解三角形练习题及答案-精品.pdf
(完整版)解三角形练习题及答案

第一章 解三角形一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ).A .90°B .120°C .135°D .150°2.在△ABC 中,下列等式正确的是( ).A .a ∶b =∠A ∶∠B B .a ∶b =sin A ∶sin BC .a ∶b =sin B ∶sin AD .a sin A =b sin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ).A .1∶2∶3B .1∶∶23C .1∶4∶9D .1∶∶234.在△ABC 中,a =,b =,∠A =30°,则c 等于( ).515A .2B .C .2或D .或55551055.已知△ABC 中,∠A =60°,a =,b =4,那么满足条件的△ABC 的形状大小 ( 6).A .有一种情形B .有两种情形C .不可求出D .有三种以上情形6.在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ).A .锐角三角形B .直角三角形C .钝角三角形D .形状不能确定7.在△ABC 中,若b =,c =3,∠B =30°,则a =( ).3A .B .2C .或2D .233338.在△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边.如果a ,b ,c 成等差数列,∠B =30°,△ABC 的面积为,那么b =( ).23A .B .1+C .D .2+231+3232+39.某人朝正东方向走了x km 后,向左转150°,然后朝此方向走了3 km ,结果他离出发点恰好km ,那么x 的值是().3A .B .2C .或2D .3333310.有一电视塔,在其东南方A 处看塔顶时仰角为45°,在其西南方B 处看塔顶时仰角为60°,若AB =120米,则电视塔的高度为().A .60米B .60米C .60米或60米D .30米33二、填空题11.在△ABC 中,∠A =45°,∠B =60°,a =10,b = .12.在△ABC 中,∠A =105°,∠B =45°,c =,则b = .213.在△ABC 中,∠A =60°,a =3,则= .CB A cb a sin sin sin ++++14.在△ABC 中,若a 2+b 2<c 2,且sin C =,则∠C = .2315.平行四边形ABCD 中,AB =4,AC =4,∠BAC =45°,那么AD = 63.16.在△ABC 中,若sin A ∶sinB ∶sinC =2∶3∶4,则最大角的余弦值=.三、解答题17. 已知在△ABC 中,∠A =45°,a =2,c =,解此三角形.618.在△ABC 中,已知b =,c =1,∠B =60°,求a 和∠A ,∠C .319. 根据所给条件,判断△ABC 的形状.(1)a cos A =b cos B ;(2)==.A a cos B b cos Cccos 20.△ABC 中,己知∠A >∠B >∠C ,且∠A =2∠C ,b =4,a +c =8,求a ,c 的长.第一章 解三角形参考答案一、选择题1.B解析:设三边分别为5k ,7k ,8k (k >0),中间角为 α,由cos α==,得 α=60°,kk k k k 85249+64+25222⨯⨯21∴最大角和最小角之和为180°-60°=120°.2.B 3.B 4.C 5.C 6.C 7.C 8.B解析:依题可得:⎪⎪⎩⎪⎪⎨⎧︒︒30cos 2+++23+30sin 212++222ac c a b ac bc a ⇒⎪⎩⎪⎨⎧ac ac c a b ac b c a 3+2+)+(+6+2++22代入后消去a ,c ,得b 2=4+2,∴b =+1,故选B .339.C 10.A 二、填空题11.5.612.2.13.2.3解析:设===k ,则=k ===2A asin B b sin Cc sin C B A c b a +sin +sin sin ++A a sin ︒60sin 3.314..32π15.4.316.-.41三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C =sin 45°=·=.26262223∵c sin A =×=,a =2,c =,<2<,6223636∴本题有二解,即∠C =60°或∠C =120°,∠B =180°-60°-45°=75°或∠B =180°-120°-45°=15°.故b =sin B ,所以b =+1或b =-1,Aasin 33∴b =+1,∠C =60°,∠B =75°或b =-1,∠C =120°,∠B =15°.33解法2:由余弦定理得b 2+()2-2b cos 45°=4,66∴b 2-2b +2=0,解得b =±1.33又()2=b 2+22-2×2b cos C ,得cos C =±,∠C =60°或∠C =120°,621所以∠B =75°或∠B =15°.∴b =+1,∠C =60°,∠B =75°或b =-1,∠C =120°,∠B =15°.3318.解析:已知两边及其中一边的对角,可利用正弦定理求解.解:∵=,B b sin Ccsin ∴sin C ===.b Bc sin ⋅360sin 1︒⋅21∵b >c ,∠B =60°,∴∠C <∠B ,∠C =30°,∴∠A =90°.由勾股定理a ==2,22+c b即a =2,∠A =90°,∠C =30°.19.解析:本题主要考查利用正、余弦定理判断三角形的形状.(1)解法1:由余弦定理得a cos A =b cos B a ·()=b ·()a 2c 2-a 4-b 2c 2+b 4=0,⇒bc a c b 2222-+acc b a 2222+-⇒∴(a 2-b 2)(c 2-a 2-b 2)=0,∴a 2-b 2=0或c 2-a 2-b 2=0,∴a =b 或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.解法2:由正弦定理得sin A cos A =sin B cos B sin 2A =sin 2B⇒2∠A =2∠B 或2∠A =π-2∠B ,∠A ,∠B ∈(0,π) ⇒∠A =∠B 或∠A +∠B =,⇒2π∴△ABC 是等腰三角形或直角三角形.(2)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C 代入已知等式,得==,A A R cos sin 2B BR cos sin 2C C R cos sin 2∴==,A A cos sin B Bcos sin CC cos sin 即tan A =tan B =tan C .∵∠A ,∠B ,∠C ∈(0,π),∴∠A =∠B =∠C ,∴△ABC 为等边三角形.20.解析:利用正弦定理及∠A =2∠C 用a ,c 的代数式表示cos C ;再利用余弦定理,用a ,c 的代数式表示cos C ,这样可以建立a ,c 的等量关系;再由a +c =8,解方程组得a ,c .解:由正弦定理= 及∠A =2∠C ,得A asin Cc sin =,即=,C a 2sin C c sin C C a cos sin 2⋅C csin ∴cos C =.ca2由余弦定理cos C =,abc b a 2222-+∵b =4,a +c =8,∴a +c =2b ,∴cos C ===,)()(c a a c c a a ++4++222)())((c a a c a c a +4+3+5a c a 43+5∴=,c a2ac a 43+5整理得(2a -3c )(a -c )=0,∵a ≠c ,∴2a =3c .又∵a +c =8,∴a =,c =.524516。
