考知识点整理归纳数学已成为许多国家及地区的教育范畴中的一部分。

它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。

这次小编给大家整理了高三文科数学常考知识点,供大家阅读参考。

一、导数的应用1.用导数研究函数的最值确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。

学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题1)费用、成本最省问题2)利润、收益问题3)面积、体积最(大)问题二、推理与证明1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

三、不等式对于含有参数的一元二次不等式解的讨论1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

文科数学高考题型归纳

文科数学高考题型归纳

文科数学高考题型归纳文科高考数学题型(一)第一章集合与常用逻辑用语 1第一节集合 2题型1 集合的基本概念 3题型2 集合间的基本关系 3题型3 集合的运算 4第二节命题及其关系、充分条件与必要条件 7题型4 四种命题及关系 7题型5 充分条件、必要条件、充要条件的判断与证明 8 题型6 充分条件、必要条件中的含参数问题 8第三节简单的逻辑联结词、全称量词与存在量词 9题型7 判断含逻辑联结词的命题的真假 9题型8 全(特)称命题的否定 10题型9 根据命题真假求参数的范围 10第二章函数 11第一节函数的概念及其表示 12题型10 映射与函数的概念 12题型11 同一函数的判断 13题型12 函数解析式的求法 13题型13 函数定义域的求解 15第二节函数的基本性质奇偶性、单调性、周期性 19题型15 函数的奇偶性 20题型16 函数的单调性(区间) 22题型17 函数的周期性 23题型18 函数性质的综合 24第三节二次函数与幂函数 26题型19 二次函数图像的应用 29题型20 二次函数、一元二次方程、二次不等式的关系 29 题型21 二次方程ax2+bx+c=0(a0)的实根分布及条件 29题型22 二次函数动轴定区间、定轴动区间问题 30题型23 二次函数图像恒成立问题 31题型24 幂函数的定义及基本性质 31题型25 幂函数性质的综合应用 32第四节指数函数与对数函数 33题型26 指(对)数运算及指(对)数方程、指(对)数不等式 34 题型27 指数函数与对数函数的图像及性质 35题型28 指数函数与对数函数中的恒成立问题 39第五节函数的图像及应用 40题型29 判断函数的图像 41题型30 函数图像的应用 43第六节函数的综合 45题型32 函数与不等式的综合 45题型33 函数中的创新题 47第三章导数 48第一节导数的概念与运算 48题型34 导数的定义 49题型35 求函数的导数 49题型36 导数的几何意义 50第二节导数的应用 51题型37 利用导函数研究函数的图像 52题型38 利用导数研究函数的单调性 53题型39 利用导函数研究函数的极值与最值 57题型40 方程解(函数零点)的个数问题 58题型41 不等式恒成立与存在性问题 59题型42 利用导数证明不等式 61题型43 导数在实际问题中的应用 63文科高考数学题型(二)第四章三角函数 64第一节三角函数概念、同角三角函数关系式和诱导公式 65 题型44 终边相同的角的集合的表示与识别 66题型45 等分角的象限问题 67题型46 弧长与扇形面积公式的计算 68题型47 三角函数定义题 68题型48 三角函数线及其应用 68题型49 象限符号与坐标轴角的三角函数值 70题型50 同角求值条件中出现的角和结论中出现的角是相同的70题型51 诱导求值与变形 71第二节三角函数的图像与性质 72题型52 已知解析式确定函数性质 74题型53 函数的值域(最值) 77题型54 根据条件确定解析式 79题型55 三角函数图像变换 81第三节三角恒等变换 83题型56 两角和与差公式的证明 84题型57 化简求值 84题型58 三角函数综合 86第四节解三角形 87题型59 正弦定理的应用 88题型60 余弦定理的应用 88题型61 判断三角形的形状 89题型62 正、余弦定理与向量的综合 89题型63 解三角形的综合应用 