(完整版)高中数学导数经典题型解题技巧(运用方法)
高中数学导数的应用解题技巧

高中数学导数的应用解题技巧导数是高中数学中的重要概念,它不仅在微积分中起到关键作用,还有广泛的应用领域。
在解题过程中,合理运用导数的应用解题技巧,能够提高解题效率,帮助我们更好地理解问题,并得到准确的答案。
本文将通过具体的例子,介绍一些常见的导数应用解题技巧,帮助高中学生和他们的父母更好地掌握这一知识点。
一、最值问题最值问题是导数应用中的常见题型,它要求我们通过导数的性质,求出函数在某个区间内的最大值或最小值。
以一个简单的例子来说明:例题1:求函数$f(x)=x^3-3x^2+2x+1$在区间[-1,2]上的最大值和最小值。
解析:首先,我们需要求出函数的导数。
对函数$f(x)$求导得到$f'(x)=3x^2-6x+2$。
接下来,我们需要找到导数$f'(x)$的零点,即解方程$3x^2-6x+2=0$。
解这个二次方程可以得到两个根$x_1=1-\sqrt{3}$和$x_2=1+\sqrt{3}$。
我们将区间[-1,2]分成三个部分:[-1,1-√3]、[1-√3,1+√3]和[1+√3,2]。
然后,我们在这三个区间内分别求出$f(x)$的导数值,并找出最大值和最小值。
在区间[-1,1-√3],导数$f'(x)$的值为正,说明函数$f(x)$在这个区间内单调递增。
因此,最小值出现在$x=1-√3$时,即$f(1-√3)$为最小值。
在区间[1-√3,1+√3],导数$f'(x)$的值为负,说明函数$f(x)$在这个区间内单调递减。
因此,最大值出现在$x=1+√3$时,即$f(1+√3)$为最大值。
在区间[1+√3,2],导数$f'(x)$的值为正,说明函数$f(x)$在这个区间内单调递增。
因此,最大值出现在$x=2$时,即$f(2)$为最大值。
综上所述,函数$f(x)$在区间[-1,2]上的最大值为$f(2)$,最小值为$f(1-√3)$。
通过这个例题,我们可以看出,最值问题的关键在于求出函数的导数,并通过导数的符号来判断函数在不同区间内的单调性。
高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)高考数学导数大题技巧【篇1】1、选择题部分,高考的选择题部分题型考试的方向基本都是固定的,当你在一轮二轮复习过程中总结出题目的出题策略时,答题就变得很简单了。
比如立体几何三视图,概率计算,圆锥曲线离心率等等试题中都有一些特征,只要掌握思考的切入方法和要点,再适当训练基本就可以全面突破,但是如果不掌握核心方法,单纯做题训练就算做很多题目,突破也非常困难,学习就会进入一个死循环,对照答案可以理解,但自己遇到新的题目任然无从下手。
2、关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。
对于较难的原则曲线和导数两道题目基本要拿一半的分数,考生复习时可把数学大题的每一道题作为一个独立的版块章节,先总结每道大题常考的几种题型,再专项突破里面的运算方法,图形处理方法以及解题的思考突破口,只要把这些都归纳到位,那么总结的框架套路,都是可以直接秒刷的题目的高考数学导数大题技巧【篇2】1个、多项选择部分,高考选择题的方向基本是固定的,当你在二轮复习过程中总结出题策略时,答案变得很简单。
比如三维几何三视图,概率计算,试题中存在圆锥截面偏心等特点,只要掌握了入门方法和思维要点,经过适当的训练,基本可以全面突破,但是如果不掌握核心方法,单纯做练习题也算做了很多题,也很难突破,学习会进入死循环,比对答案,但是遇到新问题还是无从下手。
2个、关于大话题,基本上是三角函数或求解三角形、顺序、三维几何和概率统计应该是考生努力拿满分的科目。
比较难的原理曲线和导数,基本要一半分,考生在复习时可以将数学大题的每一题作为一个独立的section,先总结一下每个大题经常考的几类题型,然后在计算方法上特别突破,解题的图形处理方法与思维突破,把它全部放在适当的位置,然后总结框架套路,都是可以直接秒刷的话题高考数学导数大题技巧【篇3】1、函数与导数主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
高中数学导数题解题技巧

高中数学导数题解题技巧导数是高中数学中的一个重要概念,它在数学和物理等领域中有着广泛的应用。
在解题过程中,熟练掌握导数的相关技巧是非常重要的。
本文将从常见的导数题型入手,介绍一些解题技巧,帮助高中学生更好地应对导数题。
1. 导数的定义首先,我们需要了解导数的定义。
导数表示函数在某一点处的变化率,可以用极限的概念表示。