解三角形练习题及答案

解三角形练习题及答案一、解三角形练习题1. 已知三角形ABC,AB=5cm,AC=8cm,BC=7cm,求角A的大小。
2. 已知三角形DEF,DE=6cm,EF=9cm,DF=12cm,求角D的大小。
3. 已知三角形GHI,GH=5cm,HI=5cm,GI=7cm,求角G的大小。
4. 已知三角形JKL,JK=8cm,KL=10cm,JL=12cm,求角K的大小。
5. 已知三角形MNO,MN=4cm,NO=6cm,MO=8cm,求角M的大小。
二、解三角形练习题答案1. 解题过程:根据已知条件,我们可以使用余弦定理来求解角A的大小。
余弦定理公式为:cos(A) = (b^2 + c^2 - a^2) / (2b*c)其中,a、b、c分别表示三角形对应边的长度。
代入已知条件可得: cos(A) = (7^2 + 8^2 - 5^2) / (2*7*8)= (49 + 64 - 25) / 112= 88 / 112≈ 0.786通过查表或计算器的反余弦函数,可以得到角A的近似值为38°。
2. 解题过程:同样利用余弦定理,我们可以求解角D的大小。
代入已知条件可得:cos(D) = (9^2 + 12^2 - 6^2) / (2*9*12)= (81 + 144 - 36) / 216= 189 / 216≈ 0.875通过反余弦函数,可以得到角D的近似值为 30°。
3. 解题过程:同理,利用余弦定理求解角G的大小。
代入已知条件可得:cos(G) = (5^2 + 7^2 - 5^2) / (2*5*7)= (25 + 49 - 25) / 70= 49 / 70≈ 0.7通过反余弦函数,可以得到角G的近似值为 45°。
4. 解题过程:利用余弦定理求解角K的大小。
代入已知条件可得:cos(K) = (10^2 + 12^2 - 8^2) / (2*10*12)= (100 + 144 - 64) / 240= 180 / 240= 3 / 4= 0.75通过反余弦函数,可以得到角K的近似值为 41.4°。
中考《解直角三角形》复习练习题及答案

中考数学复习专题练习解直角三角形一、选择题:1、在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形2、在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA= B.tanA= C.sinA= D.cosA=3、如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是( )A.2 B. C. D.4、在Rt ABC中,∠C=90°,sinB=,则tanA的值为( )A. B. C. D.5、在正方形网格中,△ABC的位置如图所示,则cosB的值为()A. B. C. D.6、在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长是()A. B.2 C.1 D.27、如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形顶点上,则tan∠ACB值为( )A. B. C. D.8、如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10mB.mC.15m D.m9、如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( )A.4米B.6米C.12米D.24米10、如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )A. B.-1 C.2- D.11、如图,已知的三个顶点都在方格图的格点上,则的值为( )A. B. C. D.12、如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、在△ABC中,∠A,∠B都是锐角,若sinA=,cosB=,则∠C=________.14、已知在Rt△ABC中,∠C=90°,AB=15,cosB=,则BC= .15、如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为______米.16、如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为______.17、如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= .18、如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan(+) tan+tan.(填“>”“=”“<”)19、如图在四边形ABCD中,∠ACB=∠BAD=105°,∠B=∠D=45°若 AD=,则AB=__________20、如图所示的半圆中,是直径,且,,则的值是.21、如图,在菱形ABCD中,DE⊥AB,,BE=2,则________.22、如图,在中,是边边上的中线,如果,tanB值是________23、如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米.24、如图,在顶角为30°的等腰三角形ABC中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形计算tan15°= .三、简答题:25、在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.26、已知:如图,正方形ABCD中,点E为AD边的中点,联结CE. 求cos∠ACE和tan∠ACE的值.27、如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)28、如图,河流两岸a,b互相平行,C,D是河岸a上间隔50m的两个电线杆.某人在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=60°,求河流的宽度CF的值.(结果精确到个位)29、张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)30、如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.31、中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)参考答案1、A.2、C.3、B.4、D.5、B.6、B.7、B.8、A.9、B.10、A.11、D.12、B.13、答案为:60°14、答案为:9.15、答案为:(米).16、答案为24.17、答案为:4.3 18、答案为:>. 