90第五章平面向量 92第一节向量的线性运算 92题型64 共线向量的基本概念 94题型65 平面向量的线性表示 95题型66 共线向量基本定理及应用 96题型67 平面向量基本定理及应用 97题型68 向量与三角形的四心 98题型69 向量的坐标运算 99题型70 向量平行(共线)充要条件的坐标表示100第二节平面向量的数量积 100题型71 平面向量的数量积第六章数列 105第一节等差数列与等比数列 106题型72 等差、等比数列的通项及基本量的求解 107 题型73 等差、等比数列的求和 108题型74 等差、等比数列的性质及其应用 109题型75 判断或证明数列是等差、等比数列 111第二节数列的通项公式与求和 112题型76 数列通项公式的求解 113题型77 数列的求和 117第三节数列的综合 121题型78 等差数列与等比数列的综合 121题型79 数列与函数、不等式的综合 122题型80 数列的应用题 127文科高考数学题型(三)第七章不等式 128第一节不等式的性质与基本不等式 128题型81 不等式的性质 129题型82 比较数(式)的大小与比较法证明不等式 130题型83 基本不等式及其应用 130题型84 利用基本不等式求函数最值 131题型85 利用基本不等式证明不等式 133第二节不等式的解法 134题型86 有理不等式的解法 134第三节二元一次不等式(组)与简单的线性规划问题136 题型87 二元一次不等式组表示的平面区域 136题型88 平面区域的面积 137题型89 求解目标函数的取值范围(或最值) 137题型90 求解目标函数中参数的取值范围 139题型91 简单线性规划问题的实际运用 141第四节不等式的综合 141题型92 不等式恒成立问题中求参数的取值范围 142题型93 函数与不等式综合 143第八章立体几何 144第一节空间几何体及其表面积和体积 145题型94 几何体的表面积与体积 146题型95 旋转体的表面积、体积与球面距离 148题型96 几何体的外接球与内切球 149第二节空间几何体的直观图与三视图 150题型97 斜二测画法与直观图 151题型98 空间几何体的三视图 152第三节空间点、直线、平面之间的关系 156题型99 证明点共面、线共面或点共线及线共点 157 题型100 异面直线的判定 159第四节直线、平面平行的判定与性质 159题型证明空间中直线、平面的平行关系 161题型102 与平行有关的探究开放性问题 165第五节直线、平面垂直的判定与性质 166题型103 证明空间中直线、平面的垂直关系 168 题型104 与垂直有关的探究开放性问题 174第九章直线与圆的方程 175第一节直线的方程与两条直线的位置关系 176题型105 倾斜角与斜率的计算 177题型106 直线的方程 178题型107 两直线位置关系的判定 180题型108 有关距离的计算 181题型109 对称问题 181第二节圆的方程 183题型110 求圆的方程 184题型111 用二元二次方程表示圆的一般方程的充要条件 184 题型112 点与圆的位置关系判断 185题型113 直线系方程和圆系方程 185题型114 与圆有关的轨迹问题 186题型115 与圆有关的最值或取值范围问题 187第三节直线与圆、圆与圆的位置关系 188题型116 直线与圆的位置关系 189题型117 圆与圆的位置关系 192题型118 圆与圆锥曲线的综合 193第十章圆锥曲线 194第一节椭圆及其性质 194题型119 椭圆的定义与标准方程 196题型120 离心率的值及取值范围 197题型121 焦点三角形 198第二节双曲线及其性质 200题型122 双曲线的定义与标准方程 201题型123 双曲线的渐近线 202题型124 离心率的值及取值范围 204题型125 焦点三角形 205第三节抛物线及其性质 206题型126 抛物线的定义与方程 207题型127 与抛物线有关的距离和最值问题 208题型128 抛物线中三角形、四边形的面积问题 208 第四节曲线与方程 209题型129 求动点的轨迹方程 210第五节直线与圆锥曲线 212题型130 直线与圆锥曲线的位置关系 213题型131 弦长与面积问题 215题型132 中点弦问题 217题型133 平面向量在解析几何中的应用 220题型134 定点问题 221题型135 定值问题 223点击。