对于函数y=f(x),在点x处的导数可以表示为:f'(x) = lim(h→0) [f(x+h) - f(x)] / h这个定义可以帮助我们计算函数在某一点处的导数。
2. 导数的基本性质在解题过程中,我们需要掌握导数的一些基本性质。
首先是导数的线性性质,即对于函数f(x)和g(x),以及常数a和b,有:[f(x) + g(x)]' = f'(x) + g'(x)[a*f(x)]' = a*f'(x)[f(x)*g(x)]' = f'(x)*g(x) + f(x)*g'(x)这些性质可以帮助我们简化导数的计算过程。
3. 常见的导数题型接下来,我们将介绍一些常见的导数题型,并给出相应的解题技巧。
3.1 多项式函数的导数对于多项式函数f(x) = a_n*x^n + a_(n-1)*x^(n-1) + ... + a_1*x + a_0,其中a_i为常数,n为正整数,导数可以通过对每一项求导得到。
例如,对于函数f(x) = 3x^2 + 2x + 1,求导后得到:f'(x) = 6x + 2在求导过程中,注意常数项的导数为0。
3.2 指数函数的导数指数函数f(x) = a^x,其中a为正实数且不等于1,导数可以通过对指数部分求导得到。
例如,对于函数f(x) = 2^x,求导后得到:f'(x) = ln(2) * 2^x其中ln表示自然对数。
3.3 对数函数的导数对数函数f(x) = log_a(x),其中a为正实数且不等于1,导数可以通过对函数取导数得到。
高等数学高考应试技巧导数应用的巧妙技巧

高等数学高考应试技巧导数应用的巧妙技巧在高考数学中,导数作为一个重要的工具,常常在解题中发挥着关键作用。
掌握导数应用的巧妙技巧,不仅能够提高解题的效率,还能增强我们在考试中的自信心。
接下来,让我们一起深入探讨导数在高考中的那些实用技巧。
一、利用导数求函数的单调性函数的单调性是导数应用中最为基础也是最为重要的一个方面。
对于给定的函数$f(x)$,我们先对其求导,得到$f'(x)$。
若$f'(x) > 0$,则函数在相应区间上单调递增;若$f'(x) < 0$,则函数在相应区间上单调递减。
例如,对于函数$f(x) = x^3 3x^2 + 2$,对其求导得到$f'(x) =3x^2 6x$。
令$f'(x) = 0$,解得$x = 0$或$x = 2$。
当$x < 0$时,$f'(x) > 0$,函数单调递增;当$0 < x < 2$时,$f'(x) < 0$,函数单调递减;当$x > 2$时,$f'(x) > 0$,函数单调递增。
通过这种方法,我们可以清晰地确定函数的单调性区间,为后续的解题提供重要依据。
二、利用导数求函数的极值在求函数的极值时,导数同样发挥着重要作用。
首先求出导数$f'(x)$,然后令$f'(x) = 0$,求出可能的极值点。
接着,通过判断导数在极值点两侧的符号来确定是极大值还是极小值。
如果在极值点左侧导数为正,右侧为负,那么该点为极大值点;反之,如果左侧导数为负,右侧为正,那么该点为极小值点。
以函数$f(x) = x^3 3x^2 + 2$为例,已经求出其极值点为$x =0$和$x = 2$。
在$x = 0$左侧,$f'(x) > 0$,右侧$f'(x) < 0$,所以$x = 0$为极大值点,极大值为$f(0) = 2$。
在$x = 2$左侧,$f'(x) < 0$,右侧$f'(x) > 0$,所以$x = 2$为极小值点,极小值为$f(2) =-2$。
高中导数题所有题型及解题方法

高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。
高中数学导数应用解题技巧

高中数学导数应用解题技巧在高中数学学习中,导数应用是一个重要的考点。
掌握导数应用解题技巧,不仅可以帮助我们更好地理解数学知识,还能够提高解题的效率和准确性。
本文将介绍一些常见的导数应用题型,并详细解析解题思路和方法,帮助高中学生和他们的父母更好地应对这些题目。
一、函数极值问题函数极值问题是导数应用中的一大重点。
我们可以通过求函数的导数,找到函数的极值点。
以下是一个例子:例题:求函数f(x) = 2x^3 - 3x^2 - 12x + 5的极值点。
解析:首先,我们需要求出函数f(x)的导数f'(x)。
对于多项式函数,求导的方法是按照幂次递减,对每一项分别求导。
所以,f'(x) = 6x^2 - 6x - 12。
接下来,我们令f'(x) = 0,解方程可以得到x的值。
解方程6x^2 - 6x - 12 = 0,我们可以化简得到x^2 - x - 2 = 0,然后因式分解得到(x - 2)(x + 1) = 0,解得x = 2或x = -1。
最后,我们将求得的x值代入函数f(x)中,计算出对应的y值。
