高考导数压轴题型归类总结

合集下载

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。

方法:f'(x)为在x=x处的切线的斜率。

题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。

方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。

例题:已知函数f(x)=x-3x。

1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。

提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。

将问题转化为关于x,m的方程有三个不同实数根问题。

答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。

1)求过点(1,-3)与曲线y=x-3x相切的直线方程。

(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。

题型3:求两个曲线y=f(x)、y=g(x)的公切线。

方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例题:求曲线y=x与曲线y=2elnx的公切线方程。

(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。

(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。

导数压轴六大类型

导数压轴六大类型

导数培优六大类型(方法学习,题型分类,对应练习,结论总结)类型一:凹凸反转类型二:导函数的零点类型三:导数中的函数构造类型四:极值点偏移类型五:指对同构类型六:指数、对数均值不等式类型一:凹凸反转知识拓展1.如果要证明的不等式由指数函数、对数函数、多项式函数组合而成,往往进行指对分离,转化为证明g (x )≥h (x ),分别求g (x )min ,h (x )max 进行证明,由于两个函数图象的凹凸性正好相反,所以这种证明不等式的方法称为凹凸反转.2.以下是凹凸反转常用经典模型:经典模型一:y =ln x x (图1)或y =xln x 2).推广:y =ln x x n 或y =xnln x.经典模型二:y =x ln x (图3)或y =x e x (图4).推广:y =x nlnx 或y =x n e x .经典模型三:y =e xx (图5)或y =xe x (图6).推广:y =e xx n 或y =xnex .经典模型四:y =x -ln x (图7)或y =x -e x (图8),y =e x -x (图9).题型一隔海相望例1已知函数f (x )=x ln x ,求证:f (x )<2e x -2.训练1已知函数f(x)=a ln x+x.(1)讨论f(x)的单调性;(2)当a=1时,证明:xf(x)<e x.题型二一线之隔例2设函数f(x)=e x ln x+2e x-1x,证明:f(x)>1.训练2已知函数f(x)=e x+x2-x-1.(1)求f(x)的最小值;(2)证明:e x+x ln x+x2-2x>0.题型三亲密无间例3已知函数f(x)=eln x-e x,证明:xf(x)-e x+2e x≤0.训练3证明:当x>0时,x2e x-x ln x+)e11( x-1≤0.类型二:导函数的零点题型分析导数是研究函数性质的有力工具,其核心又是由导函数值的正负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究函数f(x)的单调性,往往需要解方程f′(x)=0,但有时该方程不易求解,可应用以下三种方法解决.题型一仔细观察,猜出零点例1已知函数f(x)=ln(x+1)+1,若f(x)<k e x对任意的x∈(-1,+∞)恒成立,求k的取值范围.训练1已知函数f(x)=(2e-x)ln x,且f(x)=12a有解,其中e为自然对数的底数,求实数a的取值范围.题型二设而不求,巧借零点例2设函数f (x )=e 2x-a ln x .(1)讨论f (x )的导函数f ′(x )的零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a.训练2已知函数f (x )=e x -x 2-x ,若关于x 的不等式f (x )>m +45对于任意x ∈(0,+∞)恒成立,求整数m 的最大值.题型三二次构造(求导)避免求根例3已知函数f (x )=ln x +12a (x -1)2,若a >4,且f (x )在(01)上有唯一的零点x 0,求证:e -2<x 0<e -1.训练3已知f (x )=e 2x -(x +1)e x,且f (x )≥0,证明:f (x )存在唯一极大值点x 0,且f (x 0)<316.类型三:导数中的函数构造问题题型分析近三年的高考数学试题都出现了比较大小问题,且是作为小题中的压轴题出现的,此类问题,通常需要构造函数,利用导数判断其单调性,从而使问题得以解决.题型一通过导数的运算法则构造角度1利用f (x )与e x构造例1已知函数f (x )的导函数为f ′(x ),且f (x )+f ′(x )>0在R 上恒成立,则不等式e2x +1f (2x +1)>e 3-x f (3-x )的解集是________.