高中数学导数题型分类非常全

合集下载

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。

方法:f'(x)为在x=x处的切线的斜率。

题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。

方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。

例题:已知函数f(x)=x-3x。

1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。

提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。

将问题转化为关于x,m的方程有三个不同实数根问题。

答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。

1)求过点(1,-3)与曲线y=x-3x相切的直线方程。

(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。

题型3:求两个曲线y=f(x)、y=g(x)的公切线。

方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例题:求曲线y=x与曲线y=2elnx的公切线方程。

(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。

(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。

导数题型总结(12种题型)

导数题型总结(12种题型)

导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。

二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。

2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。

导数题型总结

导数题型总结

导数题型总结导数题型总结导数及其应用题型总结题型一:切线问题①求曲线在点(xo,yo)处的切线方程②求过曲线外一点的切线方程③求已知斜率的切线方程④切线条数问题例题1:已知函数f(x)=x+x-16,求:(1)曲线y=f(x)在点(2,-6)处的切线方程(2)过原点的直线L是曲线y=f(x)的切线,求它的方程及切点坐标(3)如果曲线y=f(x)的某一切线与直线y=-(1/4)x+3垂直,求切线方程及切点坐标例题2:已知函数f(x)=ax+2bx+cx在xo处去的极小值-4.使其导数f”(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式;(2)若过点P (-1,m)的曲线y=f(x)有三条切线,求实数m的取值范围。

题型二:复合函数与导数的运算法则的综合问题例题3:求函数y=xcos (x+x-1)sin(x+x-1)的导数题型三:利用导数研究函数的单调区间①求函数的单调区间(定义域优先法则)②求已知单调性的含参函数的参数的取值范围③证明或判断函数的单调性例题4:设函数f(x)=x+bx+cx,已知g(x)=f(x)-f”(x)是奇函数,求y=g (x)的单调区间例题5:已知函数f(x)=x3-ax-1,(1)若f(x)在实数集R上单调递增,求实数a的取值范围(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的范围;若不存在,说明理由。

例题6:证明函数f(x)=lnx/x2在区间(0,2)上是减函数。

题型四:导数与函数图像问题例1:若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在[a,b]上的图象可能是y题型五:利用导数研究函数的极值和最值例题7:已知函数f(x)=-x3+ax2+bx在区间(-2,1)上x=-1时取得极小值,x=2/3时取得极yy32323oaoobxoabxbxabxaA.B.C.D.大值。

