高考导数压轴题型归类总结材料
高考数学导数压轴题7大题型的总结

高考数学导数压轴题7大题型总结
北京八中
高考数学导数压轴题7大题型总结
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。
导数解答题是高考数学必考题目,今天就总结导数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题
01导数单调性、极值、最值的直接应用
02交点与根的分布
03不等式证明(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
04不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
05函数与导数性质的综合运用
06导数应用题
07导数结合三角函数
实用标准
文案大全。
(完整版)高三导数压轴题题型归纳

导数压轴题题型1. 高考命题回顾例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷)(1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.(1)解 f (x )=e x -ln(x +m )⇒f ′(x )=e x -1x +m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{x |x >-1},f ′(x )=e x-1x +m=e x x +1-1x +1,显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1x +2(x >-2).h (x )=g ′(x )=e x -1x +2(x >-2)⇒h ′(x )=e x +1x +22>0,所以h (x )是增函数,h (x )=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (x )=g ′(x )=0的唯一实根在区间⎝⎛⎭⎫-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0⎝⎛⎭⎫-12<t <0, 所以,e t =1t +2⇒t +2=e -t ,当x ∈(-2,t )时,g ′(x )<g ′(t )=0,g (x )单调递减; 当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2t +2>0,当m ≤2时,有ln(x +m )≤ln(x +2),所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2121)0()1(')(x x f ef x f x +-=-(2012全国新课标) (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值。
2020高考导数压轴题型归类总结

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母范围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .所以当33=x 时,)(x g 有最小值932)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222 所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率;⑵当23a ≠时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。
高考导数压轴题型归类总结

高考导数压轴题型归类总结一、导数单调性、极值、最值的直接应用 已知函数1()ln 1()af x x ax a R x-=-+-∈ ⑴当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;⑵当12a ≤时,讨论()f x 的单调性.1. 已知函数221()2,()3ln .2f x x axg x a x b =+=+⑴设两曲线()()y f x y g x ==与有公共点,且在公共点处的切线相同,若0a >,试建立b 关于a 的函数关系式,并求b 的最大值; ⑵若[0,2],()()()(2)b h x f x g x a b x ∈=+--在(0,4)上为单调函数,求a 的取值范围。
2. (最值直接应用)已知函数)1ln(21)(2x ax x x f +--=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值; (Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.设函数221()(2)ln (0)ax f x a x a x+=-+<. (1)讨论函数()f x 在定义域内的单调性;(2)当(3,2)a ∈--时,任意12,[1,3]x x ∈,12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.3. (最值应用,转换变量)4. (最值应用)已知二次函数()g x 对x R ∀∈都满足2(1)(1)21g x g x x x -+-=--且(1)1g =-,设函数19()()ln 28f xg x m x =+++(m R ∈,0x >).(Ⅰ)求()g x 的表达式;(Ⅱ)若x R +∃∈,使()0f x ≤成立,求实数m 的取值范围;(Ⅲ)设1m e <≤,()()(1)H x f x m x =-+,求证:对于12[1,]x x m ∀∈,,恒有12|()()|1H x H x -<.5. 设3x =是函数()()()23,x f x x ax b e x R -=++∈的一个极值点. (1)求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;(2)设()2250,4xa g x a e ⎛⎫>=+ ⎪⎝⎭,若存在[]12,0,4ξξ∈,使得()()121f g ξξ-< 成立,求a 的取值范围.6. 7.8. (2010山东,两边分求,最小值与最大值) 已知函数2()ln ,()3f x x x g x x ax ==-+-. ⑴求()f x 在[,2](0)t t t +>上的最小值;⑵若存在1,x e e ⎡⎤∈⎢⎥⎣⎦(e 是常数,e =2.71828⋅⋅⋅)使不等式2()()f x g x ≥成立,求实数a 的取值范围; ⑶证明对一切(0,),x ∈+∞都有12ln xx e ex>-成立.9. (最值应用) 设函数()2ln q f x px x x =--,且()2pf e qe e=--,其中e 是自然对数的底数. ⑴求p 与q 的关系;⑵若()f x 在其定义域内为单调函数,求p 的取值范围; ⑶设2()eg x x=,若在[]1,e 上至少存在一点0x ,使得0()f x >0()g x 成立,求实数p 的取值范围.10. (2011湖南文,第2问难,单调性与极值,好题)设函数1()ln ().f x x a x a R x =--∈⑴讨论函数()f x 的单调性;⑵若()f x 有两个极值点12,x x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.11. (构造函数,好,较难)已知函数21()ln (1)(0)2f x x ax a x a R a =-+-∈≠,.⑴求函数()f x 的单调增区间;⑵记函数()F x 的图象为曲线C ,设点1122(,)(,)A x y B x y 、是曲线C 上两个不同点,如果曲线C 上存在点00(,)M x y ,使得:①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数()F x 存在“中值相依切线”.试问:函数()f x 是否存在中值相依切线,请说明理由.12. (2011天津理19,综合应用)已知0a >,函数()2ln f x x ax =-,0x >.(()f x 的图象连续) ⑴求()f x 的单调区间;⑵若存在属于区间[]1,3的,αβ,且1βα-≥,使()()f f αβ=,证明:ln 3ln 2ln 253a -≤≤.13. (单调性,用到二阶导数的技巧) 已知函数x x f ln )(= ⑴若)()()(R a xax f x F ∈+=,求)(x F 的极大值;⑵若kx x f x G -=2)]([)(在定义域内单调递减,求满足此条件的实数k 的取值范围.已知函数()ln ,().x f x x g x e == ⑴若函数φ (x ) = f (x )-11x x ,求函数φ (x )的单调区间; ⑵设直线l 为函数f (x )的图象上一点A (x 0,f (x 0))处的切线,证明:在区间(1,+∞)上存在唯一的x 0,使得直线l 与曲线y =g (x )相切.二、交点与根的分布14. (2008四川22,交点个数与根的分布)已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点. ⑴求a ;⑵求函数()f x 的单调区间;⑶若直线y b =与函数()y f x =的图像有3个交点,求b 的取值范围. 15. 已知函数()32f x x ax bx c =-+++在(),0-∞上是减函数,在()0,1上是增函数,函数()f x 在R 上有三个零点. (1)求b 的值;(2)若1是其中一个零点,求()2f 的取值范围;(3)若()()'213ln a g x f x x x ==++,,试问过点(2,5)可作多少条直线与曲线y=g(x )相切?请说明理由.16. (交点个数与根的分布)已知函数2()8,()6ln .f x x x g x x m =-+=+ ⑴求()f x 在区间[],1t t +上的最大值();h t⑵是否存在实数,m 使得()y f x =的图像与()y g x =的图像有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。
高考数学导数压轴题7大题型总结doc资料

高考数学导数压轴题7大题型总结
目前虽然全国高考使用试卷有所差异,但高考压轴题目题型基本都是一致的,几乎没有差异,如果有差异只能是难度上的差异,高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。
导数解答题是高考数学必考题目,然而学生由于缺乏方法,同时认识上的错误,绝大多数同学会选择完全放弃,我们不可否认导数解答题的难度,但也不能过分的夸大。
掌握导数的解体方法和套路,对于基础差的同学不说得满分,但也不至于一分不得。
为了帮助大家复习,今天就总结倒数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题。
1导数单调性、极值、最值的直接应用
2交点与根的分布
3不等式证明
(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
4不等式恒成立求字母范围
(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
5函数与导数性质的综合运用
6导数应用题
7导数结合三角函数。
高中数学导数大题八类题型总结

导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。
(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。
高考导数压轴题型归类总结

⑴当a 0时,f (x) x2e x ,f '(x) (x2 2x)e x,故f '(1) 3e.