角度2利用f (x )与x n构造例2已知定义在(0,+∞)上的函数f (x )满足2xf (x )+x 2f ′(x )<0,f (2)=34,则关于x 的不等式x 2f (x )>3的解集为()A.(0,4)B.(2,+∞)C.(4,+∞)D.(0,2)角度3利用f (x )与sin x ,cos x 构造例3(多选)已知函数y =f (x )对任意x ∈)2,2(ππ-满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式成立的是()A.f (0)>2f 4(πB.2f 3(π>f )4(πC.f (0)>2f )3(πD.2f )3(π-<f )4(π-训练1(1)f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,下列式子一定成立的是()A.f (a )<e af (0) B.f (a )>e af (0)C.f (a )<f (0)e a D.f (a )>f (0)ea (2)已知定义在R 上的函数f (x )的导函数为f ′(x ),当x >0时,xf ′(x )-f (x )>0,若a =f (1),b =f (2)2,c =2f )21(,则a ,b ,c 的大小关系是________.(3)已知定义在R 上的函数f (x )的导函数为f ′(x ),对任意x ∈(0,π),有f ′(x )sin x >f (x )cos x ,设a =2f )6(π,b =2f )4(π,c =f )2(π,则a ,b ,c 的大小关系为________.题型二通过变量构造具体函数例4已知a <5,且a e 5=5e a ,b <4且b e 4=4e b ,c <3且c e 3=3e c,则()A.c <b <aB.b <c <aC.a <c <bD.a <b <c训练2若0<x 1<x 2<1,则()A.e x 2-e x 1>ln x 2-ln x 1B.e x 2-e x 1<ln x 2-ln x 1C.x 2e x 1>x 1e x 2D.x 2e x 1<x 1e x 2题型三通过数值构造具体函数例5(1)已知a =ln 22,b =1e ,c =2ln 39,则a ,b ,c 的大小关系为________.(2)设a =2ln 1.01,b =ln 1.02,c = 1.04-1,则a ,b ,c 的大小关系为________.训练3(1)已知a =e -0.1-1,b =tan(-0.1),c =ln 0.9,则()A.c >a >bB.a >b >cC.b >a >cD.a >c >b(2)实数e 3,3π,π3的大小关系为________.泰勒展开式1.泰勒公式若函数f(x)在含有x0的开区间(a,b)内有n+1阶导数,则当函数在此区间内时,可以展开为一个关于x-x0的多项式和一个余项的和:f(x)=f(x0)+f′(x)·(x-x)+f″(x)2!·(x-x)2+f(x)3!·(x-x)3+…+f(n)(x)n!·(x-x)n+Rn(x).2.麦克劳林公式f(x)=f(0)+f′(0)x1!+f″(0)2!x2+…+f(n)(0)n!·x n+Rn(x).虽然麦克劳林公式是泰勒公式的特殊形式,仅仅是取x0=0的特殊结果,由于麦克劳林公式使用方便,在高考中经常会涉及.3.常见的泰勒展开式在泰勒公式中,令x0=0,即可得到如下泰勒展开式:(1)e x=1+x+x22!+x33!+…+x nn!+…;(2)ln(x+1)=x-x22+x33+…+(-1)n+1x nn+…;(3)sin x=x-x33!+x55!+…+(-1)n-1·x2n-1(2n-1)!+…;(4)cos x=1-x22!+x44!+…+(-1)n-1·x2n-2(2n-2)!+….例已知a=3132,b=cos14,c=4sin14,则()A.c>b>aB.b>a>cC.a>b>cD.a>c>b训练若a=ln1-0.010.02,b=0.02sin0.01,c=0.01sin0.02,则() A.a<b<c B.a<c<bC.b<c<aD.c<a<b类型四:极值点偏移知识拓展1.极值点不偏移已知函数f (x )图象的顶点的横坐标就是极值点x 0,若f (x )=c 的两根的中点刚好满足x 1+x 22=x 0,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数f (x )在x =x 0两侧,函数值变化快慢相同,如图①.(无偏移,左右对称,如二次函数)若f (x 1)=f (x 2),则x 1+x 2=2x 0.2.极值点偏移若x 1+x 22≠x 0,则极值点偏移,此时函数f (x )在x =x 0两侧,函数值变化快慢不同,如图②③.(左陡右缓,极值点向左偏移)若f (x 1)=f (x 2),则x 1+x 2>2x 0;(左缓右陡,极值点向右偏移)若f (x 1)=f (x 2),则x 1+x 2<2x 0.题型一对称化构造辅助函数例1已知函数f (x )=x e -x.(1)求f (x )的单调区间和极值;(2)若x 1≠x 2,且f (x 1)=f (x 2),求证:x 1+x 2>2.训练1已知函数f(x)=x(1-ln x),若f(x)=m有两个根x1,x2(x1≠x2),求证:x1+x2>2.题型二比、差值换元构造辅助函数例2已知函数f(x)=ln x-ax(x>0),a为常数,若函数f(x)有两个零点x1,x2(x1≠x2),求证:x1x2>e2.