求(1)函数y=f(x)在x=-2时的对应点的切线方程(2)函数y=f(x)在[-2,1]上的最大值和最小值。

高考导数题型大全及答案.doc

高考导数题型大全及答案.doc

第三讲导数的应用研热点(聚焦突破)类型一利用导数研究切线问题导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x)就是曲线y=f(x)在点(x,f(x))处的切线的斜率,即k=f′(x);(2)曲线y=f(x)在点(x0,f(x))处的切线方程为y-f(x)=f′(x)(x-x).[例1] (2012年高考安徽卷改编)设函数f(x)=a e x+1aex+b(a>0).在点(2,f(2))处的切线方程为y=32x,求a,b的值.[解析]∵f′(x)=a e x-1 aex,∴f′(2)=a e2-1ae2=32, 解得a e2=2或a e2=-12(舍去),所以a=2e2,代入原函数可得2+12+b=3, 即b=12, 故a=2e2,b=12.跟踪训练已知函数f(x)=x3-x.(1)求曲线y=f(x)的过点(1,0)的切线方程;(2)若过x轴上的点(a,0)可以作曲线y=f(x)的三条切线,求a的取值范围.解析:(1)由题意得f′(x)=3x2-1.曲线y=f(x)在点M(t,f(t))处的切线方程为y-f(t)=f′(t)(x-t),即y=(3t2-1)·x-2t3,将点(1,0)代入切线方程得2t3-3t2+1=0,解得t=1或-,代入y=(3t2-1)x-2t3得曲线y=f(x)的过点(1,0)的切线方程为y=2x-2或y=-x+.(2)由(1)知若过点(a,0)可作曲线y=f(x)的三条切线,则方程2t3-3at2+a=0有三个相异的实根,记g(t)=2t3-3at2+a.则g′(t)=6t2-6at=6t(t-a).当a>0时,函数g(t)的极大值是g(0)=a,极小值是g(a)=-a3+a,要使方程g(t)=0有三个相异的实数根,需使a>0且-a3+a<0,即a>0且a2-1>0,即a>1;当a=0时,函数g(t)单调递增,方程g(t)=0不可能有三个相异的实数根;当a<0时,函数g(t)的极大值是g(a)=-a3+a,极小值是g(0)=a,要使方程g(t)=0有三个相异的实数根,需使a<0且-a3+a>0,即a<0且a2-1>0,即a<-1.综上所述,a的取值范围是(-∞,-1)∪(1,+∞).类型二利用导数研究函数的单调性函数的单调性与导数的关系在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增;如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.[例2] (2012年高考山东卷改编)已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间. [解析] (1)由f (x )=ln x +kex, 得f ′(x )=1-kx -xln xxex ,x ∈(0,+∞).由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=(1-x -x ln x ),x ∈(0,+∞). 令h (x )=1-x -x ln x ,x ∈(0,+∞), 当x ∈(0,1)时,h (x )>0; 当x ∈(1,+∞)时,h (x )<0.又e x >0,所以当x ∈(0,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).跟踪训练若函数f (x )=ln x -12ax 2-2x 存在单调递减区间,求实数a 的取值范围. 解析:由题知f ′(x )=1x -ax -2=-ax2+2x -1x ,因为函数f (x )存在单调递减区间,所以f ′(x )=-ax2+2x -1x≤0有解.又因为函数的定义域为(0,+∞),则应有ax 2+2x -1≥0在(0,+∞)上有实数解.(1)当a >0时,y =ax 2+2x -1为开口向上的抛物线,所以ax 2+2x -1≥0在(0,+∞)上恒有解; (2)当a <0时,y =ax 2+2x -1为开口向下的抛物线,要使ax 2+2x -1≥0在(0,+∞)上有实数解,则Δ=>0,此时-1<a <0;(3)当a =0时,显然符合题意.综上所述,实数a 的取值范围是(-1,+∞). 类型三 利用导数研究函数的极值与最值 1.求函数y =f (x )在某个区间上的极值的步骤 (1)求导数f ′(x );(2)求方程f ′(x )=0的根x 0; (3)检查f ′(x )在x =x 0左右的符号; ①左正右负⇔f (x )在x =x 0处取极大值; ②左负右正⇔f (x )在x =x 0处取极小值.2.求函数y =f (x )在区间[a ,b ]上的最大值与最小值的步骤(1)求函数y=f(x)在区间(a,b)内的极值(极大值或极小值);(2)将y=f(x)的各极值与f(a),f(b)进行比较,其中最大的一个为最大值,最小的一个为最小值.[例3] (2012年高考北京卷)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有大众切线,求a,b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值.[解析](1)f′(x)=2ax,g′(x)=3x2+b,因为曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有大众切线,所以f(1)=g(1),且f′(1)=g′(1).即a+1=1+b,且2a=3+b.解得a=3,b=3.(2)记h(x)=f(x)+g(x).当b=14a2时,h(x)=x3+ax2+14a2x+1,h′(x)=3x2+2ax+14a2.令h′(x)=0,得x1=-a2,x2=-a6.a>0时,h(x)与h′(x)的变化情况如下:0 0所以函数h(x)的单调递增区间为(-∞,-2)和(-6,+∞);单调递减区间为(-2,-6).