19、答案为:.20、答案为: ;21、答案为:2 ;22、答案为:23、答案为:137.24、答案为:2﹣.25、解:∵方程(5+b)x2+2ax+(5-b)=0有两个相等的实数根,且c=5,∴△=(2a)2-4(c+b)(c-b)=0,∴a2+b2=c2,则△ABC为直角三角形,且∠C=90°.设x1,x2是方程2x2-(10sin A)x+5sin A=0的两个根,则根据根与系数的关系有x1+x2=5sin A,x1·x2=sin A.∴x12+x22=(x1+x2)2-2x l·x2=(5sin A)2-2×sin A=6,解得sinA=或sinA=-(舍去),∴a=csin A=3,b==4,S△ABC=ab==18.26、解:过点作于点,∵四边形是正方形,∴平分,.∴,.∵是中点,∴.设,则,,.在Rt△AEF中,,.∴.∴,.27、【解答】解:(1)过C作AB的垂线,设垂足为D,根据题意可得:∠1=∠2=42°,∠3=∠4=55°,设CD的长为x海里,在Rt△ACD中,tan42°=,则AD=x•tan42°,在Rt△BCD中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4,答:海轮在航行过程中与灯塔C的最短距离是34.4海里;(2)在Rt△BCD中,cos55°=,∴BC=≈60海里,答:海轮在B处时与灯塔C的距离约为60海里.28、【解答】解:过点C作CE∥AD,交AB于E∵CD∥AE,CE∥AD∴四边形AECD是平行四边形∴AE=CD=50m,EB=AB﹣AE=50m,∠CEB=∠DAB=30°又∠CBF=60°,故∠ECB=30°∴CB=EB=50m∴在Rt△CFB中,CF=CB•sin∠CBF=50•sin60°≈43m答:河流的宽度CF的值为43m.29、解:如图,过B作BE⊥CD交CD延长线于E,∵∠CAN=45°,∠MAN=30°,∴∠CAB=15°∵∠CBD=60°,∠DBE=30°,∴∠CBD=30°,∵∠CBE=∠CAB+∠ACB,∴∠CAB=∠ACB=15°,∴AB=BC=20,在Rt△BCE中,∠CBE=60°,BC=20,∴CE=BCsin∠CBE=20×BE=BCcos∠CBE=20×0.5=10,在Rt△DBE中,∠DBE=30°,BE=10,∴DE=BEtan∠DBE=10×,∴CD=CE﹣DE=≈11.5,答:这棵大树CD的高度大约为11.5米.30、:(1)解:∵点E、F分别是BC、CD的中点,∴EC=DF=×4=2,由勾股定理得,DE==2,∵点F是CD的中点,点N为DE的中点,∴DN=DE=×2=,NF=EC=×2=1,∴△DNF的周长=1++2=3+;在Rt△ADF中,由勾股定理得,AF===2,所以,sin∠DAF===;(2)证明:在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠DAF+∠AFD=90°,∴∠CDE+∠AFD=90°,∴AF⊥DE,∵点E、F分别是BC、CD的中点,∴NF是△CDE的中位线,∴DF=EC=2NF,∵cos∠DAF==,cos∠CDE==,∴=,∴2AD•NF=DE•DM.31、【解答】解:过A作AD⊥CF于D,由题意得∠CAG=15°,∴∠ACE=15°,∵∠ECF=75°,∴∠ACD=60°,在Rt△ACD中,sin∠ACD=,则AD=AC•sin∠ACD=250≈433米,433米>400米,∴不需要改道.答:消防车不需要改道行驶.。
华东师大版九年级上册数学第24章《解直角三角形》分课时练习题及答案

数学九年级上册第24章解直角三角形 24.1 测量同步练习题1.如图,一场暴风雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为( )A. 5 米B. 3 米 C.(5+1)米 D.3米2. 如图,李光用长为3.2m的竹竿DE为测量工具测量学校旗杆的高度,移动竹竿,使竹竿顶端、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距(AE)8m,与旗杆相距(BE)22 m,则旗杆的高为()A.12 m B.10 m C.8 m D.7 m3. 身高为1.5米的小华在打高尔夫球,她在阳光下的影长为2.1米,此时她身后一棵树的影长为10.5米,则这棵树高为()A.7.5米B.8米 C.14.7米 D.15.75米4. 小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多了1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高度为()A.11米 B.12米 C.13米 D.14米5. 如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少要飞行______米.6. 如图,B,C是河岸上两点,A是对岸岸边上一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC的距离是______米.7. 如图,铁道口栏杆的短臂长为1.2 m,长臂长为8 m,当短臂端点下降0.6 m时,长臂端点升高______m .(杆的粗细忽略不计)8. 如图,阳光通过窗口照到室内,在地面上留下2.7米的亮区,已知亮区一边到窗口下的墙脚距离EC=8.7 米,窗口高AB=1.8米,那么窗口底边离地面的高BC=________米.9. 如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.10. 如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是______米.11. 如图,一人拿着一把有厘米刻度的小尺,他站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12厘米恰好遮住电线杆,已知臂长约60厘米,求电线杆的高.12. 如图,是一个照相机成像的示意图.(1)如果像高MN是35 mm,焦距是50 mm,拍摄的景物高度AB是4.9 m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2 m的景物,拍摄点离景物有4 m,像高不变,则相机的焦距应调整为多少?13. 如图,正方形城邑DEFG的四面正中各有城门,出北门20步的A处(HA=20步)有一树木,出南门14步到C处(KC=14步),再向西行1775步到B处(CB=1775步),正好看到A处的树木(点D在直线AB上),求城邑的边长.14. 亮亮和晶晶住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,晶晶站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M,晶晶的头顶B及亮亮的眼睛A恰在一条直线上时,两人分别标定自己的位置C,D.然后测出两人之间的距离CD=1.25m,晶晶与楼之间的距离DN=30 m(C,D,N在一条直线上),晶晶的身高BD=1.6m,亮亮蹲地观测时眼睛到地面的距离AC=0.8m.你能根据以上测量数据帮助他们求出住宅楼的高度吗?15. 