所以曲线y f (x)在点(1, f (1))处的切线的斜率为3e.
f '(x) x (a 2)x 2a 4ae . ⑵
2
2
x
w.w.w. k.s.5.u.c.o.m
令f '(x) 0,解得x 2a,或x a 2.由a 2 知, 2a a 2. 3
函数f ( x)在x 2a处取得极大值f (2a),且f (2a) 3ae 2a . w.w.w.k.s.5.u.c.o.m
函数f (x)在x a 2处取得极小值f (a 2),且f (a 2) (4 3a)ea2.
② 若a < 2 ,则 2a > a 2 ,当 x 变化时, f '(x),f (x) 的变化情况如下表: 3
5
已知函数 f (x) =ln(1+ x )- x + x x2 ( k ≥0). 2
(Ⅰ)当 k =2时,求曲线 y = f (x) 在点(1, f (1))处的切线方程;
(Ⅱ)求 f (x) 的单调区间.
解:(I)当 k 2 时, f (x) ln(1 x) x x2 , f '(x) 1 1 2x 1 x
(0,)
,
令 g(x) ax2 x 1 a, x (0,),
8. (是一道设计巧妙的好题,同时用到 e 底指、对数,需要构造函数,证存在且唯一时结合零 点存在性定理不好想,⑴⑵联系紧密)
已知函数 f (x) ln x, g(x) ex.
⑴若函数 φ (x) = f (x)- x 1 ,求函数 φ (x)的单调区间; x1
2
以下分两种情况讨论:
高三导数压轴题题型归纳

导数压轴题题型1. 高考命题回顾例1已知函数fx =e x-lnx +m .2013全国新课标Ⅱ卷1设x =0是fx 的极值点,求m,并讨论fx 的单调性; 2当m≤2时,证明fx>0.1解 fx =e x -ln x +mf ′x =e x -错误!f ′0=e 0-错误!=0m =1,定义域为{x |x >-1},f ′x =e x -错误!=错误!,显然fx 在-1,0上单调递减,在0,+∞上单调递增. 2证明 gx =e x -ln x +2,则g ′x =e x -错误!x >-2. hx =g ′x =e x -错误!x >-2h ′x =e x +错误!>0, 所以hx 是增函数,hx =0至多只有一个实数根,又g ′-错误!=错误!-错误!<0,g ′0=1-错误!>0, 所以hx =g ′x =0的唯一实根在区间错误!内,设g ′x =0的根为t ,则有g ′t =e t -错误!=0错误!, 所以,e t =错误!t +2=e -t ,当x ∈-2,t 时,g ′x <g ′t =0,gx 单调递减; 当x ∈t ,+∞时,g ′x >g ′t =0,gx 单调递增; 所以gx min =gt =e t -ln t +2=错误!+t =错误!>0, 当m ≤2时,有ln x +m ≤ln x +2,所以fx =e x -ln x +m ≥e x -ln x +2=gx ≥gx min >0.例2已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-2012全国新课标1求)(x f 的解析式及单调区间;2若b ax x x f ++≥221)(,求b a )1(+的最大值; 11211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+令1x =得:(0)1f =得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+()10()x g x e y g x '=+>⇒=在x R ∈上单调递增得:()f x 的解析式为21()2x f x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞221()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥得()(1)x h x e a '=-+①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增 x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥ 令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=-当x =,max ()2e F x =当1,a b ==,(1)a b +的最大值为2e 例3已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=;2011全国新课标Ⅰ求a 、b 的值;Ⅱ如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围; 解Ⅰ221(ln )'()(1)x x b x f x x x α+-=-+ 由于直线230x y +-=的斜率为12-, 且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩ 解得1a =,1b =;Ⅱ由Ⅰ知ln 1f ()1x x x x =++,所以 22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--; 考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x x h x x -++=;i 设0k ≤,由222(1)(1)'()k x x h x x+--=知,当1x ≠时,'()0h x <,hx 递减;而(1)0h = 故当(0,1)x ∈时, ()0h x >,可得21()01h x x >-; 当x ∈1,+∞时,hx<0,可得211x - hx>0从而当x>0,且x ≠1时,fx-1ln -x x +x k >0,即fx>1ln -x x +xkii 设0<k<1.由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下,且244(1)0k ∆=-->,对称轴x=111k >-.当x ∈1,k -11时,k-1x 2 +1+2x>0,故'hx>0,而h1=0,故当x ∈1,k -11时,hx>0,可得211x -hx<0,与题设矛盾; iii 设k ≥1.此时212x x +≥,2(1)(1)20k x x -++>⇒'h x>0,而h1=0,故当x ∈1,+∞时,hx>0,可得211x - hx<0,与题设矛盾;综合得,k 的取值范围为-∞,0例4已知函数fx =x 3+3x 2+ax+be -x. 2009宁夏、海南1若a =b =-3,求fx 的单调区间;2若fx 在-∞,α,2,β单调增加,在α,2,β,+∞单调减少,证明β-α>6. 解: 1当a =b =-3时,fx =x 3+3x 2-3x -3e -x ,故f′x=-x 3+3x 2-3x -3e -x +3x 2+6x -3e-x=-e -x x 3-9x =-xx -3x+3e -x.当x <-3或0<x <3时,f′x>0;当-3<x <0或x >3时,f′x<0. 从而fx 在-∞,-3,0,3单调增加,在-3,0,3,+∞单调减少. 2f′x=-x 3+3x 2+ax+be -x +3x 2+6x+ae -x =-e -x x 3+a -6x+b -a. 由条件得f′2=0,即23+2a -6+b -a =0,故b =4-a.从而f′x=-e -x x 3+a -6x+4-2a.因为f′α=f′β=0,所以x 3+a -6x+4-2a =x -2x -αx-β=x -2x 2-α+βx+αβ. 将右边展开,与左边比较系数,得α+β=-2,αβ=a -2. 故a 4124)(2-=-+=-αβαβαβ.又β-2α-2<0,即αβ-2α+β+4<0.由此可得a <-6. 于是β-α>6. 2. 在解题中常用的有关结论※①构造函数,最值定位分类讨论,区间划分极值比较零点存在性定理应用二阶导转换 例1切线设函数a x x f -=2)(.1当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;2当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:ax x >>21.例2最值问题,两边分求已知函数1()ln 1af x x ax x-=-+-()a ∈R . ⑴当12a ≤时,讨论()f x 的单调性; ⑵设2()2 4.g x x bx =-+当14a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,求实数b 取值范围.②例3切线交点已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=.⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.例4综合应用已知函数.23)32ln()(2x x x f -+=⑴求fx 在0,1上的极值;⑵若对任意0]3)(ln[|ln |],31,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;⑶若关于x 的方程b x x f +-=2)(在0,1上恰有两个不同的实根,求实数b 的取值范围. ③例5 变形构造法已知函数1)(+=x ax ϕ,a 为正常数.⑴若)(ln )(x x x f ϕ+=,且a29=,求函数)(x f 的单调增区间;⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a的取值范围.