当-a2≥-1,即0<a≤2时,函数h(x)在区间(-∞,-1]上单调递增,h(x)在区间(-∞,-1]上的最大值为h(-1)=a-14a2.当-a2<-1,且-a6≥-1,即2<a≤6时,函数h(x)在区间(-∞,-a2)上单调递增,在区间(-a2,-1]上单调递减,h(x)在区间(-∞,-1]上的最大值为h(-a2)=1.当-a6<-1,即a>6时,函数h(x)在区间(-∞,-a2)上单调递增,在区间(-a2,-a6)上单调递减,在区间(-a6,-1]上单调递增,又因为h(-a2)-h(-1)=1-a+14a2=14 (a-2)2>0,所以h(x)在区间(-∞,-1]上的最大值为h(-a2)=1.跟踪训练(2012年珠海摸底)若函数f (x )=⎩⎨⎧2x3+3x2+1(x ≤0)eax (x>0),在[-2,2]上的最大值为2,则a 的取值范围是( )A .[12ln 2,+∞)B .[0,12ln 2]C .(-∞,0]D .(-∞,12ln 2]解析:当x ≤0时,f ′(x )=6x 2+6x ,易知函数f (x )在(-∞,0]上的极大值点是x =-1,且f (-1)=2,故只要在(0,2]上,e ax ≤2即可,即ax ≤ln 2在(0,2]上恒成立,即a ≤ln 2x 在(0,2]上恒成立,故a ≤12ln 2. 答案:D析典题(预测高考)高考真题【真题】 (2012年高考辽宁卷)设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切. (1)求a ,b 的值;(2)证明:当0<x <2时,f (x )<9x x +6. 【解析】 (1)由y =f (x )过(0,0)点,得b =-1.由y =f (x )在(0,0)点的切线斜率为32,又y ′⎪⎪x =0=(1x +1+12x +1+a )⎪⎪x =0=32+a ,得a =0.(2)证明:证法一 由均值不等式,当x >0时, 2(x +1)·1<x +1+1=x +2,故x +1<x2+1. 记h (x )=f (x )-9x x +6, 则h ′(x )=1x +1+12x +1-54(x +6)2=2+x +12(x +1)-54(x +6)2<x +64(x +1)-54(x +6)2 =(x +6)3-216(x +1)4(x +1)(x +6)2.令g (x )=(x +6)3-216(x +1), 则当0<x <2时,g ′(x )=3(x +6)2-216<0. 因此g (x )在(0,2)内是递减函数. 又由g (0)=0,得g (x )<0,所以h ′(x )<0. 因此h (x )在(0,2)内是递减函数. 又h (0)=0,得h (x )<0.于是当0<x <2时,f (x )<9x x +6. 证法二 由(1)知f (x )=ln(x +1)+x +1-1.由均值不等式,当x >0时,2(x +1)·1<x +1+1=x +2,故x +1<x 2+1.① 令k (x )=ln(x +1)-x ,则k(0)=0,k′(x)=1x+1-1=-xx+1<0,故k(x)<0,即ln(x+1)<x.②由①②得,当x>0时,f(x)<32 x.记h(x)=(x+6)f(x)-9x,则当0<x<2时,h′(x)=f(x)+(x+6)f′(x)-9<32x+(x+6)·(1x+1+12x+1)-9=12(x+1)[3x(x+1)+(x+6)·(2+x+1)-18(x+1)]<12(x+1)[3x(x+1)+(x+6)·(3+x2)-18(x+1)]=x4(x+1)(7x-18)<0.因此h(x)在(0,2)内单调递减.又h(0)=0,所以h(x)<0,即f(x)<9xx+6.【名师点睛】本题主要考查导数的应用和不等式的证明以及转化与化归能力,难度较大.本题不等式的证明关键在于构造函数利用最值来解决.考情展望高考对导数的应用的考查综合性较强,一般为解答题,着重考查以下几个方面:一是利用导数的几何意义来解题;二是讨论函数的单调性;三是利用导数研究函数的极值与最值.常涉及不等式的证明、方程根的讨论等问题名师押题【押题】已知f(x)=ax-ln x,x∈(0,e],g(x)=ln xx,其中e是自然常数,a∈R.(1)讨论a=1时,f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)>g(x)+1 2;(3)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.【解析】(1)由题知当a=1时,f′(x)=1-1x=x-1x,因为当0<x<1时,f′(x)<0,此时f(x)单调递减,当1<x<e时,f′(x)>0,此时f(x)单调递增,所以f(x)的极小值为f(1)=1.(2)证明因为f(x)的极小值为1,即f(x)在(0,e]上的最小值为1.令h(x)=g(x)+12=ln xx+12,h′(x)=1-ln xx2,当0<x<e时,h′(x)>0,h(x)在(0,e]上单调递增,所以h(x)max=h(e)=1e+12<12+12=1=f(x)min,所以在(1)的条件下,f(x)>g(x)+1 2.(3)假设存在实数a,使f(x)=ax-ln x(x∈(0,e])有最小值3,f′(x)=a-1x=ax-1x.①当a≤0时,因为x∈(0,e],所以f′(x)<0,而f(x)在(0,e]上单调递减,所以f(x)min=f(e)=a e-1=3,a=4e(舍去),此时f(x)无最小值;②当0<1a <e 时,f (x )在(0,1a )上单调递减,在(1a ,e]上单调递增,所以f (x )min =f (1a )=1+ln a =3,a =e 2,满足条件;③当1a≥e 时,因为x ∈(0,e],所以f ′(x )<0,所以f (x )在(0,e]上单调递减,f (x )min =f (e)=a e -1=3,a =4e (舍去)此时f (x )无最小值.综上,存在实数a =e 2,使得当x ∈(0,e]时,f (x )有最小值3.知识改变命运。