即f(2) = 2(2)^3 - 3(2)^2 - 12(2) + 5 = 3,f(-1) = 2(-1)^3 - 3(-1)^2 - 12(-1) + 5 = 22。
所以,函数f(x)的极值点为(2, 3)和(-1, 22)。
通过这个例子,我们可以看出,求函数的极值点需要先求导,然后解方程,最后代入函数计算。
这是一个常见的解题思路,掌握了这个思路,我们就能够迅速解决类似的问题。
二、函数图像问题函数图像问题也是导数应用中的一个重要部分。
通过求导,我们可以得到函数的增减性和凹凸性,从而画出函数的图像。
以下是一个例子:例题:画出函数f(x) = x^3 - 3x^2 + 2x的图像。
解析:首先,我们求出函数f(x)的导数f'(x)。
对于这个多项式函数,求导的方法和上面的例题一样。
(整理)导数应用的题型与解题方法.

导数应用的题型与解题方法一、专题概述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
二、知识整合1.导数概念的理解.2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
4.求复合函数的导数,一般按以下三个步骤进行:(1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);(3)把中间变量代回原自变量(一般是x )的函数。
也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将已知函数对中间变量求导)'(μy ,中间变量对自变量求导)'(x μ;最后求x y ''μμ⋅,并将中间变量代回为自变量的函数。
整个过程可简记为分解——求导——回代。
熟练以后,可以省略中间过程。
若遇多重复合,可以相应地多次用中间变量。
三、例题分析例1.⎩⎨⎧>+≤==11)(2x b ax x x x f y 在1=x 处可导,则=a =b 思路:⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,必连续1)(lim 1=-→x f xb a x f x +=+→)(l i m 1 1)1(=f ∴ 1=+b a2lim 0=∆∆-→∆x y x a xyx =∆∆+→∆0lim ∴ 2=a 1-=b例2.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限:(1)hh a f h a f h 2)()3(lim 0--+→∆; (2)h a f h a f h )()(lim 20-+→∆分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。
高中数学导数知识总结+导数七大题型答题技巧

高中数学导数知识总结+导数七大题型答题技巧知识总结一. 导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义:曲线的切线,当点趋近于P时,直线 PT 与曲线相切。
容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数:当x变化时,便是x的一个函数,我们称它为f (x)的导函数. y=f(x)的导函数有时也记作,即。
二. 导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。
三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数:极值反映的是函数在某一点附近的大小情况。
求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。
四. 推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。
类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学导数经典题型解题技巧(运用方法)高中数学导数及其应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中·期末还是会考·高考,都是高中数学的必考内容之一。
因此,针对这两各部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们有更多·更好·更快的方法解决高中数学问题。
好了,下面就来讲解常用逻辑用语的经典解题技巧。
第一·认识导数概念和几何意义1.导数概念及其几何意义(1)了解导数概念的实际背景。