某同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另外一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得台阶上的影长为0.2米,一级台阶高为0.3米,如图,若此时落在地面上的影长为4.4米,则树高为多少米?答案:1—4 CAAB5. 106. 507. 48. 49. 1.5 10. 5411. 解:电线杆的高为6米12. 解:根据物体成像原理知:△LMN∽△LBA,∴MN AB =LCLD (1)∵像高MN 是35mm ,焦距是50 mm ,拍摄的景物高度AB 是4.9 m ,∴3550=4.9LD ,解得LD =7.∴拍摄点距离景物7 m (2)拍摄高度AB 是2 m 的景物,拍摄点离景物LD =4 m ,像高MN 不变,∴35LC =24.解得LC =70.∴相机的焦距应调整为70 mm13. 解:设正方形的边长为x 步,由已知可得△ADH∽△ABC ,∴AH AC =DHBC ,即2020+x +14=12x 1775,整理得x 2+34x -71000=0,解得x 1=250,x 2=-284(舍去),所以城邑的边长为250步14. 解:过A 作CN 的平行线交BD 于点E ,交MN 于点F.由已知可得FN =ED =AC =0.8 m ,AE =CD =1.25 m ,EF =DN =30 m ,∠AEB =∠AFM =90°,又∠BAE=∠MAF,∴△ABE ∽△AMF ,∴BE MF =AE AF ,即1.6-0.8MF = 1.251.25+30,解得MF =20.∴MN =MF +FN =20+0.8=20.8(m),所以住宅楼的高度为20.8 m15. 解:设落在地面上的影子4.4米所对应的树高为x米,则有x4.4=10.4,∴x=11,落在第一阶台阶上的影子长为0.2米对应的树高为0.5米,所以树高为11+0.5+0.3=11.8(米)数学九年级上学期《24.2直角三角形的性质》同步练习一.选择题(共12小题)1.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.正确结论有()A.1个B.2个C.3个D.4个2.下列判断:①有两个内角分别为55°和25°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中至少有两个锐角;④三条高不相交的三角形一定是钝角三角形,其中正确的有()个.A.1 B.2 C.3 D.43.如图,已知△ABC中,∠ACB=90°,CD为AB边上的高,∠ABC 的平分线BE分别交CD、CA于点F、E,则下列结论正确的有()①∠CFE=∠CEF;②∠FCB=∠FBC,③∠A=∠DCB;④∠CFE与∠CBF互余.A.①③④B.②③④C.①②④D.①②③4.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是()A.75° B.60° C.45°D.30°5.在Rt△ABC中,∠C=90°,∠B=35°,则∠A=()A.45° B.55°C.65° D.75°6.如图所示,△ABC为直角三角形,∠ACB=90°,CD⊥AB,与∠1互余的角有()A.∠B B.∠A C.∠BCD和∠A D.∠BCD 7.直角三角形的一个锐角是另一个锐角的4倍,那么这个锐角的度数是()A.18° B.36° C.54°D.72°8.直角三角形两个锐角平分线相交所成角的度数为()A.90° B.135° C.120°D.45°或135°9.在Rt△ABC中,∠C=90°,∠A=50°,则∠B=()A.30° B.40° C.50°D.60°10.如图,∠ACB=90°,CD⊥AB,垂足为点D,下列结论错误的是()A.∠A=∠2 B.∠1和∠B都是∠A的余角C.∠1=∠2 D.图中有3个直角三角形11.在Rt△ABC中,∠C=90°,∠A=61°,则∠B=()A.61° B.39°C.29° D.19°12.如图,在△ABC中,∠ACB=105°,∠B=30°,∠ACB的平分线CD交AB 于点D,则AD:BD=()A.B.C.1:2D.二.填空题(共10小题)13.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP 为直角三角形时,∠A=°.14.在一个直角三角形中,两个锐角相等,则这两个锐角的度数是°.15.如图,在直角三角形ABC中,两锐角平分线AM、BN所夹的钝角∠AOB=度.16.如图△ABC中,点M是BC的中点,∠ACB=90°,AC=5,BC=12,AN平分∠BAC,AN⊥CN,则MN=.17.如图示在△ABC中∠B=.18.直角△ABC中,∠A﹣∠B=20°,则∠C的度数是.19.直角三角形ABC中有一个角是另一角的2倍小60°,则直角三角形中最小的角的度数为.20.在直角三角形ABC中,∠C=90°,∠A=23°,则∠B=°,与∠B相邻的外角为°.21.一块直角三角板放在两平行直线上,如图,∠1+∠2=度.22.在直角三角形中,若一个锐角为35°,则另一个锐角为.三.解答题(共5小题)23.如图,在Rt△ABC中∠ACB=90°,CD⊥AB,∠A=30°,求∠DCB.24.小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)M为边AC上一点,则BD、MF的位置是.请你进行证明.(2)M为边AC反向延长线上一点,则BD、MF的位置关系是.请你进行证明.(3)M为边AC延长线上一点,猜想BD、MF的位置关系是.请你进行证明.25.已知,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.(1)如图1,求证:CD⊥AB;(2)将△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点.①如图2,若∠B=34°,求∠A′CB的度数;②若∠B=n°,请直接写出∠A′CB的度数(用含n的代数式表示).26.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.27.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.参考答案一.选择题1.C.2.D.3.A.4.C.5.B.6.C.7.D.8.D.9.B.10.C.11.C.12.A.二.填空题13.50或90.14.4515.13516.4.17.25°.18.20°或90°.19.40°或15°.20.67;113.21.90.22.55°.三.解答题23.解:∵∠A=30°,∴∠B=90°﹣30°=60°,∵CD⊥AB,∴∠DCB=90°﹣∠B=30°.24.