导数八大题型汇总

导数八大题型汇总

导数八大题型汇总
以下是导数的八大题型汇总:
1. 基本函数的导数:包括常数函数、幂函数、指数函数、对数函数、三角函数等基本函数的导数。

2. 和、差、积的导数:给定两个或多个函数,求其和、差、积的导数。

3. 商的导数:给定两个函数,求其商的导数。

4. 复合函数的导数:给定一个函数和另一个函数的复合,求复合函数的导数。

5. 反函数的导数:给定一个函数和其反函数,求反函数的导数。

6. 参数方程的导数:给定一个参数方程,求其对应的函数的导数。

7. 隐函数的导数:给定一个隐函数关系式,求导数。

8. 极限的导数:给定一个函数的极限,求其导数。

这些题型涵盖了导数的常见应用场景,掌握这些题型可以更好地理解和运用导数的概念和计算方法。

导数压轴题12类常考题型

导数压轴题12类常考题型

导数压轴题12类常考题型导数是微积分中的重要概念,常常在各种数学问题中应用。

下面我将列举12类常考的导数题型,并从多角度进行解析。

1. 基本函数的导数:常数函数的导数,常数的导数为0。

幂函数的导数,幂函数的导数可以使用幂函数的导数公式进行求解。

指数函数的导数,指数函数的导数等于函数本身乘以底数的自然对数。

对数函数的导数,对数函数的导数可以使用对数函数的导数公式进行求解。

三角函数的导数,三角函数的导数可以使用三角函数的导数公式进行求解。

2. 反函数的导数:如果函数f(x)和g(x)互为反函数,则f'(x)和g'(x)互为相反数。

3. 复合函数的导数(链式法则):如果y=f(u)和u=g(x)是可导函数,则复合函数y=f(g(x))的导数可以使用链式法则进行求解。

4. 隐函数的导数:如果有一个方程F(x, y) = 0定义了y作为x的函数,则可以使用隐函数定理和求导法则求解隐函数的导数。

5. 参数方程的导数:如果有一个参数方程x=f(t)和y=g(t),则可以使用导数的定义求解参数方程的导数。

6. 反常导数:如果函数在某些点上不可导,但在其他点上可导,则称这个函数具有反常导数。

7. 高阶导数:如果一个函数的导数仍然可导,则可以计算其高阶导数。

8. 导数在几何中的应用:导数可以用来求函数的切线和法线方程,以及判定函数的极值和拐点。

9. 导数在物理中的应用:导数可以用来描述物体的速度、加速度等物理量。

10. 导数在经济学中的应用:导数可以用来分析经济学模型中的边际效应和弹性。

11. 导数在生物学中的应用:导数可以用来描述生物学模型中的生长速率和变化率。

12. 导数在工程中的应用:导数可以用来优化工程问题,如最小化成本、最大化效益等。

以上是导数常考题型的一些分类和解析,希望能帮助到你。

如果你有具体的导数问题,欢迎继续提问。

导数的综合大题及其分类.

导数的综合大题及其分类.