例6 高次处理证明不等式、取对数技巧已知函数)0)(ln()(2>=a ax x x f .1若2)('x x f ≤对任意的0>x 恒成立,求实数a 的取值范围;2当1=a 时,设函数x x f x g )()(=,若1),1,1(,2121<+∈x x e x x ,求证42121)(x x x x +<例7绝对值处理已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值.I 求实数a 的取值范围;II 若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;III 对于II 中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .例8等价变形已知函数x ax x f ln 1)(--=()a ∈R .Ⅰ讨论函数)(x f 在定义域内的极值点的个数;Ⅱ若函数)(x f 在1=x 处取得极值,对x ∀∈),0(+∞,2)(-≥bx x f 恒成立,求实数b 的取值范围;Ⅲ当20e y x <<<且e x ≠时,试比较xyxy ln 1ln 1--与的大小. 例9前后问联系法证明不等式已知217()ln ,()(0)22f x x g x x mx m ==++<,直线l 与函数(),()f x g x 的图像都相切,且与函数()f x 的图像的切点的横坐标为1;I 求直线l 的方程及m 的值;II 若()(1)'()()h x f x g x =+-其中g'(x)是g(x)的导函数,求函数()h x 的最大值; III 当0b a <<时,求证:()(2).2b af a b f a a -+-<例10 整体把握,贯穿全题已知函数ln ()1x f x x=-. 1试判断函数()f x 的单调性;2设0m >,求()f x 在[,2]m m 上的最大值;3试证明:对任意*n ∈N ,不等式11ln()e n n nn++<都成立其中e 是自然对数的底数.Ⅲ证明:2121111n n a a a n ++⋅⋅⋅+>+.例11数学归纳法已知函数()ln(1)f x x mx =++,当0x =时,函数()f x 取得极大值.1求实数m 的值;2已知结论:若函数()ln(1)f x x mx =++在区间(,)a b 内导数都存在,且1a >-,则存在0(,)x a b ∈,使得0()()()f b f a f x b a-'=-.试用这个结论证明:若121x x -<<,函数121112()()()()()f x f x g x x x f x x x -=-+-,则对任意12(,)x x x ∈,都有()()f x g x >;3已知正数12,,,n λλλ,满足121n λλλ+++=,求证:当2n ≥,n N ∈时,对任意大于1-,且互不相等的实数12,,,n x x x ,都有1122()n n f x x x λλλ+++>1122()()()n n f x f x f x λλλ+++. ④例12分离变量已知函数x a x x f ln )(2+=a 为实常数. 1若2-=a ,求证:函数)(x f 在1,+∞上是增函数;2求函数)(x f 在1,e 上的最小值及相应的x 值;3若存在],1[e x ∈,使得x a x f )2()(+≤成立,求实数a 的取值范围. 例13先猜后证技巧已知函数xx n x f )1(11)(++=Ⅰ求函数f x 的定义域Ⅱ确定函数f x 在定义域上的单调性,并证明你的结论. Ⅲ若x >0时1)(+>x kx f 恒成立,求正整数k 的最大值. 例14创新题型设函数fx=e x +sinx,gx=ax,Fx=fx -gx.Ⅰ若x=0是Fx 的极值点,求a 的值; Ⅱ当 a=1时,设Px 1,fx 1, Qx 2, gx2x 1>0,x 2>0, 且PQ )1,0(12)(2<≠++-=b a b ax ax x g []3,2()()g x f x x =b a ,02)2(≥⋅-xx k f ]1,1[-∈x k0)3|12|2(|)12(|=--+-x x k f k 2()()()xf x x a x b e =-+a b R ∈、x a =()f x 0a =b a123x x x ,,()f x b 4x R ∈1234x x x x ,,,1234,,,i i i i x x x x {}1234i i i i ,,,{}1234,,,b 4x ()ln f x x=21()2g x ax bx =+(0)a ≠1若2a =-, 函数()()()h x f x g x =- 在其定义域是增函数,求b 的取值范围;2在1的结论下,设函数ϕϕ2x x (x)=e +be ,x ∈[0,ln2],求函数(x)的最小值;3设函数)(x f 的图象C 1与函数)(x g 的图象C 2交于点P 、Q,过线段PQ 的中点R 作x 轴的垂线分别交C 1、C 2于点M 、N ,问是否存在点R,使C 1在M 处的切线与C 2在N 处的切线平行若存在,求出R 的横坐标;若不存在,请说明理由. 例18全综合应用已知函数()1ln(02)2xf x x x=+<<-. 1是否存在点(,)M a b ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上若存在,求出点M 的坐标;若不存在,请说明理由;2定义2111221()()()()n n i i n S f f f f nn n n -=-==++⋅⋅⋅+∑,其中*n ∈N ,求2013S ;3在2的条件下,令12n n S a +=,若不等式2()1n a m n a ⋅>对*n ∀∈N 且2n ≥恒成立,求实数m 的取值范围.⑦导数与三角函数综合例19换元替代,消除三角设函数2()()f x x x a =--x ∈R ,其中a ∈R . Ⅰ当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程;Ⅱ当0a ≠时,求函数()f x 的极大值和极小值;Ⅲ当3a >, []10k ∈-,时,若不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立,求k 的值;⑧创新问题积累 例20已知函数2()ln44x xf x x -=+-. I 、求()f x 的极值.II 、求证()f x 的图象是中心对称图形.III 、设()f x 的定义域为D ,是否存在[],a b D ⊆.当[],x a b ∈时,()f x 的取值范围是,44a b ⎡⎤⎢⎥⎣⎦若存在,求实数a 、b 的值;若不存在,说明理由导数压轴题题型归纳 参考答案例1解:11=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .)(x g '2证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P处的切线方程为)(2)2(1121x x x a x y -=--.令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <.又∵1122x ax ≠,∴ax a x x a x x a x x =⋅>+=+=11111212222222所以a x x >>21.例2⑴1()ln 1(0)a f x x ax x x -=-+->,222l 11()(0)a ax x a f x a x x x x --++-'=-+=> 令2()1(0)h x ax x a x =-+->①当0a =时,()1(0)h x x x =-+>,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.②当0a ≠时,由()0f x '=,即210ax x a -+-=,解得1211,1x x a==-.当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 单调递减;当102a <<时,1110a ->>,(0,1)x ∈时()0,()0h x f x '><,函数()f x 单调递减;1(1,1)x a ∈-时,()0,()0h x f x '<>,函数()f x 单调递增;1(1,)x a∈-+∞时,()0,()0h x f x '><,函数()f x 单调递减.当0a <时110a-<,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.综上所述:当0a ≤时,函数()f x 在(0,1)单调递减,(1,)+∞单调递增;当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 在(0,)+∞单调递减; 当102a <<时,函数()f x 在(0,1)递减,1(1,1)a -递增,1(1,)a -+∞递减.⑵当14a =时,()f x 在0,1上是减函数,在1,2上是增函数,所以对任意1(0,2)x ∈,有11()(1)2f x f =-≥, 又已知存在[]21,2x ∈,使12()()f xg x ≥,所以21()2g x -≥,[]21,2x ∈,※又22()()4,[1,2]g x x b b x =-+-∈当1b <时,min ()(1)520g x g b ==->与※矛盾;当[]1,2b ∈时,2min ()(1)40g x g b ==-≥也与※矛盾;当2b >时,min 117()(2)84,28g x g b b ==-≤-≥.综上,实数b 的取值范围是17[,)8+∞. 例3解:⑴()2323f x ax bx '=+-.根据题意,得()()12,10,f f =-⎧⎪⎨'=⎪⎩即32,3230,a b a b +-=-⎧⎨+-=⎩解得10a b =⎧⎨=⎩ 所以()33f x x x =-.⑵令()0f x '=,即2330x -=.得1x =±.12f -=12f =-2,2x ∈-max 2f x =min 2f x =-则对于区间[]2,2-上任意两个自变量的值12,x x ,都有()()()()12max min 4f x f x f x f x -≤-=,所以4c ≥.