解:(1)BD∥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠AME=360°﹣90°×2=180°,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠ABC,∠AMF=∠AME,∴∠ABD+∠AMF=(∠ABC+∠AME)=90°,又∵∠AFM+∠AMF=90°,∴∠ABD=∠AFM,∴BD∥MF;(2)BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠C=∠AME+∠C=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠ABD+∠ADB=90°,∴∠AMF+∠ADB=90°,∴BD⊥MF;(3)BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠ACB=∠AME+∠ACB=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠AMF+∠F=90°,∴∠ABD+∠F=90°,∴BD⊥MF.25.解:(1)∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵∠ACD=∠B,∴∠B+∠BCD=90°,∴∠BDC=90°,∴CD⊥AB;(2)①当∠B=34°时,∵∠ACD=∠B,∴∠ACD=34°,由(1)知,∠BCD+∠B=90°,∴∠BCD=56°,由折叠知,∠A'CD=∠ACD=34°,∴∠A'CB=∠BCD﹣∠A'CD=56°﹣34°=22°;②当∠B=n°时,同①的方法得,∠A'CD=n°,∠BCD=90°﹣n°,∴∠A'CB=∠BCD﹣∠A'CD=90°﹣n°﹣n°=90°﹣2n°.26.证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.27.证明:(1)∵∠ACB=90°,∴∠A+∠B=90°,∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC=90°,∴CD⊥AB.数学九年级上学期《24.3锐角三角函数》同步练习一.选择题(共9小题)1.在Rt△ABC中,∠C=90°,若sinA=,AB=2,则AC长是()A.B.C.D.22.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.3.如图,△ABC的三个顶点分别在正方形网格的格点上,则tanC的值是()A.B.C.D.4.如图,在△ABC中,∠C=90°,AB=5,AC=4,则sinA的值是()A.B.C.D.5.在△ABC中,∠C=90°,tanA=,则sinA=()A.B.C.D.6.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A.B.1 C.D.7.若0°<∠A<45°,那么sinA﹣cosA的值()A.大于0 B.小于0 C.等于0 D.不能确定8.下列说法正确的个数有()(1)对于任意锐角α,都有0<sinα<1和0<cosα<1(2)对于任意锐角α1,α2,如果α1<α2,那么cosα1<cosα2(3)如果sinα1<sinα2,那么锐角α1<锐角α2(4)如果cotα1<cotα2,那么锐角α1>锐角α2A.1个B.2个C.3个D.4个9.在Rt△ABC中,∠C=90°,AC=4,cosA的值等于,则AB的长度是()A.3 B.4 C.5 D.二.填空题(共5小题)10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AD=BC,则cos∠B=.11.如图,若点A的坐标为,则sin∠1=.12.如图,点A(t,4)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值为.13.如图,∠AOB放置在正方形网格中,则∠AOB的正切值是.14.如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有.三.解答题(共5小题)15.如图所示,在平面直角坐标系xoy中,四边形OABC是正方形,点A的坐标为(m,0).将正方形OABC绕点O逆时针旋转α角,得到正方形ODEF,DE与边BC交于点M,且点M与B、C不重合.(1)请判断线段CD与OM的位置关系,其位置关系是;(2)试用含m和α的代数式表示线段CM的长:;α的取值范围是.16.已知Rt△ABC中,∠C=90°,a+b=2+2,c=4,求锐角A的度数.17.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cosB的值.18.如图,在△ABC中,∠C=90°,点D在BC上,AD=BC=5,cos∠ADC=,求:sinB的值.19.设θ为直角三角形的一个锐角,给出θ角三角函数的两条基本性质:①tanθ=;②cos2θ+sin2θ=1,利用这些性质解答本题.已知cosθ+sinθ=,求值:(1)tanθ+;(2)||.参考答案一.选择题1.A.2.D.3.A.4.D.5.C.6.A.7.B.8.C.9.C.二.填空题10..11..12.3.13..14.①②③④.三.解答题15.解:(1)连接CD,OM.根据旋转的性质可得,MC=MD,OC=OD,又OM是公共边,∴△COM≌△DOM,∴∠COM=∠DOM,又∵OC=OD,∴CD⊥OM;(2)由(1)知∠COM=∠DOM,∴∠COM=,在Rt△COM中,CM=OC•tan∠COM=m•tan;因为OD与OM不能重合,且只能在OC右边,故可得α的取值范围是0°<α<90°.16.解:将a+b=2+2两边平方,整理得ab=4,又因为a+b=2+2,构造一元二次方程得x2﹣(2+2)x+4=0,解得x1=2,x2=2则(1)sinA==时,锐角A的度数是30°,(2)sinA==时,锐角A的度数是60°,所以∠A=30°或∠A=60°.17.解:∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,又∵∠A=∠A,∴△AMN∽△ABC,∴==,设AC=3x,AB=4x,由勾股定理得:BC==x,在Rt△ABC中,cosB===.18.解:∵AD=BC=5,cos∠ADC=,∴CD=3,在Rt△ACD中,∵AD=5,CD=3,∴AC===4,在Rt△ACB中,∵AC=4,BC=5,∴AB===,∴sinB===.19.解(1)∵cosθ+sinθ=,∴(cosθ+sinθ)2=()2,cos2θ+2cosθ•sinθ+sin2θ=,cosθ•sinθ=,∴tanθ+=+===4;(2)∵(cosθ﹣sinθ)2=cos2θ﹣2cosθ•sinθ+sin2θ=1﹣2×=,∴cosθ﹣sinθ=±,∴|cosθ﹣sinθ|=.数学九年级上学期《24.4解直角三角形》同步练习一.选择题(共11小题)1.如图,四边形ABCD中,∠ABC=Rt∠.已知∠A=α,外角∠DCE=β,BC=a,CD=b,则下列结论错误的是()A.∠ADC=90°﹣α+βB.点D到BE的距离为b•sinβC.AD=D.点D到AB的距离为a+bcosβ2.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是()A.3 B.C.D.3.在Rt△ABC中,∠C=90°,tanA=,若AC=6cm,则BC的长度为()A.8cm B.7cm C.6cmD.5cm4.如图,△ABC的顶点都在正方形网格的格点上,则tan∠BAC的值为()A.2 B.C.D.5.已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.66.