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用.题型一 利用导数研究函数的单调性、极值与最值题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.(1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论.(2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点.(3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值.已知函数f (x )=x -1x,g (x )=a ln x (a ∈R ).(1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈⎝⎛⎦⎥⎥⎤0,12,求h (x 1)-h (x 2)的最小值.[审题程序]第一步:在定义域,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值围;第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值.[规解答] (1)由题意得F (x )=x -1x-a ln x ,其定义域为(0,+∞),则F ′(x )=x 2-ax +1x 2,令m (x )=x 2-ax +1,则Δ=a 2-4.①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞);②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42,∴F (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. 综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为 ⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. (2)对h (x )=x -1x+a ln x ,x ∈(0,+∞)求导得,h ′(x )=1+1x 2+a x =x 2+ax +1x 2,设h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a , ∴x 2=1x 1,从而有a =-x 1-1x 1.令H (x )=h (x )-h ⎝ ⎛⎭⎪⎫1x=x -1x +⎝ ⎛⎭⎪⎫-x -1x ln x -⎣⎢⎡⎦⎥⎤1x-x +⎝ ⎛⎭⎪⎫-x -1x ·ln 1x =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-x -1x ln x +x -1x ,H ′(x )=2⎝⎛⎭⎪⎫1x 2-1ln x =2(1-x )(1+x )ln xx2. 当x ∈⎝⎛⎦⎥⎥⎤0,12时,H ′(x )<0,∴H (x )在⎝⎛⎦⎥⎥⎤0,12上单调递减,又H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎪⎫1x 1=h (x 1)-h (x 2),∴[h (x 1)-h (x 2)]min =H ⎝ ⎛⎭⎪⎪⎫12=5ln2-3.[解题反思] 本例(1)中求F (x )的单调区间,需先求出F (x )的定义域,同时在解不等式F ′(x )>0时需根据方程x 2-ax +1=0的根的情况求出不等式的解集,故以判别式“Δ”的取值作为分类讨论的依据.在(2)中求出h (x 1)-h (x 2)的最小值,需先求出其解析式.由题可知x 1,x 2是h ′(x )=0的两根,可得到x 1x 2=1,x 1+x 2=-a ,从而将h (x 1)-h (x 2)只用一个变量x 1导出.从而得到H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎪⎫1x 1,这样将所求问题转化为研究新函数H (x )=h (x )-h ⎝ ⎛⎭⎪⎪⎫1x 在⎝⎛⎭⎪⎪⎫0,12上的最值问题,体现转为与化归数学思想.[答题模板] 解决这类问题的答题模板如下:[题型专练]1.设函数f (x )=(1+x )2-2ln(1+x ). (1)求f (x )的单调区间;(2)当0<a <2时,求函数g (x )=f (x )-x 2-ax -1在区间[0,3]上的最小值. [解] (1)f (x )的定义域为(-1,+∞). ∵f (x )=(1+x )2-2ln(1+x ),x ∈(-1,+∞), ∴f ′(x )=2(1+x )-21+x =2x (x +2)x +1.由f ′(x )>0,得x >0;由f ′(x )<0,得-1<x <0.∴函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0). (2)由题意可知g (x )=(2-a )x -2ln(1+x )(x >-1), 则g ′(x )=2-a -21+x =(2-a )x -a1+x.∵0<a <2,∴2-a >0, 令g ′(x )=0,得x =a2-a, ∴函数g (x )在⎝ ⎛⎭⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎫a 2-a ,+∞上为增函数.①当0<a2-a <3,即0<a <32时,在区间[0,3]上,g (x )在⎝ ⎛⎭⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎫a 2-a ,3上为增函数,∴g (x )min =g ⎝ ⎛⎭⎪⎫a 2-a =a -2ln 22-a . ②当a2-a ≥3,即32≤a <2时,g (x )在区间[0,3]上为减函数,∴g (x )min =g (3)=6-3a -2ln4.综上所述,当0<a <32时,g (x )min =a -2ln 22-a ;当32≤a <2时,g (x )min =6-3a -2ln4. 卷(19)(本小题13分)已知函数f (x )=e x cos x −x .(Ⅰ)求曲线y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数f (x )在区间[0,π2]上的最大值和最小值.(19)(共13分)解:(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<,所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-.21.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<.21.解:(1)()f x 的定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x因为x=x 0是f(x)在(0,1)的最大值点,由()()110,1,'0e f e --∈≠得 ()()120>f x f e e --=所以()2-20<<2e f x -题型二 利用导数研究方程的根、函数的零点或图象交点题型概览:研究方程根、函数零点或图象交点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R .(1)求函数f (x )的单调区间;(2)当a <1时,试确定函数g (x )=f (x -a )-x 2的零点个数,并说明理由. [审题程序]第一步:利用导数求函数的单调区间; 第二步:简化g (x )=0,构造新函数; 第三步:求新函数的单调性及最值; 第四步:确定结果.[规解答] (1)因为f (x )=(x +a )e x ,x ∈R , 所以f ′(x )=(x +a +1)e x . 令f ′(x )=0,得x =-a -1.