训练2已知函数f(x)=a e x-x,a∈R.若f(x)有两个不同的零点x1,x2,证明:x1+x2>2.类型五:指、对同构知识拓展在解决指对混合不等式时,如恒成立求参数或证明不等式,部分试题是命题者利用函数单调性构造出来的,如果我们能找到这个函数模型(即不等式两边对应的是同一函数),无疑大大加快解决问题的速度.找到这个函数模型的方法,我们称为同构法,其实质还是指数、对数恒等式的变换.(1)五个常见变形:x e x =ex +ln x,e x x =e x -ln x ,x e x =e ln x -x ,x +ln x =ln(x e x ),x -ln x =ln e xx(2)三种基本模式①积型:a e a≤b ln b――→三种同构方式a e a ≤(lnb )e ln b ――→构造f (x )=x e x,a ln e a ≤b ln b ――→构造f (x )=x ln x ,a +ln a ≤lnb +ln(ln b )――→构造f (x )=x +ln x .②商型:e aa <b ln b ――→三种同构方式同左:e aa <e ln bln b ――→构造f (x )=e xx ,同右:e a ln e a<b ln b ――→构造f (x )=x ln x,a -ln a <ln b -ln(ln b )――→构造f (x )=x -ln x .③和差型:e a ±a >b ±ln b――→两种同构方式a ±a >e lnb ±ln b ――→构造f (x )=e x ±x ,a ±ln e a >b ±ln b ――→构造f (x )=x ±ln x .题型一积型例1(1)已知实数α,β满足αe α-3=1,β(ln β-1)=e 4,其中e 是自然对数的底数,则αβ的值为________.(2)设实数m >0,若对任意的x ≥e,不等式x 2lnx -m xm e ≥0恒成立,则m 的最大值为________.训练1(1)设实数λ>0,对任意的x >1,不等式λe λx ≥ln x 恒成立,则λ的取值范围为________.(2)已知函数f (x )=e mx +x -x ln x (m ≥0),设函数f (x )的导函数为f ′(x ),讨论f ′(x )零点的个数.题型二商型例2(1)已知函数f (x )=ln xx,g (x )=x e -x ,若存在x 1∈(0,+∞),x 2∈R ,使得f (x 1)=g (x 2)=k (k <0)成立,则212)(x x e x的最大值为________.(2)已知函数f (x )=a e x ln x ,g (x )=x 2+x ln a ,a >0.设函数h (x )=g (x )-f (x ),若h (x )>0对任意的x ∈(0,1)恒成立,则实数a 的取值范围是________.训练2已知函数f (x )=ln e ax-1eax,若不等式f (x )≥ln x -1x 对x ∈(0,e]恒成立,求a 的取值范围.题型三和差型例3已知函数f (x )=a e x -1-ln x +ln a ,若f (x )≥1,求a 的取值范围.训练3设函数f (x )=e x -ln(x +a ),a ∈R .当x ∈(-a ,+∞)时,f (x )≥a 恒成立,求a 的最大值.类型六:指数、对数均值不等式知识拓展对数与指数均值不等式结论1对任意的a,b>0(a≠b),有ab<a-bln a-ln b<a+b2.证明不妨设a>b>0(0<a<b时同理可得)首先,由ab<a-bln a-ln b等价于ln a-ln b<a-bab,即lnab<ab-1ab.令x=ab>1,只要证ln x2<x2-1x,即证2x ln x-x2+1<0.令f(x)=2x ln x-x2+1(x>1),则f′(x)=2ln x+2-2x,f″(x)=2x-2<0,f′(x)在(1,+∞)单调递减,f′(x)<f′(1)=0,f(x)在(1,+∞)单调递减,即f(x)<f(1)=0.故ab<a-bln a-ln b.其次,a-bln a-ln b<a+b2等价于ln a-ln b>2(a-b)a+b,即ln ab>1)1(2+-baba.令x=ab>1,只要证ln x>2(x-1)x+1,即证(x+1)ln x-2x+2>0.设g(x)=(x+1)ln x-2x+2(x>1),同理可证g(x)在(1,+∞)单调递增,有g(x)>g(1)=0.故a-bln a-ln b<a+b2.结论2对任意实数m ,n (m ≠n ),有22n m n m n m e e n m e e e+<--<+证明在指数均值不等式中,令e m =a ,e n =b ,则m =ln a ,n =ln b ,从而可得对数均值不等式.题型一对数均值不等式的应用例1已知函数f (x )=1x -x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.训练1若函数f (x )=ln x -ax 有两个不同的零点x 1,x 2,证明:x 1x 2>e 2.(注:此题用对数均值不等式证明)题型二指数均值不等式例2已知函数f(x)=e x-ax(a>1)有两个不同的零点x1,x2,x1<x2,求证:x1+x2>2.训练2已知a∈R,函数f(x)=2ln(x-2)+a(x-2)2,若函数f(x)的两个相异零点x1,x2,求证:x1x2+4>2(x1+x2)+e.。