在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为()A.m•tanα•cosαB.m•cotα•cosαC.D.7.如图,在Rt△ABC中,∠C=90°,sinA=,D为AB上一点,且AD:DB=3:2,过点D作DE⊥AC于E,连结BE,则tan∠CEB的值等于()A.B.2 C.D.8.一个三角形的边长分别为a,a,b,另一个三角形的边长分别为b,b,a,其中a>b,若两个三角形的最小内角相等,的值等于()A.B.C.D.9.如图,在梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=4,E为BC中点,AE 平分∠BAD,连接DE,则sin∠ADE的值为()A.B.C.D.10.如图所示,在矩形ABCD中,对角线AC、BD相交于O,OE⊥AC于O交BC于E,连接AE.若AB=1,AD=,则AE=()A.B.C.D.2 11.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50B.51 C.50+1D.101二.填空题(共6小题)12.在△ABC中,AB=2,AC=3,cos∠ACB=,则∠ABC的大小为度.∠ABH=,则13.已知等腰△ABC,AB=AC,BH为腰AC上的高,BH=3,tanCH的长为.14.已知平面直角坐标系xOy中,O为坐标原点,点P的坐标为(5,12),那么OP与x轴正半轴所夹角的余弦值为.15.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).16.已知△ABC中,满足+=,AB=10.则AC+BC=17.在△ABC中,AB=AC,若BD⊥直线AC于点D,若cos∠BAD=,BD=2,则BC为.三.解答题(共8小题)18.如图,在Rt△ABC中,∠C=90°,点D是BC边的中点,BD=2,tanB=(1)求AD和AB的长;(2)求sin∠BAD的值.19.如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.(1)若BD=BC,证明:sin∠BCD=.(2)若AB=BC=4,AD+CD=6,求的值.(3)若BD=CD,AB=6,BC=8,求sin∠BCD的值.(注:本题可根据需要自己画图并解答)20.如图,在Rt△ABC中,∠B=90°,sinA=,点D在AB边上,且∠BDC=45°,BC=5.(1)求AD长;(2)求∠ACD的正弦值.21.在数学活动课上,老师带领学生去测量操场上树立的旗杆的高度,老师为同学们准备了如下工具:①高为m米的测角仪,②长为n米的竹竿,③足够长的皮尺.请你选用以上的工具,设计一个可以通过测量,求出国旗杆高度的方案(不用计算和说明,画出图形并标记可以测量的长度或者角度即可,可测量的角度选用α,β,γ标记,可测量的长度选用a,b,c,d标记,测角仪和竹竿可以用线段表示).(1)你选用的工具为:;(填序号即可)(2)画出图形.22.如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1:.(1)求加固后坝底增加的宽度AF;(2)求完成这项工程需要土石多少立方米?(结果保留根号)23.每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB(假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)24.小明与班级数学兴趣小组的同学在学校操场上测得旗杆BC在地面上的影长AB为12米,同一时刻,测得小明在地面的影长为2.4米,小明的身高为1.6米.(1)求旗杆BC的高度;(2)兴趣小组活动一段时间后,小明站在A,B两点之间的D处(A,D,B三点在一条直线上),测得旗杆BC的顶端C的仰角为α,且tanα=0.8,求此时小明与旗杆之间的距离.25.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.参考答案一.选择题1.C.2.A.3.A.4.B.5.C.6.C.7.D.8.B.9.B.10.C.11.C.二.填空题(共6小题)12.30或150.13.3或14.15.;.16.14.17.2或2.三.解答题18.解:(1)∵D是BC的中点,BD=2,∴BD=DC=2,BC=4,在Rt△ACB中,由 tanB==,∴=,∴AC=3,由勾股定理得:AD===,AB===5;(2)过点D作DE⊥AB于E,∴∠C=∠DEB=90°,又∠B=∠B,∴△DEB∽△ACB,∴=,∴DE=,∴sin∠BAD===.19.解:(1)如图1中,过点B作AD的垂线BE交DA的延长线于点E,∵∠ABC=∠ADC=90°,∴∠ADC+∠ABC=180°,∴四边形ABCD四点共圆,∴∠BDE=∠ACB,∠EAB=∠BCD,∵∠BED=∠ABC=90°,∴△BED∽△ABC,∴==sin∠EAB=sin∠BCD;(2)如图2中,过点B作BF⊥BD交DC的延长线于F.∵∠ABC=∠DBF=90°,∠BAD+∠BCD+∠ABC+∠ADC=360°,∠ABC+∠ADC=180°,∴∠BAD=180°﹣∠BCD=∠BCF,∵∠BCF=∠BAD,BC=BA,∴△DAB≌△CBF,∴BD=BF,AD=CF,∵∠DBF=90°,∴△BDF是等腰直角三角形,∴BD=DF,∵AD+CD=6,∴CF+CD=DF=6,∴BD=3,AC==4,∴==.(3)当BD=CD时,如图3中,过点B作MN∥DC,过点C作CN⊥MN,垂足为N,延长DA交MN于点M,则四边形DCNM是矩形,△ABM∽△BCN,∴===,设AM=6y,BN=8y,BM=6x,CN=8x,在Rt△BDM中,BD==10x,∵BD=DC,∴10x=6x+8y,∴x=2y,在Rt△ABM中,AB==6y,∴sin∠BCD=sin∠MAB===.20.解:(1)∵∠B=90°,∠BDC=45°,∴BC=BD=5,∵sinA=,∴AB=12,∴AD=AB﹣BD=12﹣5=7;(2)过A作AE⊥CE交CD延长线于点E,∵△ADE是等腰直角三角形,∴AE=DE=,则sin∠ACD=.21.解:(1)选用的工具为:①③;故答案为:①③;(2)如图所示:可以量出AM,AC,AB的长,以及α,β的度数,即可得出DC,NC的长.22.解:(1)分别过点E、D作EG⊥AB、DH⊥AB交AB于G、H.∵四边形ABCD是梯形,且AB∥CD,∴DH平行且等于EG.故四边形EGHD是矩形.∴ED=GH.在Rt△ADH中,AH=DH÷tan∠DAH=10÷tan45°=10(米).在Rt△FGE中,i==,∴FG=EG=10(米).∴AF=FG+GH﹣AH=10+3﹣10=10﹣7(米);(2)加宽部分的体积V=S梯形AFED×坝长=×(3+10﹣7)×10×500=25000﹣10000(立方米).答:(1)加固后坝底增加的宽度AF为(10﹣7)米;(2)完成这项工程需要土石(25000﹣10000)立方米.23.解:过点A作AE⊥CD于点E,∵∠BAC=15°,∴∠DAC=90°﹣15°=75°,∵∠ADC=60°,∴在Rt△AED中,∵cos60°===,∴DE=2,∵sin60°===,∴AE=2,∴∠EAD=90°﹣∠ADE=90°﹣60°=30°,在Rt△AEC中,∵∠CAE=∠CAD﹣∠DAE=75°﹣30°=45°,∴∠C=90°﹣∠CAE=90°﹣45°=45°,∴AE=CE=2,∴sin45°===,∴AC=2,∴AB=2+2+2≈2×2.4+2×1.7+2=10.2≈10米.答:这棵大树AB原来的高度是10米.24.解:(1)依题意有:=,即=,解得BC=8.故旗杆BC的高度是8米;(2)如图,在Rt△CFE中,tan∠CEF===0.8,解得EF=8,则BD=8.故此时小明与旗杆之间的距离是8米.25.解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).。