当x 变化时,f (x )和f ′(x )的变化情况如下:故f ((2)结论:函数g (x )有且仅有一个零点. 理由如下:由g (x )=f (x -a )-x 2=0,得方程x e x -a =x 2, 显然x =0为此方程的一个实数解, 所以x =0是函数g (x )的一个零点. 当x ≠0时,方程可化简为e x -a =x . 设函数F (x )=e x -a -x ,则F ′(x )=e x -a -1, 令F ′(x )=0,得x =a .当x 变化时,F (x )和F ′(x )的变化情况如下:即F (x )所以F (x )的最小值F (x )min =F (a )=1-a . 因为a <1,所以F (x )min =F (a )=1-a >0, 所以对于任意x ∈R ,F (x )>0, 因此方程e x -a =x 无实数解.所以当x ≠0时,函数g (x )不存在零点. 综上,函数g (x )有且仅有一个零点.典例321.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<.21.解:(1)()f x 的定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x 因为x=x 0是f(x)在(0,1)的最大值点,由()()110,1,'0e f e --∈≠得 ()()120>f x f e e --=所以()2-20<<2e f x -[解题反思] 在本例(1)中求f(x)的单调区间的关键是准确求出f′(x),注意到e x>0即可.(2)中由g(x)=0得x e x-a=x2,解此方程易将x 约去,从而产生丢解情况.研究e x-a=x的解转化为研究函数F(x)=e x-a-x的最值,从而确定F(x)零点,这种通过构造函数、研究函数的最值从而确定函数零点的题型是高考中热点题型,要熟练掌握.[答题模板] 解决这类问题的答题模板如下:[题型专练]2.(2017·期中)已知函数f (x )=ax 3+bx 2+(c -3a -2b )x +d 的图象如图所示.(1)求c ,d 的值;(2)若函数f (x )在x =2处的切线方程为3x +y -11=0,求函数f (x )的解析式;(3)在(2)的条件下,函数y =f (x )与y =13f ′(x )+5x +m 的图象有三个不同的交点,求m 的取值围.[解] 函数f (x )的导函数为f ′(x )=3ax 2+2bx +c -3a -2b . (1)由图可知函数f (x )的图象过点(0,3),且f ′(1)=0,得⎩⎨⎧ d =3,3a +2b +c -3a -2b =0,解得⎩⎨⎧d =3,c =0.(2)由(1)得,f (x )=ax 3+bx 2-(3a +2b )x +3, 所以f ′(x )=3ax 2+2bx -(3a +2b ).由函数f (x )在x =2处的切线方程为3x +y -11=0,得⎩⎨⎧f (2)=5,f ′(2)=-3,所以⎩⎨⎧ 8a +4b -6a -4b +3=5,12a +4b -3a -2b =-3,解得⎩⎨⎧a =1,b =-6,所以f (x )=x 3-6x 2+9x +3.(3)由(2)知f (x )=x 3-6x 2+9x +3,所以f ′(x )=3x 2-12x +9. 函数y =f (x )与y =13f ′(x )+5x +m 的图象有三个不同的交点,等价于x 3-6x 2+9x +3=(x 2-4x +3)+5x +m 有三个不等实根,等价于g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个交点. 因为g ′(x )=3x 2-14x +8=(3x -2)(x -4),g ⎝ ⎛⎭⎪⎫3=27-m ,g (4)=-16-m , 当且仅当⎩⎪⎨⎪⎧g ⎝ ⎛⎭⎪⎫23=6827-m >0,g (4)=-16-m <0时,g (x )图象与x 轴有三个交点,解得-16<m <6827. 所以m 的取值围为⎝⎛⎭⎪⎫-16,6827.21.(12分)已知函数)f x =(a e 2x +(a ﹣2) e x﹣x . (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值围. 21.解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)xx x x f x aea e ae e '=+--=-+,(十字相乘法)(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.(观察特殊值1) ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值围为(0,1).题型三 利用导数证明不等式题型概览:证明f (x )<g (x ),x ∈(a ,b ),可以直接构造函数F (x )=f (x )-g (x ),如果F ′(x )<0,则F (x )在(a ,b )上是减函数,同时若F (a )≤0,由减函数的定义可知,x ∈(a ,b )时,有F (x )<0,即证明了f (x )<g (x ).有时需对不等式等价变形后间接构造.若上述方法通过导数不便于讨论F ′(x )的符号,可考虑分别研究f (x )、g (x )的单调性与最值情况,有时需对不等式进行等价转化.(2017·三模)已知函数f (x )=e xx.(1)求曲线y =f (x )在点P ⎝⎛⎭⎪⎫2,e 22处的切线方程;(2)证明:f (x )>2(x -ln x ). [审题程序]第一步:求f ′(x ),写出在点P 处的切线方程;第二步:直接构造g (x )=f (x )-2(x -ln x ),利用导数证明g (x )min >0.[规解答] (1)因为f (x )=e x x ,所以f ′(x )=e x ·x -e x x 2=e x (x -1)x 2,f ′(2)=e 24,又切点为⎝⎛⎭⎪⎫2,e 22,所以切线方程为y -e 22=e 24(x -2),即e 2x -4y =0.(2)证明:设函数g (x )=f (x )-2(x -ln x )=e xx-2x +2ln x ,x ∈(0,+∞),则g ′(x )=e x (x -1)x 2-2+2x =(e x -2x )(x -1)x2,x ∈(0,+∞). 设h (x )=e x -2x ,x ∈(0,+∞),则h ′(x )=e x -2,令h ′(x )=0,则x =ln2.当x ∈(0,ln2)时,h ′(x )<0;当x ∈(ln2,+∞)时,h ′(x )>0. 所以h (x )min =h (ln2)=2-2ln2>0,故h (x )=e x -2x >0. 令g ′(x )=(e x -2x )(x -1)x2=0,则x =1. 当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.所以g (x )min =g (1)=e -2>0,故g (x )=f (x )-2(x -ln x )>0,从而有f (x )>2(x -ln x ).[解题反思] 本例中(2)的证明方法是最常见的不等式证明方法之一,通过合理地构造新函数g (x ).求g (x )的最值来完成.在求g (x )的最值过程中,需要探讨g ′(x )的正负,而此时g ′(x )的式子中有一项e x -2x 的符号不易确定,这时可以单独拿出e x -2x 这一项,再重新构造新函数h (x )=e x -2x (x >0),考虑h (x )的正负问题,此题看似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也是易忽视的一个方向.[答题模板] 解决这类问题的答题模板如下:[题型专练]3.(2017·质检)已知函数f (x )=a e x-b ln x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =⎝ ⎛⎭⎪⎫1e -1x +1.