高考数学导数压轴题7大题型的总结

高考数学导数压轴题7大题型的总结

高考数学导数压轴题7大题型总结
北京八中
高考数学导数压轴题7大题型总结
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。

导数解答题是高考数学必考题目,今天就总结导数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题
01导数单调性、极值、最值的直接应用
02交点与根的分布
03不等式证明(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
04不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
05函数与导数性质的综合运用
06导数应用题
07导数结合三角函数
实用标准
文案大全。

(完整版)高三导数压轴题题型归纳

(完整版)高三导数压轴题题型归纳

导数压轴题题型1. 高考命题回顾例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷)(1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.(1)解 f (x )=e x -ln(x +m )⇒f ′(x )=e x -1x +m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{x |x >-1},f ′(x )=e x-1x +m=e x x +1-1x +1,显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1x +2(x >-2).h (x )=g ′(x )=e x -1x +2(x >-2)⇒h ′(x )=e x +1x +22>0,所以h (x )是增函数,h (x )=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (x )=g ′(x )=0的唯一实根在区间⎝⎛⎭⎫-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0⎝⎛⎭⎫-12<t <0, 所以,e t =1t +2⇒t +2=e -t ,当x ∈(-2,t )时,g ′(x )<g ′(t )=0,g (x )单调递减; 当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2t +2>0,当m ≤2时,有ln(x +m )≤ln(x +2),所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2121)0()1(')(x x f ef x f x +-=-(2012全国新课标) (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值。

2020高考导数压轴题型归类总结

2020高考导数压轴题型归类总结

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母范围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .所以当33=x 时,)(x g 有最小值932)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222 所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率;⑵当23a ≠时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