所以c 的最小值为4.⑶因为点()()2,2M m m ≠不在曲线()y f x =上,所以可设切点为()00,x y .则30003y x x =-.因为()20033f x x '=-,所以切线的斜率为2033x -. 则2033x -=300032x x m x ---,即3202660x x m -++=. 因为过点()()2,2M m m ≠可作曲线()y f x =的三条切线,所以方程32002660x x m -++=有三个不同的实数解. 所以函数()32266g x x x m =-++有三个不同的零点.则()2612g x x x '=-.令0g x '=,则0x =或2x =. ()()0022g g >⎧⎪⎨<⎪⎩6020m m +>⎧⎨-+<⎩62m -<<例4解:⑴23)13)(1(33323)(+-+-=-+='x x x x x x f , 令1310)(-==='x x x f 或得舍去)(,0)(,310x f x f x >'<≤∴时当单调递增;当)(,0)(,131x f x f x <'≤<时递减.]1,0[)(613ln )31(在为函数x f f -=∴上的极大值.⑵由0]3)(ln[|ln |>+'+-x x f x a 得x x a x x a 323ln ln 323lnln ++<+->或设332ln 323ln ln )(2x x x x x h +=+-=,x x x x x g 323ln 323ln ln )(+=++=, 依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立,0)32(2)32(33)32(3332)(2>+=+⋅-+⋅+='x x x x x x x x g ,03262)62(31323)(22>++=+⋅+='xx xx x x x h , ]31,61[)()(都在与x h x g ∴上单增,要使不等式①成立,当且仅当.51ln 31ln ),61()31(<><>a a g a h a 或即或⑶由.0223)32ln(2)(2=-+-+⇒+-=b x x x b x x f 令xx x x x b x x x x 329723323)(,223)32ln()(22+-=+-+='-+-+=ϕϕ则,当]37,0[)(,0)(,]37,0[在于是时x x x ϕϕ>'∈上递增;]1,37[)(,0)(,]1,37[在于是时x x x ϕϕ<'∈上递减,而)1()37(),0()37(ϕϕϕϕ>>,]1,0[0)(2)(在即=+-=∴x b x x f ϕ恰有两个不同实根等价于例5解:⑴222)1(1)2()1(1)(++-+=+-='x x x a x x a x x f∵a 29=,令0)(>'x f 得2>x 或210<<x ,∴函数)(x f 的单调增区间为),2(),21,0(+∞.⑵证明:当0=a 时x x f ln )(=∴x x f 1)(=', ∴210021)(x x x x f +==',又121212121212ln ln ln )()(x x x x x x x x x x x f x f k -=--=--=不妨设12x x > , 要比较k 与)(0x f '的大小,即比较1212ln x x x x -与212x x +的大小, 又∵12x x >,∴ 即比较12ln x x 与1)1(2)(212122112+-=+-x x x xx x x x 的大小.令)1(1)1(2ln )(≥+--=x x x x x h ,则0)1()1()1(41)(222≥+-=+-='x x x x x x h , ∴)(x h 在[)+∞,1上位增函数.又112>x x ,∴0)1()(12=>h x x h , ∴1)1(2ln 121212+->x x x x x x ,即)(0x f k '>⑶∵ 1)()(1212-<--xx x g x g ,∴ []0)()(121122<-+-+x x x x g x x g 由题意得x x g x F +=)()(在区间(]2,0上是减函数.︒1 当x x a x x F x +++=≤≤1ln )(,21, ∴ 1)1(1)(2++-='x a x x F 由313)1()1(0)(222+++=+++≥⇒≤'x x x x x x a x F 在[]2,1∈x 恒成立. 设=)(x m 3132+++x x x ,[]2,1∈x ,则0312)(2>+-='xx x m∴)(x m 在[]2,1上为增函数,∴227)2(=≥m a .︒2 当x x a x x F x +++-=<<1ln )(,10,∴ 1)1(1)(2++--='x a x x F 由11)1()1(0)(222--+=+++-≥⇒≤'x x x x x x a x F 在)1,0(∈x 恒成立 设=)(x t 112--+xx x ,)1,0(∈x 为增函数,∴0)1(=≥t a综上:a 的取值范围为227≥a .例6解:1x ax x x f +=)ln(2)(',2)ln(2)('x x ax x x f ≤+=,即x ax ≤+1ln 2在0>x 上恒成立设x ax x u -+=1ln 2)(,2,012)('==-=x xx u ,2>x 时,单调减,2<x 单调增, 所以2=x 时,)(x u 有最大值.212ln 2,0)2(≤+≤a u ,所以20e a ≤<. 2当1=a 时,x x x x f x g ln )()(==, e x x x g 1,0ln 1)(==+=,所以在),1(+∞e 上)(x g 是增函数,)1,0(e上是减函数.因为11211<+<<x x x e,所以111212121ln )()ln()()(x x x g x x x x x x g =>++=+即)ln(ln 211211x x x x x x ++<,同理)ln(ln 212212x x x x x x ++<.所以)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+ 又因为,421221≥++x x x x 当且仅当“21x x =”时,取等号. 又1),1,1(,2121<+∈x x ex x ,0)ln(21<+x x ,所以)ln(4)ln()2(21211221x x x x x x x x +≤+++,所以)ln(4ln ln 2121x x x x +<+,所以:42121)(x x x x +<.例7I ,23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值, 所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;依题意得:9)32()32(2762+-=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-=III 对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间-2,2有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .例8解:Ⅰxax xa x f 11)(-=-=',当0≤a 时,()0f x '<在),0(+∞上恒成立,函数)(x f 在),0(+∞ 单调递减,∴)(x f 在),0(+∞上没有极值点;当0>a 时,()0f x '<得10x a <<,()0f x '>得1x a>, ∴)(x f 在(10,)a上递减,在(1),a+∞上递增,即)(x f 在ax 1=处有极小值. ∴当0≤a 时)(x f 在),0(+∞上没有极值点,当0>a 时,)(x f 在),0(+∞上有一个极值点.Ⅱ∵函数)(x f 在1=x 处取得极值,∴1=a ,∴b xx xbx x f ≥-+⇔-≥ln 112)(,令xx xx g ln 11)(-+=,可得)(x g 在(]2,0e 上递减,在[)+∞,2e 上递增,∴22min 11)()(e e g x g -==,即211b e ≤-. Ⅲ证明:)1ln()1ln()1ln()1ln(+>+⇔++>-y e x e y x ey x yx , 令)1ln()(+=x e x g x,则只要证明)(x g 在),1(+∞-e 上单调递增,又∵)1(ln 11)1ln()(2+⎥⎦⎤⎢⎣⎡+-+='x x x e x g x ,显然函数11)1ln()(+-+=x x x h 在),1(+∞-e 上单调递增. ∴011)(>->ex h ,即0)(>'x g ,∴)(x g 在),1(+∞-e 上单调递增,即)1ln()1ln(+>+y e x e yx ,∴当1->>e y x 时,有)1ln()1ln(++>-y x e y x .例9 解:I 1'(),'(1)1;Qf x f x=∴=l ∴直线的斜率为1,且与函数()f x 的图像的切点坐标为1,0,l ∴直线的方程为 1.y x =-又l 直线与函数()y g x =的图象相切,211722y x y x mx =-⎧⎪∴⎨=++⎪⎩方程组有一解;由上述方程消去y,并整理得22(1)90x m x +-+=①依题意,方程②有两个相等的实数根,2[2(1)]490m ∴∆=--⨯=解之, 得m=4或m=-2,0, 2.Qm m <∴=- II 由I 可知217()2,22g x x x =-+ '()2,()ln(1)2(1)g x x h x x x x ∴=-∴=+-+>-,1'()1.11xh x x x -∴=-=++ ∴∈当x (-1,0)时,h'(x)>0,h(x)单调,当(0,)x ∈+∞时,'()0,()h x h x <单减; ∴当x=0时,()h x 取最大值,其最大值为2;III()(2)ln()ln 2ln ln(1).22a b b af a b f a a b a a a +-+-=+-==+ 证明,当(1,0)x ∈-时,ln(1),ln(1).22b a b ax x a a--+<∴+< 例10解:1函数()f x 的定义域是(0,)+∞.