(1)求a ,b ; (2)证明:f (x )>0.[解] (1)函数f (x )的定义域为(0,+∞).f ′(x )=a e x-b x ,由题意得f (1)=1e ,f ′(1)=1e-1,所以⎩⎪⎨⎪⎧a e =1e,a e -b =1e -1,解得⎩⎪⎨⎪⎧a =1e 2,b =1.(2)由(1)知f (x )=1e 2·e x-ln x .因为f ′(x )=ex -2-1x在(0,+∞)上单调递增,又f ′(1)<0,f ′(2)>0,所以f ′(x )=0在(0,+∞)上有唯一实根x 0,且x 0∈(1,2). 当x ∈(0,x 0)时,f ′(x )<0,当x ∈(x 0,+∞)时,f ′(x )>0, 从而当x =x 0时,f (x )取极小值,也是最小值. 由f ′(x 0)=0,得e x 0-2=1x 0,则x 0-2=-ln x 0.故f (x )≥f (x 0)=ex 0-2-ln x 0=1x 0+x 0-2>21x 0·x 0-2=0,所以f (x )>0.4、【2017高考三卷】21.(12分)已知函数()f x =x ﹣1﹣a ln x . (1)若()0f x ≥ ,求a 的值;(2)设m 为整数,且对于任意正整数n ,21111++1+)222n()(1)(﹤m ,求m 的最小值. 21.解:(1)()f x 的定义域为()0,+∞.①若0a ≤,因为11=-+2<022f a ln ⎛⎫ ⎪⎝⎭,所以不满足题意;②若>0a ,由()1ax af 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x=a 是()f x 在()0,+x ∈∞的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1(2)由(1)知当()1,+x ∈∞时,1>0x ln x -- 令1=1+2nx 得111+<22n n ln ⎛⎫ ⎪⎝⎭,从而 2211111111++1+++1+<+++=1-<12222222nn nln ln ln ⎛⎫⎛⎫⎛⎫⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故21111+1+1+<222n e ⎛⎫⎛⎫⎛⎫⋅⋅⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭而231111+1+1+>2222⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 21.(12分)已知函数()f x =ln x +ax 2+(2a +1)x . (1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--. 【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a -单调递增,在),21(+∞-a单调递减;(2)详见解析题型四 利用导数研究恒成立问题题型概览:已知不等式恒成立求参数取值围,构造函数,直接把问题转化为函数的最值问题;若参数不便于分离,或分离以后不便于求解,则考虑直接构造函数法,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值围.已知函数f (x )=12ln x -mx ,g (x )=x -ax(a >0).(1)求函数f (x )的单调区间;(2)若m =12e 2,对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,数a 的取值围.[审题程序]第一步:利用导数判断f (x )的单调性,对m 分类讨论;第二步:对不等式进行等价转化,将g (x 1)≥f (x 2)转化为g (x )min ≥f (x )max ; 第三步:求函数的导数并判断其单调性进而求极值(最值); 第四步:确定结果.[规解答] (1)f (x )=12ln x -mx ,x >0,所以f ′(x )=12x -m ,当m ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当m >0时,由f ′(0)=0得x =12m ;由⎩⎪⎨⎪⎧ f ′(x )>0,x >0得0<x <12m ;由⎩⎪⎨⎪⎧f ′(x )<0,x >0得x >12m .综上所述,当m ≤0时,f ′(x )的单调递增区间为(0,+∞);当m >0时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12m ,单调递减区间为⎝ ⎛⎭⎪⎫12m ,+∞.(2)若m =12e 2,则f (x )=12ln x -12e2x .对∀x1,x2∈[2,2e2]都有g(x1)≥f(x2)成立,等价于对∀x∈[2,2e2]都有g(x)min≥f(x)max,由(1)知在[2,2e2]上f(x)的最大值为f(e2)=12,g′(x)=1+ax2>0(a>0),x∈[2,2e2],函数g(x)在[2,2e2]上是增函数,g(x)min=g(2)=2-a2,由2-a2≥12,得a≤3,又a>0,所以a∈(0,3],所以实数a的取值围为(0,3].[解题反思] 本例(1)的解答中要注意f(x)的定义域,(2)中问题的关键在于准确转化为两个函数f(x)、g(x)的最值问题.本题中,∀x1,x2有g(x1)≥f(x2)⇔g(x)min≥f(x)max.若改为:∃x1,∀x2都有g(x1)≥f(x2),则有g(x)max≥f(x)max.若改为:∀x1,∃x2都有g(x1)≥g(x2),则有g(x)min≥f(x)min要仔细体会,转化准确.[答题模板] 解决这类问题的答题模板如下:[题型专练]4.已知f(x)=x ln x,g(x)=-x2+ax-3.(1)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,数a的取值围;(2)证明:对一切x∈(0,+∞),ln x>1e x -2e x恒成立.[解] (1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立, 则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x(x >0),则h ′(x )=(x +3)(x -1)x2, ①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减,②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4.即实数a 的取值围是(-∞,4].(2)证明:问题等价于证明x ln x >x e x -2e (x ∈(0,+∞)).又f (x )=x ln x ,f ′(x )=ln x +1,当x ∈⎝⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .设m (x )=xe x -2e (x ∈(0,+∞)),则m ′(x )=1-xe x ,易知m (x )max =m (1)=-1e,从而对一切x ∈(0,+∞),ln x >1e x -2e x 恒成立.②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,所以a≤h(x)min=4.即实数a的取值围是(-∞,4].题型五:二阶导主要用于求函数的取值围23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.题型六:求含参数求知围此类问题一般分为两类:一、也可分离变量,构造函数,直接把问题转化为函数的最值问题.此法适用于方便分离参数并可求出函数最大值与最小值的情况,若题中涉及多个未知参量需分离出具有明确定义域的参量函数求出取值围并进行消参,由多参数降为单参在求出参数取值围。