高考导数压轴之题型归纳

高考导数压轴之题型归纳

专题01 导数起源于切线,曲线联系需熟练【题型综述】导数的几何意义:【注】曲线的切线的求法:若已知曲线过点P(x0,y0),求曲线过点P的切线,则需分点P(x0,y0)是切点和不是切点两种情况求解.(1)当点P(x0,y0)是切点时,切线方程为y−y0=f ′(x0)(x−x0);(2)当点P(x0,y0)不是切点时,可分以下几步完成:第一步:设出切点坐标P′(x1,f (x1));第二步:写出过P′(x1,f (x1))的切线方程为y−f (x1)=f ′ (x1)(x−x1);第三步:将点P的坐标(x0,y0)代入切线方程求出x1;第四步:将x1的值代入方程y−f (x1)=f ′(x1)(x−x1),可得过点P(x0,y0)的切线方程.求曲线y=f (x)的切线方程的类型及方法(1)已知切点P(x0, y0),求y=f (x)过点P的切线方程:求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0, y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0, y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k=f′(x0)求出切点坐标(x0, y0),最后写出切线方程.(5)①在点P处的切线即是以P为切点的切线,P一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.【典例指引】例1.(2013全国新课标Ⅰ卷节选)已知函数f(x)=x 2+ax +b ,g(x)=e x(cx +d),若曲线y =f(x)和曲线y =g (x)都过点P(0,2),且在点P 处有相同的切线y =4x+2. (Ⅰ)求a ,b ,c ,d 的值.(2)当时,曲线在点处的切线为,与轴交于点, 求证:.例3.已知函数在点处的切线方程为.⑴求函数的解析式;⑵若对于区间上任意两个自变量的值都有,求实数的最小值; ⑶若过点可作曲线的三条切线,求实数的取值范围. 为点不在曲线上,所以可设切点为. 则.因为,所以切线的斜率为所以方程有三个不同的实数解. 所以函数有三个不同的零点.则.令,则或.0>a )(x f y =)))((,(111a x x f x P >l l x )0,(2x A a x x >>21()()323,f x ax bx x a b R =+-∈()()1,1f 20y +=()f x []2,2-12,x x ()()12f x f x c -≤c ()()2,2M m m ≠()y f x =m ()()2,2M m m ≠()y f x =()00,x y 30003y x x =-()20033f x x '=-2033x -32002660x x m -++=()32266g x x x m =-++()2612g x x x '=-()0g x '=0x =2x =则 ,即,解得 则=,即.因为过点可作曲线的三条切线,【同步训练】1【思路引导】(1为切点,列出方程解出a ,b 的值;(Ⅱ)把a ,b 的值代入解析式,对函数求导判断单调性,根据单调区间写出函数的最值. 2.已知函数,其导函数的两个零点为-3和0.(1)求曲线在点处的切线方程;(2)求函数的单调区间; (3)求函数在区间上的最值. 【思路引导】对函数求导,由于导函数有两个零点,所以这两个零点值满足,解方程组求出m ,n ;利用导数的几何意义求切线方程,先求 f(1),求出切点,再求得出斜率,利用点斜式写出切线方程,求单调区间只需在定义域下解不等式和,求出增区间和减区间;求函数在闭区间上的最值,先研究函数在该区间的单调性、极值,求出区间两端点的函数值,比较后得出最值()0022g g >⎧⎪⎨<⎪⎩6020m m +>⎧⎨-+<⎩62m -<<2033x -300032x x mx ---32002660x x m -++=()()2,2M m m ≠()y f x =.3函数.已知图象为曲直线(1(2的最小值. 【思路引导】根据导数的几何意义,借助切点和斜率列方程求出,b c ,得出函数的解析式,利用导数解()0f x '<求出函数的单调减区间;对任意[]2,x m m ∈-,函数()()16f x g x m=为“storm ”函数,等价于在[]2,m m -上, ()()max min 16f x f x m -≤,根据函数()f x 的在[]2,m m -上的单调性,求出()f x 的最值,根据条件求出m 的范围,得出结论.4()4(1(2(3【思路引导】(1)求出原函数的导函数,得到导函数的零点,由零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性;(2)设出点p 的坐标,利用导数求出切线方程3)由(2)知,(注:文档可能无法思考全面,请浏览后下载,供参考。

高考导数压轴题型归类总结

高考导数压轴题型归类总结

高考导数压轴题型归类总结一、导数单调性、极值、最值的直接应用 已知函数1()ln 1()af x x ax a R x-=-+-∈ ⑴当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;⑵当12a ≤时,讨论()f x 的单调性.1. 已知函数221()2,()3ln .2f x x axg x a x b =+=+⑴设两曲线()()y f x y g x ==与有公共点,且在公共点处的切线相同,若0a >,试建立b 关于a 的函数关系式,并求b 的最大值; ⑵若[0,2],()()()(2)b h x f x g x a b x ∈=+--在(0,4)上为单调函数,求a 的取值范围。