文科高考数学导数知识点

文科高考数学导数知识点

文科高考数学导数知识点导数是高中数学中重要的知识点之一,它是微积分的基础。

掌握导数的概念和运算规则,对于理解数学的发展和应用具有重要意义。

本文将对文科高考中与导数相关的知识点进行探讨和总结。

一、导数的定义与计算导数是描述函数变化率的概念,它表示函数在某一点上的瞬时变化率。

对于一个函数f(x),其在点x处的导数可以用极限的概念表示为:f'(x) = lim(h→0)(f(x+h) - f(x))/h其中h为接近于0的一个无限小的实数。

在计算导数时,常用的求导法则包括常数法则、幂法则、和差法则、积法则和商法则等。

这些法则在导数的计算中提供了方便的方法,使我们能够快速准确地求得函数的导数。

二、导数的几何意义导数的几何意义体现在函数曲线上的切线斜率上。

函数曲线在某一点上的切线斜率等于该点的导数值。

这意味着导数可以告诉我们函数在某一点上是上升还是下降,以及上升或下降的速率。

利用导数的几何意义可以解决很多与函数变化率相关的问题,例如求极大值和极小值点、确定函数在某个区间上的单调性以及判定函数的凸凹性等。

三、导数的应用导数不仅仅是一种数学工具,它还在实际问题的建模和求解中具有广泛的应用。

例如,在经济学中,导数可以用来解决边际成本、边际效益和最优决策等问题;在物理学中,导数可以用来描述物体的运动状态、速度和加速度等;在生物学中,导数可以用来研究物种的增长和衰退规律等。

导数在各个领域的应用都展示了它的重要性和实用性。

四、导数与其他数学概念的联系导数与其他数学概念之间存在着紧密的联系,它们相互依存、相互推进,共同构成了数学学科的核心。

在微积分中,导数与积分是密切相关的。

导数可以通过积分来求解,而积分则可以通过导数来解释和解决问题。

导数与函数的极限、连续性以及泰勒级数展开等概念也有紧密的关联。

掌握导数的知识,有助于我们更好地理解和运用这些数学概念。

五、导数在解决实际问题中的应用举例最后,我们通过举例来说明导数在解决实际问题中的应用。

冲刺高考文科数学必看题型归纳

冲刺高考文科数学必看题型归纳

冲刺高考文科数学必看题型归纳随着高中阶段的学习即将结束,文科同学们的高考备战也进入冲刺阶段。

作为高考的一大考试科目,数学在文科生的备考中显得尤其重要。

为此,本篇文章将对文科数学的必看题型进行归纳,帮助同学们在时间紧迫、压力巨大的备考过程中更好地掌握知识点,备战高考。

一、函数1. 函数的奇偶性:(1)$f(-x)=-f(x)$,则函数为奇函数;(2)$f(-x)=f(x)$,则函数为偶函数;(3)$f(x)\ne f(-x)$,则函数既不是奇函数也不是偶函数。

2. 函数的周期性:(1)对于任意一个实数$x$,都有$f(x+T)=f(x)$,则函数是以$T$($T>0$)为周期的周期函数,$T$ 称为函数的周期;(2)当$T$ 为最小正周期时,函数是最简周期函数。

3. 函数的单调性:(1)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)<f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递增的;(2)若对于函数$y=f(x)$,当$x_1<x_2$ 时有$f(x_1)>f(x_2)$,则函数$f(x)$ 在区间$(x_1,x_2)$ 内是严格单调递减的。

4. 函数极值问题:(1)极大值:若存在$x_0\in D_f$,使得$f(x)\le f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极大值;(2)极小值:若存在$x_0\in D_f$,使得$f(x)\ge f(x_0)$,则称$f(x_0)$ 为函数$f(x)$ 在定义域$D_f$ 上的极小值;(3)极值:极大值和极小值统称为极值。

二、解析几何1. 点、向量的基本概念:(1)点:在xoy 坐标系中,设坐标轴OX、OY 的交点为坐标原点O,则任意一点$P(x,y)$ 都可表示为向量$\overrightarrow{OP}(x,y)$。

(2)向量:向量是具有大小和方向的几何量,用向量符号$\overrightarrow{a}$ 表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文科导数题型归纳高度重视:首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

最后,在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);(请同学们参看2010省统测2)例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =--(1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.解:由函数4323()1262x mx x f x =-- 得32()332x mx f x x '=-- 2()3g x x mx ∴=--(1)()y f x =在区间[]0,3上为“凸函数”, 则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩解法二:分离变量法:∵ 当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立等价于233x m x x x ->=-的最大值(03x <≤)恒成立, 而3()h x x x=-(03x <≤)是增函数,则max ()(3)2h x h ==2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2()30g x x mx =--< 恒成立变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)22(2)023011(2)0230F x x x F x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩ 2b a ∴-=请同学们参看2010第三次周考: 例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.解:(Ⅰ)()()22()433f x x ax a x a x a '=-+-=---01a <<令,0)(>'x f 得)(x f 令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞)∴当x=a 时,)(x f 极小值=;433b a +-当x=3a 时,)(x f 极大值=b.(Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立①则等价于()g x 这个二次函数max min ()()g x a g x a≤⎧⎨≥-⎩ 22()43g x x ax a =-+的对称轴2x a =01,a << 12a a a a +>+=(放缩法)即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