由已知21ln ()xf x x -'=.令()0f x '=,得x e =.因为当0x e <<时,()0f x '>;当x e >时,()0f x '<.所以函数()f x 在(0,]e 上单调递增,在[,)e +∞上单调递减. 2由1可知当2m e≤,即2e m ≤时,()f x 在[,2]m m 上单调递增,所以max ln 2()(2)12mf x f m m==-. 当m e ≥时,()f x 在[,2]m m 上单调递减,所以max ln ()1mf x m=-.当2m e m <<,即2e m e <<时,max 1()()1f x f e e==-.综上所述,max ln 21,0221()1,2ln 1,me m m ef x m eemm e m⎧-<≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩3由1知当(0,)x ∈+∞时max 1()()1f x f e e ==-.所以在(0,)x ∈+∞时恒有ln 1()11x f x x e=-≤-,即ln 1x x e ≤,当且仅当x e =时等号成立.因此对任意(0,)x ∈+∞恒有1ln x e ≤.因为10n n +>,1n e n+≠,所以111lnn nn e n ++<⋅,即11ln()e n n n n ++<.因此对任意*n ∈N ,不等式11ln()e n n n n++<.例11解:1当(1,0)x ∈-时,()0f x '>,函数()f x 在区间(1,0)-上单调递增;当(0,)x ∈+∞时,()0f x '<,函数()f x 在区间(0,)+∞上单调递减.∴函数()f x 在0x =处取得极大值,故1m =-. 2令121112()()()()()()()()f x f x h x f x g x f x x x f x x x -=-=----,则1212()()()()f x f x h x f x x x -''=--.函数()f x 在12(,)x x x ∈上可导,∴存在012(,)x x x ∈,使得12012()()()f x f x f x x x -'=-.1()11f x x '=-+,000011()()()11(1)(1)x x h x f x f x x x x x -'''∴=-=-=++++ 当10(,)x x x ∈时,()0h x '>,()h x 单调递增,1()()0h x h x ∴>=;当02(,)x x x ∈时,()0h x '<,()h x 单调递减,2()()0h x h x ∴>=; 故对任意12(,)x x x ∈,都有()()f x g x >. 3用数学归纳法证明.①当2n =时,121λλ+=,且10λ>,20λ>, 112212(,)x x x x λλ∴+∈,∴由Ⅱ得()()f x g x >,即121122112211112212()()()()()()()f x f x f x x x x x f x f x f x x x λλλλλλ-+>+-+=+-,∴当2n =时,结论成立.②假设当(2)n k k =≥时结论成立,即当121k λλλ+++=时,11221122()()()()k k k k f x x x f x f x f x λλλλλλ+++>+++. 当1n k =+时,设正数121,,,k λλλ+满足1211k λλλ++++=,令12km λλλ=+++,1212,,,k k m m mλλλμμμ===, 则11k n m λ++=,且121k μμμ+++=.∴当1n k =+时,结论也成立.综上由①②,对任意2n ≥,n N ∈,结论恒成立.例12 解:⑴当2-=a 时,x x x f ln 2)(2-=,当),1(+∞∈x ,0)1(2)(2>-='xx x f , 故函数)(x f 在),1(+∞上是增函数.⑵)0(2)(2>+='x xax x f ,当],1[e x ∈,]2,2[222e a a a x ++∈+. 若2-≥a ,)(x f '在],1[e 上非负仅当2-=a ,x=1时,0)(='x f ,故函数)(x f 在],1[e 上是增函数,此时=min )]([x f 1)1(=f . 若222-<<-a e ,当2a x -=时,0)(='x f ;当21ax -<≤时,0)(<'x f ,此时)(x f 是减函数;当e x a≤<-2时,0)(>'x f ,此时)(x f 是增函数. 故=min )]([x f )2(af -2)2ln(2a a a --=. 若22e a -≤,)(x f '在],1[e 上非正仅当2e 2-=a ,x=e 时,0)(='x f ,故函数)(x f 在],1[e 上是减函数,此时==)()]([min e f x f 2e a +.⑶不等式x a x f )2()(+≤,可化为x x x x a 2)ln (2-≥-.∵],1[e x ∈, ∴x x ≤≤1ln 且等号不能同时取,所以x x <ln ,即0ln >-x x ,因而xx x x a ln 22--≥],1[e x ∈令xx x x x g ln 2)(2--=],1[e x ∈,又2)ln ()ln 22)(1()(x x x x x x g --+-=',当],1[e x ∈时,1ln ,01≤≥-x x ,0ln 22>-+x x ,从而0)(≥'x g 仅当x=1时取等号,所以)(x g 在],1[e 上为增函数,故)(x g 的最小值为1)1(-=g ,所以a 的取值范围是),1[+∞-. 例13 解:1定义域),0()0,1(+∞⋃-2,0)]1ln(11[1)(2时当>+++-='x x x x x f 0)(<'x f 单调递减; 当)0,1(-∈x ,令)1(11)1(1)()1ln(11)(22<+=+++-='+++=x xx x x g x x x g ,0)1(11)1(1)()1ln(11)(22<+=+++-='+++=x x x x x g x x x g 故)(x g 在-1,0上是减函数,即01)0()(>=>g x g ,故此时)]1ln(11[1)(2+++-='x x x x f 在-1,0和0,+∞上都是减函数 3当x >0时,1)(+>x kx f 恒成立,令]2ln 1[21+<=k x 有又k 为正整数,∴k 的最大值不大于3下面证明当k=3时,)0( 1)(>+>x x kx f 恒成立 当x >0时 021)1ln()1(>-+++x x x 恒成立令x x x x g 21)1ln()1()(-+++=,则时当1 ,1)1ln()(->-+='e x x x g时当1 ,1)1ln()(->-+='e x x x g ,0)(>'x g ,当0)( ,10<'-<<x g e x 时 ∴当)( ,1x g e x 时-=取得最小值03)1(>-=-e e g当x >0时, 021)1ln()1(>-+++x x x 恒成立,因此正整数k 的最大值为3 例14解:ⅠFx = e x +sinx -ax,'()cos x F x e x a =+-. 因为x =0是Fx 的极值点,所以'(0)110,2F a a =+-==.又当a =2时,若x <0, '()cos 0x F x e x a =+-<;若 x >0, '()cos 0x F x e x a =+->. ∴x =0是Fx 的极小值点, ∴a=2符合题意.Ⅱ ∵a =1, 且PQ 121sin x x e x =+12111sin x x x e x x -=+-令()sin ,'()cos 10x x h x e x x h x e x =+-=+->当x >0时恒成立. ∴x ∈0,+∞)时,hx 的最小值为h 0=1.∴|PQ|mi n =1. Ⅲ令()()()2sin 2.x x x F x F x e e x ax ϕ-=--=-+-则'()2cos 2.x x x e e x a ϕ-=++-()''()2sin x x S x x e e x ϕ-==--. 因为'()2cos 0x x S x e e x -=+-≥当x ≥0时恒成立, 所以函数Sx 在[0,)+∞上单调递增, ∴Sx ≥S 0=0当x ∈0,+∞)时恒成立;因此函数'()x ϕ在[0,)+∞上单调递增, '()'(0)42x a ϕϕ≥=-当x ∈0,+∞)时恒成立. 当a ≤2时,'()0x ϕ≥,()x ϕ在0,+∞)单调递增,即()(0)0x ϕϕ≥=. 故a ≤2时Fx ≥F-x 恒成立.例15 解:Ⅰ12()(1)1g x a x b a =-++- 当0>a 时,[]()2,3g x 在上为增函数故(3)296251(2)544220g a a b a g a a b b =-++==⎧⎧⎧⇒⇒⎨⎨⎨=-++==⎩⎩⎩当[]0()2,3a g x <时,在上为减函数故(3)296221(2)244253g a a b a g a a b b =-++==-⎧⎧⎧⇒⇒⎨⎨⎨=-++==⎩⎩⎩011==∴<b a b 即2()21g x x x =-+. ()12f x x x=+-.