(2)理解导数的几何意义。
2.导数的运算(1)能根据导数定义求函数的导数。
(2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
(3)能求简单的复合函数(仅限于形如的复合函数)的导数。
3.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。
4.生活中的优化问题会利用导数解决某些实际问题5.定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。
(2)了解微积分基本定理的含义。
总结:先搞清楚导数概念以及几何意义,才能更好地运用其解题技巧!231(),,,,,y C C y x y x y x y y x======为常数()f ax b +第二·导数运用和解题方法一、利用导数研究曲线的切线考情聚焦:1.利用导数研究曲线的切线是导数的重要应用,为近几年各省市高考命题的热点。
2.常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。
解题技巧:1.导数的几何意义函数在处的导数的几何意义是:曲线在点处的切线的斜率(瞬时速度就是位移函数对时间的导数)。
()y f x =()y f x =0x ()f x '()y f x =00(,())P x f x ()s t t2.求曲线切线方程的步骤:(1)求出函数在点的导数,即曲线在点处切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为。
注:①当曲线在点处的切线平行于轴(此时导数不存在)时,由切线定义可知,切线方程为;②当切点坐标未知时,应首先设出切点坐标,再求解。
例1:(2010 ·海南高考·理科T3)曲线在点处的切线方程为( )(A ) (B ) (C ) (D )【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解.【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程.【规范解答】选 A.因为 ,所以,在点处的切线斜率,所以,切线方程为,即,故选A. ()y f x =0x x =()y f x =00(,())P x f x 00(,())P x f x 000()()y y f x x x '-=-()y f x =00(,())P x f x y 0x x =2x y x =+()1,1--21y x =+21y x =-23y x =--22y x =--22(2)y x '=+()1,1--1222(12)x k y =-'===-+12(1)y x +=+21y x =+二、利用导数研究导数的单调性考情聚焦:1.导数是研究函数单调性有力的工具,近几年各省市高考中的单调性问题,几乎均用它解决。
2.常与函数的其他性质、方程、不等式等交汇命题,且函数一般为含参数的高次、分式或指、对数式结构,多以解答题形式考查,属中高档题目。
解题技巧:利用导数研究函数单调性的一般步骤。
(1)确定函数的定义域;(2)求导数;(3)①若求单调区间(或证明单调性),只需在函数的定义()f x ()f x域内解(或证明)不等式>0或<0。
②若已知的单调性,则转化为不等式≥0或≤0在单调区间上恒成立问题求解。
例2:(2010·山东高考文科·T21)已知函数 (1)当时,求曲线在点处的切线方程;(2)当时,讨论的单调性.【命题立意】本题主要考查导数的概念、导数的几何意义和利用导数研究函数性质的能力.考查分类讨论思想、数形结合思想和等价变换思想.【思路点拨】(1)根据导数的几何意义求出曲线在点处的切线的斜率;(2)直接利用函数与导数的关系讨论函数的单调性,同时应注意分类标准的选择.【规范解答】(1) 当所以 因此, ,即曲线 又所以曲线(2)因为,所以 ()f x '()f x '()f x ()f x '()f x '1()ln 1()a f x x ax a R x-=-+-∈1a =-()y f x =(2,(2))f 12a ≤()f x ()y f x =(2,(2))f 1 ()a f x =-=时,),,0(,12ln +∞∈-++x xx x ()222x x f x x +-'=()21f '=()2(2)) 1.y f x f =在点(,处的切线斜率为,,22ln )2(+=f ()2(2)) (ln 22)2, y f x f y x =-+=-在点(,处的切线方程为 ln 20. x y -+=即11ln )(--+-=x a ax x x f 211)('x a a x x f -+-=221x a x ax -+--=,令(1) 当时,所以当时,>0,此时,函数单调递减; 当时,<0,此时,函数单调递增.