22()43[1,2]g x x ax a a a =-+++在上是增函数.max min ()(2)2 1.()(1)4 4.g x g a a g x g a a =+=-+=+=-+∴于是,对任意]2,1[++∈a a x ,不等式①恒成立,等价于(2)44,41.(1)215g a a a a g a a a+=-+≤⎧≤≤⎨+=-+≥-⎩解得 又,10<<a ∴.154<≤a 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:)()(x g x f >恒成立0)()()(>-=⇔x g x f x h 恒成立;从而转化为第一、二种题型例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。

解:(Ⅰ)/2()32f x x ax =+∴/(1)31f b a ⎧=-⎨=+⎩, 解得32a b =-⎧⎨=-⎩(Ⅱ)由(Ⅰ)知,()f x 在[1,0]-上单调递增,在[0,2]上单调递减,在[2,4]上单调递减 又(1)4,(0)0,(2)4,(4)16f f f f -=-==-= ∴()f x 的值域是[4,16]-(Ⅲ)令2()()()(1)3[1,4]2t h x f x g x x t x x =-=-++-∈思路1:要使()()f x g x ≤恒成立,只需()0h x ≤,即2(2)26t x x x -≥-分离变量思路2:二次函数区间最值二、题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立, 回归基础题型 解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别:前者是后者的子集例4:已知R a ∈,函数x a x a x x f )14(21121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值;2x a =[]1,2a a ++(Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围.解:)14()1(41)(2++++='a x a x x f . (Ⅰ)∵()f x '是偶函数,∴ 1-=a . 此时x x x f 3121)(3-=,341)(2-='x x f ,令0)(='x f ,解得:32±=x .列表如下:x(-∞,-23)-23(-23,23)23(23,+∞))(x f ' + 0- 0+ )(x f递增极大值 递减极小值递增可知:()f x 的极大值为34)32(=-f , ()f x 的极小值为34)32(-=f .(Ⅱ)∵函数)(x f 是),(∞+-∞上的单调函数,∴21()(1)(41)04f x x a x a '=++++≥,在给定区间R 上恒成立判别式法 则221(1)4(41)204a a a a ∆=+-⋅⋅+=-≤, 解得:02a ≤≤.综上,a 的取值范围是}20{≤≤a a .例5、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥ (I )求()f x 的单调区间;(II )若()f x 在[0,1]上单调递增,求a 的取值范围。

子集思想 (I )2()(2)1(1)(1).f x x a x a x x a '=+-+-=++- 1、20,()(1)0,a f x x '==+≥当时恒成立当且仅当1x =-时取“=”号,()(,)f x -∞+∞在单调递增。

2、12120,()0,1,1,,a f x x x a x x '>==-=-<当时由得且单调增区间:(,1),(1,)a -∞--+∞ 单调增区间:(1,1)a -- (II )当()[0,1],f x 在上单调递增 则[]0,1是上述增区间的子a-1-1()f x '集:1、0a =时,()(,)f x -∞+∞在单调递增 符合题意2、[]()0,11,a ⊆-+∞,10a ∴-≤ 1a ∴≤ 综上,a 的取值范围是[0,1]。

三、题型二:根的个数问题题1函数f(x)与g(x)(或与x 轴)的交点======即方程根的个数问题 解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”; 第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可; 例6、已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围;(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围. 解:(1)由题意x k x x f )1()(2+-=' ∵)(x f 在区间),2(+∞上为增函数,∴0)1()(2>+-='x k x x f 在区间),2(+∞上恒成立(分离变量法)即x k <+1恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k(2)设312)1(3)()()(23-++-=-=kx x k x x g x f x h , )1)(()1()(2--=++-='x k x k x k x x h 令0)(='x h 得k x =或1=x 由(1)知1≤k ,①当1=k 时,0)1()(2≥-='x x h ,)(x h 在R 上递增,显然不合题意… ②当1<k 时,)(x h ,)(x h '随x 的变化情况如下表:由于021<-k ,欲使)(x f 与)(x g 的图象有三个不同的交点,即方程0)(=x h 有三个不同的实根,故需0312623>-+-k k ,即0)22)(1(2<---k k k ∴⎩⎨⎧>--<02212k k k ,解得31-<k 综上,所求k 的取值范围为31-<k根的个数知道,部分根可求或已知。

相关文档
最新文档