Ⅱ方程(2)20x x f k -⋅≥化为12222xxxk +-≥⋅ 2111()222x x k +-≥,令t x =21,221k t t ≤-+ ∵]1,1[-∈x ∴]2,21[∈t 记12)(2+-=t t t ϕ∴min ()0t ϕ= ∴0k ≤Ⅲ方程0)3|12|2(|)12(|=--+-xxk f 化为0)32(|12|21|12|=+--++-k k x x 0)21(|12|)32(|12|2=++-+--k k x x ,0|12|x ≠-令t x =-|12|, 则方程化为0)21()32(2=+++-k t k t 0t ≠∵方程0)32(|12|21|12|=+--++-k k xx有三个不同的实数解, ∴由|12|-=x t 的图像知,0)21()32(2=+++-k t k t 有两个根1t 、2t , 且21t 1t 0<<< 或 101<<t ,1t 2= 记)21()32()(2k t k t t +++-=ϕ则⎩⎨⎧<-=>+=0k )1(0k 21)0(ϕϕ 或 ⎪⎪⎩⎪⎪⎨⎧<+<=-=>+=12k3200k )1(0k 21)0(ϕϕ∴0k >例16 解: Ⅰ0a =时,()()2xf x x x b e =+,()()()()()22232x x x f x x x b e x x b e e x x b x b '''⎡⎤⎡⎤∴=+++=+++⎣⎦⎣⎦, 令()()232g x x b x b =+++,()()2238180b b b ∆=+-=-+>,∴设12x x <是()0g x =的两个根,1当10x =或20x =时,则0x =不是极值点,不合题意;2当10x ≠且20x ≠时,由于0x =是()f x 的极大值点,故120x x .<< ()00g ∴<,即20b <,0b .∴<Ⅱ解:()()xf x e x a '=-2(3)2x a b x b ab a ⎡⎤+-++--⎣⎦,令2()(3)2g x x a b x b ab a =+-++--,22=(3)4(2)(1)80a b b ab a a b ∆-+---=+-+>则,于是,假设12x x ,是()0g x =的两个实根,且12x x .<由Ⅰ可知,必有12x a x <<,且12x a x 、、是()f x 的三个极值点, 则1x =2x =假设存在b 及4x 满足题意,1当12x a x ,,等差时,即21x a a x -=-时,则422x x a =-或412x x a =-, 于是1223a x x a b =+=--,即3b a .=--此时4223x x a a b=-=--+a a -=+ 或4123x x a ab =-=--a a =-2当21x a a x -≠-时,则212()x a a x -=-或12()2()a x x a -=- ①若()122x a a x -=-,则224x a x +=, 于是()()2813323221+-+---=+=b a b a x x a ,即()().33812++-=+-+b a b a 两边平方得()()2191170a b a b +-++-+=,30a b ++<,于是1a b +-=,此时2b a =--此时224x a x +==()().231343332++=--=++---+a b b a b a a②若12()2()a x x a -=-,则214x a x +=,于是2132a x x =+=,()33a b .=++两边平方得()()2191170a b a b +-++-+=,30a b ++>,于是1a b +-=,此时b a =--此时142(3)3(3)324a x a a b a b x b a ++---++===--=+综上所述,存在b 满足题意, 当b=-a-3时,4x a =±b a =-,4x a=+, b a =--时,4x a =+. 例17解:1依题意:.ln )(2bx x x x h -+=()h x 在0,+∞上是增函数,1()20h x x b x'∴=+-≥对x∈0,+∞恒成立,2设].2,1[,,2∈+==t bt t y e t x 则函数化为 当t=1时,y m i n =b+1; 当t=2时,y mi n =4+2b当)(,4x b ϕ时-≤的最小值为.24b +3设点P 、Q 的坐标是.0),,(),,(212211x x y x y x <<且则点M 、N 的横坐标为.221x x x +=C 1在点M 处的切线斜率为.2|1212121x x x k x x x +==+= C 2在点N 处的切线斜率为.2)(|212221b x x a b ax k x x x ++=+=+= 假设C 1在点M 处的切线与C 2在点N 处的切线平行,则.21k k =2221121121x 2(1)x 2(x x )x ln .x x x x 1x --∴==++ 设,1,1)1(2ln ,112>+-=>=u u u u x x u 则 ① 这与①矛盾,假设不成立.故C 1在点M 处的切线与C 2在点N 处的切线不平行 例18 1假设存在点(,)M a b ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上,则函数()y f x =图像的对称中心为(,)M a b .由()(2)2f x f a x b +-=,得21ln1ln 2222x a x b x a x-+++=--+, 即22222ln 0244x axb x ax a -+-+=-++-对(0,2)x ∀∈恒成立,所以220,440,b a -=⎧⎨-=⎩解得1,1.a b =⎧⎨=⎩ 所以存在点(1,1)M ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上. 2由1得()(2)2(02)f x f x x +-=<<.令i x n=,则()(2)2i i f f nn+-=(1,2,,21)i n =⋅⋅⋅-.因为1221()()(2)(2)n S f f f f n n nn=++⋅⋅⋅+-+-①,所以1221(2)(2)()()n S f f f f n n n n=-+-+⋅⋅⋅++②,由①+②得22(21)n S n =-,所以*21()n S n n =-∈N .所以20132201314025S =⨯-=.3由2得*21()n S n n =-∈N ,所以*1()2n n S a n n +==∈N . 因为当*n ∈N 且2n ≥时,2()121ln ln 2n a m n m n n ma n n ⋅>⇔⋅>⇔>-. 所以当*n ∈N 且2n ≥时,不等式ln ln 2n m n >-恒成立minln ln 2n m n ⎛⎫⇔>- ⎪⎝⎭. 设()(0)ln xg x x x=>,则2ln 1()(ln )x g x x -'=. 当0x e <<时,()0g x '<,()g x 在(0,)e 上单调递减; 当x e >时,()0g x '>,()g x 在(,)e +∞上单调递增.因为23ln 9ln8(2)(3)0ln 2ln 3ln 2ln 3g g --=-=>⋅,所以(2)(3)g g >,所以当*n ∈N 且2n ≥时,[]min 3()(3)ln 3g n g ==. 由[]min ()ln 2m g n >-,得3ln 3ln 2m >-,解得3ln 2ln 3m >-. 所以实数m 的取值范围是3ln 2(,)ln 3-+∞.例19 解:当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.所以,曲线2(1)y x x =--在点(22)-,处的 切线方程是25(2)y x +=--,整理得580x y +-=.Ⅱ解:2322()()2f x x x a x ax a x =--=-+-22()34(3)()f x x ax a x a x a '=-+-=---.令()0f x '=,解得3ax =或x a =. 由于0a ≠,以下分两种情况讨论.1若0a >,当x ()f x '因此,函数()f x 在3ax =处取得极小值3a f ⎛⎫⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭;函数()f x 在x a =处取得极大值()f a ,且()0f a =. 2若0a <,当x 变化时,()f x '的正负如下表:因此,函数()f x 在函数()f x 在3ax =处取得极大值3a f ⎛⎫⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭.Ⅲ证明:由3a >,得13a>,当[]10k ∈-,时,cos 1k x -≤,22cos 1k x -≤. 由Ⅱ知,()f x 在(]1-∞,上是减函数,要使22(cos )(cos )f k x f k x --≥,x ∈R 只要22cos cos ()k x k x x --∈R ≤,即22cos cos ()x x k k x --∈R ≤①设2211()cos cos cos 24g x x x x ⎛⎫=-=-- ⎪⎝⎭,则函数()g x 在R 上的最大值为2.要使①式恒成立,必须22k k -≥,即2k ≥或1k -≤.所以,在区间[]10-,上存在1k =-,使得22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立. 例20 I /(6)()4(2)(4)x x f x x x -=-- ./(2)注意到204x x ->-,得(,2)(4,)x ∈-∞⋃+∞,解(6)0x x -=得6x =或0x =.当x 变化时,/(),()f x f x 的变化情况如下表:所以(0)ln 2f =是()f x 的一个极大值,(6)ln 22f =+ 是()f x 的一个极大值../(4) II 点()0,(0),(6,(6))f f 的中点是3(3,)4,所以()f x 的图象的对称中心只可能是3(3,)4./(6) 设(,())P x f x 为()f x 的图象上一点,P 关于3(3,)4的对称点是3(6,())2Q x f x --.463(6)ln ()242x x f x f x x ---=+=--.Q ∴也在()f x 的图象上, 因而()f x 的图象是中心对称图形. /(8)III 假设存在实数a 、b .[],a b D ⊆,2b ∴<或4a >.若02b ≤<, 当[],x a b ∈时, 1()(0)ln 02f x f ≤=<,而04b ≥()4b f x ∴≠.故此时()f x 的取值范围是不可能是,44a b ⎡⎤⎢⎥⎣⎦. /(10) 若46a <≤,当[],x a b ∈时, 33()(6)ln 222f x f ≥=+>,而342a ≤()4a f x ∴≠.故此时()f x 的取值范围是不可能是,44a b ⎡⎤⎢⎥⎣⎦./(12) 若06a b a b <<<<或,由()g x 的单调递增区间是()(),0,6,-∞+∞,知,a b 是()4x f x =的两个解.而2()ln 044x x f x x --==-无解. 故此时()f x 的取值范围是不可能是,44a b ⎡⎤⎢⎥⎣⎦. /(14) 综上所述,假设错误,满足条件的实数a 、b 不存在.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .所以当33=x 时,)(x g 有最小值932)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=- ∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222 所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率;⑵当23a ≠时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。
⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当.3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[].42)2()('22x e a a x a x x f +-++=.2232.220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令以下分两种情况讨论: ①a 若>32,则a 2-<2-a .当x 变化时,)()('x f x f ,的变化情况如下表:)(所以x f .3)2()2(2)(2a ae a f a f a x x f -=---=,且处取得极大值在函数.)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在函数②a 若<32,则a 2->2-a ,当x 变化时,)()('x f x f ,的变化情况如下表:所以)(x f .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极大值在函数.3)2()2(2)(2a ae a f a f a x x f -=---=,且处取得极小值在函数3. 已知函数221()2,()3ln .2f x x axg x a x b =+=+⑴设两曲线()()y f x y g x ==与有公共点,且在公共点处的切线相同,若0a >,试建立b 关于a 的函数关系式,并求b 的最大值;⑵若[0,2],()()()(2)b h x f x g x a b x ∈=+--在(0,4)上为单调函数,求a 的取值围。
4. (最值,按区间端点讨论)已知函数f (x )=ln x -a x. (1)当a>0时,判断f (x )在定义域上的单调性;(2)若f (x )在[1,e ]上的最小值为32,求a 的值.解:(1)由题得f (x )的定义域为(0,+∞),且 f ′(x )=1x +2a x =2x ax+. ∵a >0,∴f ′(x )>0,故f (x )在(0,+∞)上是单调递增函数. (2)由(1)可知:f ′(x )=2x ax+,①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e ]上恒成立,此时f (x )在[1,e ]上为增函数, ∴f (x )min =f (1)=-a =32,∴a =-32(舍去). ②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e ]上恒成立,此时f (x )在[1,e ]上为减函数, ∴f (x )min =f (e )=1-a e =32,∴a =-2e(舍去). ③若-e <a <-1,令f ′(x )=0,得x =-a .当1<x <-a 时,f ′(x )<0,∴f (x )在(1,-a )上为减函数; 当-a <x <e 时,f ′(x )>0,∴f (x )在(-a ,e )上为增函数,∴f (x )min =f (-a )=ln(-a )+1=32⇒a综上可知:a .5. (最值直接应用)已知函数)1ln(21)(2x ax x x f +--=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值;(Ⅱ)求)(x f 的单调区间;(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值围.解:(Ⅰ)(1)(),(1,)1x a ax f x x x --'=∈-+∞+.依题意,令(2)0f '=,解得 13a =. 经检验,13a =时,符合题意.(Ⅱ)解:① 当0=a 时,()1xf x x '=+.故)(x f 的单调增区间是(0,)+∞;单调减区间是)0,1(-.② 当0a >时,令()0f x '=,得10x =,或211x a=-.当10<<a 时,()f x 与()f x '的情况如下:所以,()f x 的单调增区间是(0,1)a -;单调减区间是)0,1(-和(1,)a-+∞. 当1=a 时,)(x f 的单调减区间是),1(+∞-. 当1a >时,210x -<<,()f x 与()f x '的情况如下:所以,()f x 的单调增区间是(1,0)a-;单调减区间是(1,1)a--和(0,)+∞. ③ 当0<a 时,)(x f 的单调增区间是(0,)+∞;单调减区间是)0,1(-. 综上,当0a ≤时,)(x f 的增区间是(0,)+∞,减区间是)0,1(-;当10<<a 时,()f x 的增区间是1(0,1)a -,减区间是)0,1(-和1(1,)a-+∞;当1=a 时,)(x f 的减区间是),1(+∞-;当1a >时,()f x 的增区间是1(1,0)a -;减区间是1(1,1)a--和(0,)+∞.(Ⅲ)由(Ⅱ)知 0a ≤时,)(x f 在(0,)+∞上单调递增,由0)0(=f ,知不合题意.当10<<a 时,)(x f 在(0,)+∞的最大值是1(1)f a-,由1(1)(0)0f f a->=,知不合题意.当1≥a 时,)(x f 在(0,)+∞单调递减,可得)(x f 在[0,)+∞上的最大值是0)0(=f ,符合题意. 所以,)(x f 在[0,)+∞上的最大值是0时,a 的取值围是[1,)+∞.6. (2010理数18)已知函数()f x =ln(1+x )-x +22x x (k ≥0). (Ⅰ)当k =2时,求曲线y =()f x 在点(1,f (1))处的切线方程; (Ⅱ)求()f x 的单调区间.解:(I )当2k =时,2()ln(1)f x x x x =+-+,1'()121f x x x=-++ 由于(1)ln 2f =,3'(1)2f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为3ln 2(1)2y x -=-即322ln 230x y -+-=(II )(1)'()1x kx k f x x+-=+,(1,)x ∈-+∞.当0k =时,'()1x f x x=-+. 所以,在区间(1,0)-上,'()0f x >;在区间(0,)+∞上,'()0f x <. 故()f x 得单调递增区间是(1,0)-,单调递减区间是(0,)+∞.当01k <<时,由(1)'()01x kx k f x x +-==+,得10x =,210kx k -=> 所以,在区间(1,0)-和1(,)k k -+∞上,'()0f x >;在区间1(0,)kk-上,'()0f x <故()f x 得单调递增区间是(1,0)-和1(,)k k -+∞,单调递减区间是1(0,)kk-. 当1k =时,2'()1x f x x=+ 故()f x 得单调递增区间是(1,)-+∞. 当1k >时,(1)'()01x kx k f x x +-==+,得11(1,0)kx k -=∈-,20x =. 所以没在区间1(1,)k k --和(0,)+∞上,'()0f x >;在区间1(,0)kk-上,'()0f x < 故()f x 得单调递增区间是1(1,)k k --和(0,)+∞,单调递减区间是1(,0)kk-7. (2010文21,单调性)已知函数1()ln 1()af x x ax a R x-=-+-∈ ⑴当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;⑵当12a ≤时,讨论()f x 的单调性.解:⑴ln 20x y -+=⑵因为 11ln )(--+-=xaax x x f , 所以 211)('x a a x x f -+-=221xax ax -+--=,),0(+∞∈x , 令 ,1)(2a x ax x g -+-=),,0(+∞∈x8. (是一道设计巧妙的好题,同时用到e 底指、对数,需要构造函数,证存在且唯一时结合零点存在性定理不好想,⑴⑵联系紧密) 已知函数()ln ,().xf x xg x e == ⑴若函数φ (x ) = f (x )-11x x ,求函数φ (x )的单调区间; ⑵设直线l 为函数f (x )的图象上一点A (x 0,f (x 0))处的切线,证明:在区间(1,+∞)上存在唯一的x 0,使得直线l 与曲线y =g (x )相切.