九年级数学下册《第二十八章 解直角三角形及其应用》练习题附答案解析-人教版

九年级数学下册《第二十八章解直角三角形及其应用》练习题附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.图,在Rt△ABC中△ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC于点F,若BC=4,sin△CEF= 3,则△AEF的面积为()5A.3B.4C.5D.62.小丽在小华北偏东40°的方向,则小华在小丽的()A.南偏西50°B.北偏西50°C.南偏西40°D.北偏西40°3.如图,小明在距离地面30米的P处测得A处的俯角为15︒,B处的心角为60︒,若斜面坡度为,则斜面AB的长是()米.A.B.C.D.4.如图,某渔船正在海上P处捕鱼,先向北偏东30°的方向航行10km到A处.然后右转40°再航行到B处,在点A的正南方向,点P的正东方向的C处有一条船,也计划驶往B处,那么它的航向是()A .北偏东20°B .北偏东30°C .北偏东35°D .北偏东40°5.如图,某建筑物的顶部有一块宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°,已知斜坡AB 的坡角为30°,10AB =米,15AE =米,则宣传牌CD 的高度是( )米A .20-B .20+C .15+D .56.如图,已知正六边形ABCDEF 内接于半径为r 的O ,随机地往O 内投一粒米,落在正六边形内的概率为( )A B C D .以上答案都不对7.如图,小明利用标杆BE 测量建筑物DC 的高度,已知标杆BE 的长为1.2米,测得AB =85米,BC =425米,则楼高CD 是( )A .6.3米B .7.5米C .8米D .68.如图,点E 是⊥ABCD 的边AB 上一点,过点E 作EF ∥BC ,交CD 于F ,点P 为EF 上一点,连接PB 、PD .下列说法不正确的是( )A .若⊥ABP =⊥CDP ,则点P 在⊥ABCD 的对角线BD 上B .若AE :EB =2:3,EP :PF =1:2,则S △BEP :S △DFP =3:4C .若S △BEP =S △DFP ,则点P 在AC 上D .若点P 在BD 上,则S △BEP =S △DFP9.如图,一棵大树被台风拦腰刮断,树根A 到刮断点P 的距离是4米,折断部分PB 与地面成40︒的夹角,那么原来这棵树的高度是( )A .44cos 40+︒⎛⎫ ⎪⎝⎭米B .44sin 40+︒⎛⎫ ⎪⎝⎭米C .()44sin 40+︒米D .()44tan 40+︒米10.如图,等腰Rt △ABC 中⊥A =90°,AB =AC ,BD 为△ABC 的角平分线,若2CD =,则AB 的长为( )A.3 B .2 C .4 D 2+二、填空题11.在Rt ABC 中90C ∠=︒,有一个锐角为60︒,6AB =若点P 在直线..AB 上(不与点A ,B 重合),且30PCB ∠=︒,则AP 的长为_______.12.如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形A O B '''.若⊥O =90°,OA =2,则阴影部分的面积为______.13.如图,在一次数学实践活动中小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A的仰角为30︒,已知斜坡的斜面坡度i =A ,B ,C ,D ,在同一平面内,小明同学测得古塔AB 的高度是___________.14.如图,在直角坐标系中点A 的坐标为(0,点B 为x 轴的正半轴上一动点,作直线AB ,⊥ABO 与⊥ABC 关于直线AB 对称,点D ,E 分别为AO ,AB 的中点,连接DE 并延长交BC 所在直线于点F ,连接CE ,当⊥CEF 为直角时,则直线AB 的函数表达式为__.15.如图,平行四边形OABC 的顶点O 是坐标原点,A 在x 轴的正半轴上,B ,C 在第一象限,反比例函数1y x =的图象经过点C ,()0k y k x=≠的图象经过点B .若OC AC =,则k =________.16.在⊥ABC 中AB =6AC =且45B ∠=,则BC =______________.17.如图,大坝横截面的迎水坡AB 的坡比为1:2,(即BC :AC=1:2),若坡面AB 的水平宽度AC 为12米,则斜坡AB 的长为________米.18.如图,等边ABC 中115,125AOB BOC ∠=︒∠=︒,则以线段,,OA OB OC 为边构成的三角形的各角的度数分别为______________________________.三、解答题19.实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN 的距离皆为100cm .王诗嬑观测到高度90cm 矮圆柱的影子落在地面上,其长为72cm ;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN 互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i =,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm ?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm ,则高圆柱的高度为多少cm ?20.八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A 处向正北方向走了450米,到达菜园B 处锄草,再从B 处沿正西方向到达果园C 处采摘水果,再向南偏东37°方向走了300米,到达手工坊D 处进行手工制作,最后从D 处回到门口A 处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.7521.如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =求背水坡新起点A 与原起点B之间的距离. 1.41 1.73≈结果精确到0.1m )参考答案与解析1.C【分析】连接BF ,由已知CE AE BE ==得到A FBA ACE ==∠∠∠,再得出CEF ∠与CBF ∠的关系,由三角函数关系求得CF 、BF 的值,通过BF AF =,用三角形面积公式计算即可.