2. (最值直接应用)已知函数)1ln(21)(2x ax x x f +--=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.设函数221()(2)ln (0)ax f x a x a x+=-+<. (1)讨论函数()f x 在定义域内的单调性;(2)当(3,2)a ∈--时,任意12,[1,3]x x ∈,12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.3. (最值应用,转换变量)4. (最值应用)已知二次函数()g x 对x R ∀∈都满足2(1)(1)21g x g x x x -+-=--且(1)1g =-,设函数19()()ln 28f xg x m x =+++(m R ∈,0x >).(Ⅰ)求()g x 的表达式;(Ⅱ)若x R +∃∈,使()0f x ≤成立,求实数m 的取值范围;(Ⅲ)设1m e <≤,()()(1)H x f x m x =-+,求证:对于12[1,]x x m ∀∈,,恒有12|()()|1H x H x -<.5. 设3x =是函数()()()23,x f x x ax b e x R -=++∈的一个极值点. (1)求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;(2)设()2250,4xa g x a e ⎛⎫>=+ ⎪⎝⎭,若存在[]12,0,4ξξ∈,使得()()121f g ξξ-< 成立,求a 的取值范围.6. 7.8. (2010山东,两边分求,最小值与最大值) 已知函数2()ln ,()3f x x x g x x ax ==-+-. ⑴求()f x 在[,2](0)t t t +>上的最小值;⑵若存在1,x e e ⎡⎤∈⎢⎥⎣⎦(e 是常数,e =2.71828⋅⋅⋅)使不等式2()()f x g x ≥成立,求实数a 的取值范围; ⑶证明对一切(0,),x ∈+∞都有12ln xx e ex>-成立.9. (最值应用) 设函数()2ln q f x px x x =--,且()2pf e qe e=--,其中e 是自然对数的底数. ⑴求p 与q 的关系;⑵若()f x 在其定义域内为单调函数,求p 的取值范围; ⑶设2()eg x x=,若在[]1,e 上至少存在一点0x ,使得0()f x >0()g x 成立,求实数p 的取值范围.10. (2011湖南文,第2问难,单调性与极值,好题)设函数1()ln ().f x x a x a R x =--∈⑴讨论函数()f x 的单调性;⑵若()f x 有两个极值点12,x x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.11. (构造函数,好,较难)已知函数21()ln (1)(0)2f x x ax a x a R a =-+-∈≠,.⑴求函数()f x 的单调增区间;⑵记函数()F x 的图象为曲线C ,设点1122(,)(,)A x y B x y 、是曲线C 上两个不同点,如果曲线C 上存在点00(,)M x y ,使得:①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数()F x 存在“中值相依切线”.试问:函数()f x 是否存在中值相依切线,请说明理由.12. (2011天津理19,综合应用)已知0a >,函数()2ln f x x ax =-,0x >.(()f x 的图象连续) ⑴求()f x 的单调区间;⑵若存在属于区间[]1,3的,αβ,且1βα-≥,使()()f f αβ=,证明:ln 3ln 2ln 253a -≤≤.13. (单调性,用到二阶导数的技巧) 已知函数x x f ln )(= ⑴若)()()(R a xax f x F ∈+=,求)(x F 的极大值;⑵若kx x f x G -=2)]([)(在定义域内单调递减,求满足此条件的实数k 的取值范围.已知函数()ln ,().x f x x g x e == ⑴若函数φ (x ) = f (x )-11x x ,求函数φ (x )的单调区间; ⑵设直线l 为函数f (x )的图象上一点A (x 0,f (x 0))处的切线,证明:在区间(1,+∞)上存在唯一的x 0,使得直线l 与曲线y =g (x )相切.二、交点与根的分布14. (2008四川22,交点个数与根的分布)已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点. ⑴求a ;⑵求函数()f x 的单调区间;⑶若直线y b =与函数()y f x =的图像有3个交点,求b 的取值范围. 15. 已知函数()32f x x ax bx c =-+++在(),0-∞上是减函数,在()0,1上是增函数,函数()f x 在R 上有三个零点. (1)求b 的值;(2)若1是其中一个零点,求()2f 的取值范围;(3)若()()'213ln a g x f x x x ==++,,试问过点(2,5)可作多少条直线与曲线y=g(x )相切?请说明理由.16. (交点个数与根的分布)已知函数2()8,()6ln .f x x x g x x m =-+=+ ⑴求()f x 在区间[],1t t +上的最大值();h t⑵是否存在实数,m 使得()y f x =的图像与()y g x =的图像有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。

高考导数压轴题型归类总结

高考导数压轴题型归类总结

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母范围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .)(x g '(2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--.令0=y ,得12122x ax x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值.解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
一、导数单调性、极值、最值的直接应用
1. (切线)设函数 f (x) x 2 a . (1)当 a 1时,求函数 g(x) xf (x) 在区间[0,1] 上的最小值; (2)当 a 0 时,曲线 y f (x) 在点 P(x1, f (x1 ))(x1 a ) 处的切线为 l ,l 与 x 轴交于点 A(x2 ,0) 求证: x1 x2 a .
x ,a 2 a 2 a 2, 2a 2a 2a,
+
0