解:(Ⅰ) ()1()1x x f x x ϕ+=--11ln -+-=x x x ,()()()22211121-⋅+=-+='x x x x x x ϕ. ∵0x >且1x ≠,∴()0x ϕ'>∴函数()x ϕ的单调递增区间为()()∞+,和11,0. (Ⅱ)∵1()f x x'=,∴001()f x x '=,∴ 切线l 的方程为0001ln ()y x x x x -=-, 即001ln 1y x x x =+-, ① 设直线l 与曲线()y g x =相切于点11(,)xx e ,∵()x g x e '=,∴101xe x =,∴10ln x x =-,∴0ln 101()xg x e x -==. ∴直线l 也为()00011ln y x x x x -=+, 即0000ln 11x y x x x x =++, ② 由①②得 00ln 1ln 1x x x x -=+,∴0001ln 1x x x +=-. 由(Ⅰ)可知,()x ϕ1ln --=x x 在区间1,+∞()上递增. 又12()ln 011e e e e e ϕ+-=-=<--,22222213()ln 01e e e e e ϕ+-=-=>-, 结合零点存在性定理,说明方程()0x ϕ=唯一0x ,故结论成立.9. (最值应用,转换变量)设函数221()(2)ln (0)ax f x a x a x+=-+<.(1)讨论函数()f x 在定义域的单调性; (2)当(3,2)a ∈--时,任意12,[1,3]x x ∈,12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,数m 的取值围.解:⑴221()2a f x a x x -'=+-222(2)1ax a x x +--=2(1)(21)ax x x +-=. 当2a <-时,112a -<,增区间为11(,)2a -,减区间为1(0,)a -,1(,)2+∞.当2a =-时,112a -=,减区间为(0,)+∞.当20a -<<时,112a ->,增区间为11(,)2a -,减区间为1(0,)2,1(,)a-+∞.⑵由⑴知,当(3,2)a ∈--时,()f x 在[1,3]上单调递减,∴12,[1,3]x x ∈,12|()()|f x f x -≤(1)(3)f f -1(12)[(2)ln 36]3a a a =+--++,即12|()()|f x f x -≤24(2)ln 33a a -+-. ∵12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,∴(ln 3)2ln 3m a +->24(2)ln 33a a -+-,即243ma a >-,又0a <,∴243m a<-. ∵(3,2)a ∈--,∴132384339a -<-<-,∴m ≤133-. 10. (最值应用)已知二次函数()g x 对x R ∀∈都满足2(1)(1)21g x g x x x -+-=--且(1)1g =-,设函数19()()ln 28f xg x m x =+++(m R ∈,0x >).(Ⅰ)求()g x 的表达式;(Ⅱ)若x R +∃∈,使()0f x ≤成立,数m 的取值围;(Ⅲ)设1m e <≤,()()(1)H x f x m x =-+,求证:对于12[1,]x x m ∀∈,,恒有12|()()|1H x H x -<.解:(Ⅰ)设()2g x ax bx c =++,于是()()()()2211212212g x g x a x c x -+-=-+=--,所以121.a c ⎧=⎪⎨⎪=-⎩,又()11g =-,则12b =-.所以()211122g x x x =--. …………3分(Ⅱ)()2191()ln ln (0).282f xg x m x x m x m x =+++=+∈>R ,当m >0时,由对数函数性质,f (x )的值域为R ;…………4分当m =0时,2()02x f x =>对0x ∀>,()0f x >恒成立; …………5分 当m <0时,由()0mf x x x x'=+=⇒=,列表:[]min ()2mf x f m ==-+这时, []min 0()0e<0.2mm f x m m ⎧-+>⎪>⇔⇒-<⎨⎪<⎩,所以若0x ∀>,()0f x >恒成立,则实数m 的取值围是(e 0]-,.故0x ∃>使()0f x ≤成立,实数m 的取值围()(,e]0-∞-+∞,.…………9分(Ⅲ)因为对[1]x m ∀∈,,(1)()()0x x m H x x --'=≤,所以()H x 在[1,]m 单调递减.于是21211|()()|(1)()ln .22H x H x H H m m m m -≤-=--2121113|()()|1ln 1ln 0.2222H x H x m m m m m m-<⇐--<⇔--<记13()ln (1e)22h m m m m m=--<≤,则()221133111()022332h'm m m m =-+=-+>, 所以函数13()ln 22h m m m m =--在(1e],是单调增函数,所以()()e 3e 1e 3()(e)1022e 2eh m h -+≤=--=<,故命题成立. …………12分11. 设3x =是函数()()()23,xf x x ax b e x R -=++∈的一个极值点.(1)求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;(2)设()2250,4xa g x a e ⎛⎫>=+⎪⎝⎭,若存在[]12,0,4ξξ∈,使得()()121f g ξξ-< 成立,求a 的取值围.解:(1)∵()()23xf x x ax b e-=++∴()()()()''32321x x fx x a e x ax b e --=++++-()232xx a x b a e -⎡⎤=-+-+-⎣⎦由题意得:()'30f =,即()23320a b a +-+-=,23b a =--∴()()2323xf x x ax a e -=+--且()()()'331x f x x x a e -=--++令()'0f x =得13x =,21x a =--∵3x =是函数()()()23,xf x x ax b e x R -=++∈的一个极值点∴12x x ≠,即4a ≠-故a 与b 的关系式为()23,4b a a =--≠-.当4a <-时,213x a =-->,由()'0fx >得单增区间为:()3,1a --;由()'0f x <得单减区间为:(),3-∞和()1,a --+∞;当4a >-时,213x a =--<,由()'0f x >得单增区间为:()1,3a --;由()'0f x <得单减区间为:(),1a -∞--和()3,+∞;(2)由(1)知:当0a >时,210x a =--<,()f x 在[]0,3上单调递增,在[]3,4上单调递减,{},)32()4(),0(min )(3min e a f f x f +-==()()max 36f x f a ==+, ∴()f x 在[]0,4上的值域为]6,)32([3++-a e a .易知()2254xg x a e ⎛⎫=+⎪⎝⎭在[]0,4上是增函数, ∴()g x 在[]0,4上的值域为2242525,44a a e ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦.由于()222516042a a a ⎛⎫⎛⎫+-+=-≥ ⎪ ⎪⎝⎭⎝⎭, 又∵要存在[]12,0,4ξξ∈,使得()()121f g ξξ-<成立,∴必须且只须()2025614a a a >⎧⎪⎨⎛⎫+-+< ⎪⎪⎝⎭⎩解得:302a <<.所以,a 的取值围为30,2⎛⎫⎪⎝⎭.12. 2()()()xf x x ax b e x R =++∈. (1)若2,2a b ==-,求函数()f x 的极值;(2)若1x =是函数()f x 的一个极值点,试求出a 关于b 的关系式(用a 表示b ),并确定()f x 的单调区间;(3)在(2)的条件下,设0a >,函数24()(14)x g x a e +=+.若存在]4,0[,21∈λλ使得1|)()(|21<-λλf f 成立,求a 的取值围.解:(1)∵22()(2)()[(2)()]x x x f x x a e x ax b e x a x a b e '=++++=++++当2,2a b ==-时,2()(22)x f x x x e =+-,则'()f x 2(4)x x x e =+.令'()0f x =得2(4)0x x x e +=,∵0x e ≠,∴240x x +=,解得124,0x x =-= ∵当(,4)x ∈-∞-时,'()0f x >,当(4,0)x ∈-时'()0f x <,当(0,)x ∈+∞时'()0f x > ∴当4x =-时,函数()f x 有极大值,46()f x e极大=, 当0x =时,函数()f x 有极小值,()2f x =-极小. (2)由(1)知2()[(2)()]x f x x a x a b e '=++++ ∵1x =是函数()f x 的一个极值点 ∴(1)0f '= 即[1(2)()]0e a a b ++++=,解得32b a =--则2()[(2)(3)]x f x e x a x a '=+++--=(1)[(3)]x e x x a -++ 令()0f x '=,得11x =或23x a =--∵1x =是极值点,∴31a --≠,即4a ≠- .当31a -->即4a <-时,由()0f x '>得(3,)x a ∈--+∞或(,1)x ∈-∞ 由()0f x '<得(1,3)x a ∈--当31a --<即4a >-时,由()0f x '>得(1,)x ∈+∞或(,3)x a ∈-∞-- 由()0f x '<得(3,1)x a ∈--. 综上可知:当4a <-时,单调递增区间为(,1)-∞和(3,)a --+∞,递减区间为(1,3)a --当4a >-时,单调递增区间为(,3)a -∞--和(1,)+∞,递减区间为(3,1)a --。