(2) 当时,由,即 ,解得. ① 当时, , 恒成立,此时,函数在(0,+∞)上单调递减;② 当时, ,时,,此时,函数单调递减时,<0,此时,函数单调递增 时,,此时,函数单调递减 ③ 当时,由于,时,,此时,函数单调递减:时,<0,此时,函数单调递增. 综上所述:当时,函数在上单调递减;函数在上单调递增当时,函数在上单调递减 ),0(+∞∈x ,1)(2a x ax x g -+-=),,0(+∞∈x 0a =()()1,0,,g x x x =-+∈+∞()0,1x ∈()g x ()0f x '<()f x ()1,x ∈+∞()g x ()0f x '>()f x 0a ≠()0f x '=210ax x a -+-=1211,1x x a ==-12a =12x x =()0g x ≥()0f x '≤()f x 102a <<1110a->>()0,1x ∈()0g x >()0f x '<()f x 11,1x a ⎛⎫∈- ⎪⎝⎭()g x ()0f x '>()f x 11,x a ⎛⎫∈-+∞ ⎪⎝⎭()0g x >()0f x '<()f x 0a <110a-<()0,1x ∈()0g x >()0f x '<()f x ()1,x ∈+∞()g x ()0f x '>()f x 0a ≤()f x ()0,1()f x ()1,+∞12a =()f x ()0,+∞当时,函数在上单调递减;函数 在上单调递增;函数在上单调递减. 【方法技巧】1、分类讨论的原因(1)某些概念、性质、法则、公式分类定义或分类给出;(2)数的运算:如除法运算中除式不为零,在实数集内偶次方根的被开方数为非负数,对数中真数与底数的要求,不等式两边同乘以一个正数还是负数等;(3)含参数的函数、方程、不等式等问题,由参数值的不同而导致结果发生改变;(4)在研究几何问题时,由于图形的变化(图形位置不确定或形状不确定),引起问题的结果有多种可能.2、分类讨论的原则(1)要有明确的分类标准;(2)对讨论对象分类时要不重复、不遗漏;(3)当讨论的对象不止一种时,应分层次进行.3、分类讨论的一般步骤(1)明确讨论对象,确定对象的范围;(2)确定统一的分类标准,进行合理分类,做到不重不漏;(3)逐段逐类讨论,获得阶段性结果;102a <<()f x ()0,1()f x 11,1a ⎛⎫- ⎪⎝⎭()f x 11,a⎛⎫-+∞ ⎪⎝⎭(4)归纳总结,得出结论.三、利用导数研究函数的极值与最值考情聚焦:1.导数是研究函数极值与最值问题的重要工具,几乎是近几年各省市高考中极值与最值问题求解的必用方法。
2.常与函数的其他性质、方程、不等式等交汇命题,且函数一般为含参数的高次、分式、或指、对数式结构,多以解答题形式出现,属中高档题。
解题技巧:1.利用导数研究函数的极值的一般步骤:(1)确定定义域。
(2)求导数。
(3)①或求极值,则先求方程=0的根,再检验在方程根左右值的符号,求出极值。
(当根中有()f x '()f x '()f x '参数时要注意分类讨论)②若已知极值大小或存在情况,则转化为已知方程=0的根的大小或存在情况,从而求解。
2.求函数的极值与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值。
例3:(2010·天津高考理科·T21)已知函数(Ⅰ)求函数的单调区间和极值;(Ⅱ)已知函数的图象与函数的图象关于直线对称,证明当时,(III )如果,且,证明【命题立意】本小题主要考查导数的应用,利用导数研究函数的单调性与极值等基础知识,考查运算能力及用函数思想分析解决问题的能力。
【思路点拨】利用导数及函数的性质解题。
【规范解答】(Ⅰ)解:f ’,令f ’(x)=0,解得x=1,当x 变化时,f ’(x),f(x)的变化情况如下表()f x '()y f x =(),()f a f b ()()x f x xe x R -=∈()f x ()y g x =()y f x =1x =1x >()()f x g x >12x x ≠12()()f x f x =122x x +>()(1)x x x e -=-所以f(x)在()内是增函数,在()内是减函数。
函数f(x)在x=1处取得极大值f(1)且f(1)=(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)令F(x)=f(x)-g(x),即 于是当x>1时,2x-2>0,从而’(x)>0,从而函数F (x )在[1,+∞)是增函数。