0
+

极大值

极小值↗Βιβλιοθήκη 所以f (x)在(,a 2),(2a, )内是增函数,在(a 2, 2a)内是减函数。
函数f ( x)在x a 2处取得极大值f (a 2),且f (a 2) (4 3a)e a2 . w.w.w.k.s.5.u.c.o.m
⑴当a 0时,f (x) x2e x ,f '(x) (x2 2x)e x,故f '(1) 3e.
所以曲线y f (x)在点(1, f (1))处的切线的斜率为3e.
f '(x) x (a 2)x 2a 4ae . ⑵
2
2
x
w.w.w. k.s.5.u.c.o.m
令f '(x) 0,解得x 2a,或x a 2.由a 2 知, 2a a 2. 3
a 0 y f (x)在点(1, f (1)) ⑴当
时,求曲线
处的切线的斜率;w.w.w.k.s.5.u.c.o.m
⑵当 a 2 时,求函数 f (x) 的单调区间与极值. 3
解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础
知识,考查运算能力及分类讨论的思想方法。
∴f(x)min=f(e)=1- a = 3 ,∴a=- e (舍去).
e2
2
③若-e<a<-1,令f ′(x)=0,得x=-a.
当1<x<-a时,f ′(x)<0,∴f(x)在(1,-a)上为减函数;
当-a<x<e时,f ′(x)>0,∴f(x)在(-a,e)上为增函数,
2
以下分两种情况讨论:
① 若a > 2 ,则 2a < a 2 .当 x 变化时, f '(x),f (x) 的变化情况如下表: 3
x , 2a 2a 2a,
a 2 a 2,
+
0

0
+

极大值

极小值

所以f (x)在(, 2a),(a 2, )内是增函数,在(2a,a 2)内是减函数.
五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85)
书中常用结论
⑴ sin x x, x (0, ) ,变形即为 sin x 1,其几何意义为 y sin x, x (0, ) 上的的点与原 x
点连线斜率小于1.
⑵ex x 1 ⑶ x ln(x 1) ⑷ ln x x ex , x 0 .
解:(1) a 1时, g(x) x3 x ,由 g (x) 3x 2 1 0 ,解得 x 3 . 3
g (x) 的变化情况如下表:
x
g (x) g (x)
0
(0, 3 )
3
-
0↘
3
( 3 ,1)
1
3
3
0
+
极小值 ↗
0
所以当 x 3 时, g(x) 有最小值 g( 3 ) 2 3 .
3
4. (最值,按区间端点讨论)
已知函数f(x)=lnx- a . x
(1)当a>0时,判断f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为 3 ,求a的值. 2
解:(1)由题得f(x)的定义域为(0,+∞),且
f ′(x)= 1 x

a x2

xa x2
.
∵a>0,∴f ′(x)>0,故f(x)在(0,+∞)上是单调递增函数.
导数压轴题型归类总结
目录
一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)
(一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式
四、不等式恒成立求字母范围 (51)
(一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围
函数f (x)在x 2a处取得极小值f (2a),且f (2a) 3ae2a .
3. 已知函数 f (x) 1 x2 2ax, g(x) 3a2 ln x b. 2
⑴设两曲线 y f (x)与y g(x) 有公共点,且在公共点处的切线相同,若 a 0 ,试建立 b 关
于 a 的函数关系式,并求 b 的最大值; ⑵若 b [0, 2], h(x) f (x) g(x) (2a b)x 在(0,4)上为单调函数,求 a 的取值范围。
函数f ( x)在x 2a处取得极大值f (2a),且f (2a) 3ae 2a . w.w.w.k.s.5.u.c.o.m
函数f (x)在x a 2处取得极小值f (a 2),且f (a 2) (4 3a)ea2.
② 若a < 2 ,则 2a > a 2 ,当 x 变化时, f '(x),f (x) 的变化情况如下表: 3
∵ x1
a
,∴ a x12 2x1
0 ,即 x2
x1 .
又∵
x1 2
a 2x1
,∴ x2
x12 a 2 x1
x1 2
a 2x1
2
x1 a 2 2x1
a
所以 x1 x2 a .
2. (2009天津理20,极值比较讨论)
已知函数 f (x) (x2 ax 2a2 3a)ex (x R), 其中 a R
(2)由(1)可知:f ′(x)= x a , x2
①若a≥-1,则x+a≥0,即f ′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数,
∴f(x)min=f(1)=-a= 3 ,∴a=- 3 (舍去).
2
2
②若a≤-e,则x+a≤0,即f ′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数,
3
3
9
(2)证明:曲线 y f (x) 在点 P(x1,2x12 a) 处的切线斜率 k f (x1 ) 2x1
曲线 y f (x) 在点P处的切线方程为 y (2x12 a) 2x1 (x x1 ) .

y
0
,得
x2
x12 2x1
a
,∴ x2
x1
x12 2x1
a
x1
a
x12 2x1
相关文档
最新文档