高考导数压轴题型归类总结

高考导数压轴题型归类总结

⑴当a 0时,f (x) x2e x ,f '(x) (x2 2x)e x,故f '(1) 3e.
所以曲线y f (x)在点(1, f (1))处的切线的斜率为3e.
f '(x) x (a 2)x 2a 4ae . ⑵
2
2
x
w.w.w. k.s.5.u.c.o.m
令f '(x) 0,解得x 2a,或x a 2.由a 2 知, 2a a 2. 3
函数f ( x)在x 2a处取得极大值f (2a),且f (2a) 3ae 2a . w.w.w.k.s.5.u.c.o.m
函数f (x)在x a 2处取得极小值f (a 2),且f (a 2) (4 3a)ea2.
② 若a < 2 ,则 2a > a 2 ,当 x 变化时, f '(x),f (x) 的变化情况如下表: 3
5
已知函数 f (x) =ln(1+ x )- x + x x2 ( k ≥0). 2
(Ⅰ)当 k =2时,求曲线 y = f (x) 在点(1, f (1))处的切线方程;
(Ⅱ)求 f (x) 的单调区间.
解:(I)当 k 2 时, f (x) ln(1 x) x x2 , f '(x) 1 1 2x 1 x
(0,)

令 g(x) ax2 x 1 a, x (0,),
8. (是一道设计巧妙的好题,同时用到 e 底指、对数,需要构造函数,证存在且唯一时结合零 点存在性定理不好想,⑴⑵联系紧密)
已知函数 f (x) ln x, g(x) ex.
⑴若函数 φ (x) = f (x)- x 1 ,求函数 φ (x)的单调区间; x1
2
以下分两种情况讨论:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数
1.导数公式:'0C = '1()n n x nx -= '(sin )cos x x = '(cos )sin x x =-
'()x x e e = '()ln x x a a a = '1(ln )x x = '1(log )ln a x x a
= 2.运算法则:'''()u v u v +=+ '''()u v u v -=- '''()uv u v uv =+ ''
'2
()u u v uv v v -= 3.复合函数的求导法则:(整体代换)
例如:已知2()3sin (2)3f x x π
=+,求'()f x 。

4.导数的物理意义:位移的导数是速度,速度的导数是加速度。

5.导数的几何意义:导数就是切线斜率。

6.用导数求单调区间、极值、最值、零点个数:对于给定区间[,]a b 内,若'()0f x >,则()f x 在[,]a b 内是增函数;若'()0f x <,则()f x 在[,]a b 内是减函数。

【题型一】求函数的导数 1(1)ln x
y x = (2)2sin(3)4y x π
=- (3)2(1)x y e x =-
(4)3235y x x =-- (5)231
x x y x -=+ (6)221
1()y x x x x
=++ 2.已知物体的运动方程为22
3s t t =+(t 是时间,s 是位移),则物体在
时刻2t =时的速度为 。

【题型三】导数与切线方程(导数的几何意义的应用)
3.曲线32y x x =+-在点(2,8)A 处的切线方程是 。

4.若(1,)B m 是32y x x =+-上的点,则曲线在点B 处的切线方程是 。

5.若32y x x =+-在P 处的切线平行于直线71y x =+,则点P 的坐标是 。

6.若23ln 4
x y x =-的一条切线垂直于直线20x y m +-=,则切点坐标为 。

7.函数12+=ax y 的图象与直线x y =相切, 则a = 。

8.已知曲线11
x y x +=
-在(3,2)处的切线与0ax y m ++=垂直,则a = 。

9.已知直线y x m =+与曲线321y x x =-+相切,求切点P 的坐标及参数m 的值。

10.若曲线)(x h y =在点(,()a h a )处切线方程为012=++y x ,那么( )
A .
0)('<a h B. 0)('>a h C. 0)('=a h D. )('a h 的符号不定 11.曲线46323+++=x x x y 的所有切线中, 斜率最小的切线的方程是 。

12.求曲线3231y x x =-++过点(1,1)和(2,5)的切线方程。

【易错题】
【题型四】导数与单调区间
13.函数13)(23+-=x x x f 的减区间为 。

14.函数)
0,0(≥>=-x n e x y x n 的单调递增区间
为 。

15.判断函数cos sin y x x x =-在下面哪个区间内是增函数( ) A.3(,)22ππ B.(,)22
ππ- C.(,2)ππ D.(0,)π 16.已知函数32321y x x =+-在区间(,0)m 上为减函数, 则m 的取值范围是 。

【题型五】导数与极值、最值
17.函数3125y x x =-+在x = 时取得极大值 ,在x = 时取得极
小值 。

18.函数32()23f x x x =-+在[1,1]-上的最大值是 ,与最小值是 。

19.函数)0(≥-=x x x y 的最大值为 。

20.函数93)(23-++=x ax x x f 在3-=x 时取得极值, 则=a 。

21.已知a a x x x f (62)(23+-=为常数)在]2,2[-上有最大值是3, 那么
]2,2[-在上的最小值是 。

22.已知函数322+--=x x y 在区间[,2]a 上的最大值为154
, 则a = 。

23.函数⎥⎦⎤⎢⎣⎡-∈-=2,2,2sin π
πx x x y 的最大值是 ,最小值是 。

24.若1)2(33)(23++++=x a ax x x f 既有极大值又有极小值,求a 的取值范围。

【题型六】导数与零点,恒成立问题 零点定理:若函数()f x 在区间[,]a b 上满足()()0f a f b ⋅<,则()f x 在区间
[,]a b 上是至少有一个零点。

(即()0f x =在区间[,]a b 上是至少有一个解) 25.判断函数2()log (2)f x x x =+-在[1,3]上是否存在零点
26.已知[1,3]x ∈-,且144234++-≤x x x a 恒成立,则a 的最大值为 。

相关文档
最新文档