【详解】解:连接BF⊥CE 是斜边AB 上的中线 ⊥12CE AE BE AB ===(直角三角形斜边上的中线等于斜边的一半)⊥A FBA ACE ==∠∠∠又⊥90BCA BEF ==︒∠∠在⊥ABC 中180902CBF ACB A ABF A =︒-∠-∠-∠=︒-∠∠在⊥AEC 中180902CEF AEF A ACE A =︒-∠-∠-∠=︒-∠∠⊥CEF CBF ∠=∠3sin sin 5CBF CEF ∴∠=∠=4BC =,设3,5CF x BF x ==则222BC CF BF +=,即()()222435x x +=解得1x =(负值舍掉)3,5CF BF ∴== ⊥EF 是AB 的垂直平分线, ⊥5BF AF ==11·541022AFB S AF BC ∴==⨯⨯=△ 152AEF ABF S S ∴==△△故选:C .【点睛】本题综合考查了垂直平分线的性质、直角三角形和等腰三角形的性质、勾股定理及三角函数等相关知识,熟练利用相关定理和性质进行计算是解决本题的关键.2.C【分析】画出示意图,确定好小丽和小华的的方向和位置即可.【详解】解:如图所示,当小丽在小华北偏东40°的方向时,则小华在小丽的南偏西40°的方向.故选:C【点睛】本题考查了方位角的知识点,确定好物体的方向和位置是解题的关键.3.B【分析】过点A 作AF BC ⊥于点F ,根据三角函数的定义得到30ABF ∠=︒,根据已知条件得到3045HPB APB ∠∠=︒=︒,求得60HBP ∠=︒,解直角三角形即可得到结论.【详解】如图所示:过点A 作AF BC ⊥于点F斜面坡度为AF tan ABF BF ∠∴=== 30ABF ∠∴=︒在P 处进行观测,测得山坡上A 处的俯角为15︒,山脚B 处的俯角为60︒3045HPB APB ∠∠∴=︒=︒,60HBP ∠∴=︒9045PBA BAP ∠∠∴=︒=︒,PB AB ∴=303060PH PH m sin PB PB =︒===,解得:)PB m =故AB =故选:B .【点睛】此题主要考查了解直角三角形的应用-仰角俯角问题,解直角三角形的应用-坡度坡角问题,正确得出PB AB =是解题关键.4.C【分析】连接BC ,由锐角三角函数定义得AC A = km ,则AC =AB ,再由等腰三角形的性质得⊥ACB =⊥ABC =35°,即可得出结论.【详解】解:如图,连接BC由题意得:⊥ACP =⊥ACD =90°,⊥P AC =30°,P A =10km ,⊥BAE =40°,AB =⊥⊥BAC =180°—⊥P AC —⊥BAE =180°—30°—40°=110°⊥cos⊥P AC =ACPA =cos30°=⊥AC =P A =×10= km⊥AC =AB⊥⊥ACB =⊥ABC =12×(180°—⊥BAC )=12×(180°—110°)=35°即B 处在C 处的北偏东35°方向故选:C .【点睛】本题考查了解直角三角形的应用—方向角问题,等腰三角形的性质,锐角三角函数定义等知识,由锐角三角函数定义求出AC 的长是解题的关键.5.A【分析】过点B 分别作AE 、DE 的垂线,垂足分别为G 、F ,在Rt ⊥ABG 中由已知可求得BG 、AG 的长,从而可易得EF 及EG 、BF 的长度,由等腰直角三角形的性质可得CF 的长度,在Rt ⊥DAE 中由正切函数关系可求得DE 的长度,从而可求得CD 的长度.【详解】过点B 分别作AE 、DE 的垂线,垂足分别为G 、F ,如图在Rt ⊥ABG 中⊥BAG =30゜⊥152BG AB ==米,cos3010AG AB =︒==⊥15)EG AG AE =+=米⊥BG ⊥AE ,BF ⊥ED ,AE ⊥ED⊥四边形BGEF 是矩形⊥EF =BG =5米,15)BF EG ==米⊥⊥CBF =45゜,BF ⊥ED⊥⊥BCF =⊥CBF =45゜⊥15)CF BF ==米在Rt ⊥DAE 中⊥DAE =60゜,AE =15米⊥tan DE AE DAE =∠=米)⊥155(20CD CF EF DE =+-=+-=-米故选:A【点睛】本题考查了解直角三角形的实际应用,理解坡角、仰角的含义,构造辅助线得到直角三角形是解题的关键.6.A【分析】连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得⊥OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出⊥OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.【详解】解:如图:连接OB ,过点O 作OH ⊥AB 于点H⊥六边形ABCDEF 是正六边形⊥⊥AOB =60°⊥OA =OB =r⊥⊥OAB 是等边三角形⊥AB =OA =OB =r ,⊥OAB =60°在Rt OAH △中sin OH OA OAB r =⋅∠==⊥21122OAB S AB OH r =⋅==△⊥正六边形的面积226== ⊥⊥O 的面积=πr 2⊥米粒落在正六边形内的概率为:222rπ 故选:A .【点睛】本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出⊥OAB 的面积是解决问题的关键.7.B【分析】先判断出⊥ABE ⊥⊥ACD ,再根据相似三角形对应边成比例解答.【详解】⊥AB =85,BC =425 ⊥AC =AB +BC =10⊥BE ⊥AC ,CD ⊥AC⊥BE ⊥CD⊥AB :AC =BE :CD ⊥85:10=1.2:CD⊥CD =7.5米.故选:B .【点睛】本题只要是把实际问题抽象到相似三角形中利用相似三角形的相似比,列出方程,通过解方程求出建筑物的高度,体现了方程的思想.8.D【分析】根据平行四边形的性质和判定进行判断即可.【详解】解:A 、若⊥ABP =⊥CDP ,则点P 在⊥ABCD 的对角线BD 上,说法正确;B 、若AE :EB =2:3,EP :PF =1:2则S △BEP :S △DFP =3:4,说法正确;C 、过点P 作GH AB ∥,分别交AD ,BC 于G ,H⊥GH AB ∥ GA HB ∥⊥四边形ABHG 是平行四边形同理:四边形CDGH 、四边形BHPE ,四边形DGPE 都是平行四边形 ⊥12BEP BHPE S S =△ 12DFP DGPF S S =△又BEP DFP S S =△△⊥BEPH DGPF SS = ⊥ABHG ADFE S S =同理:BCFE CDGH S S =⊥点P 在AC 上,C 说法正确;D 、若点P 在BD 上,不能得出EP =PF ,所以S △BEP 不一定等于S △DFP ,说法错误;故选:D .【点睛】此题考查平行四边形的判定和性质,掌握平行四边形的性质是解题的关键.9.B【分析】通过解直角三角形即可求得.【详解】解:在Rt ABP △中4==sin sin 40AP BP ABP ∠︒ 故原来这棵树的高度为:4=4sin 40AP BP ⎛⎫++ ⎪︒⎝⎭(米) 故选:B .【点睛】本题考查了解直角三角形的应用,熟练掌握和运用解直角三角形的方法是解决本题的关键.10.D【分析】过点D 作DE ⊥BC 于点E ,设AB =AC =x ,则AD =x -2,根据等腰Rt △ABC 中90,A AB AC ∠=︒= 得到⊥C =45°,根据BD 为△ABC 的角平分线,⊥A =90°,DE ⊥BC ,推出DE =AD =x -2,运用⊥C 的正弦即可求得.【详解】解:过点D 作DE ⊥BC 于点E ,则⊥DEB =⊥DEC =90°设AB =AC =x ,则AD =x -2⊥等腰Rt △ABC 中,⊥A =90°,AB =AC ,⊥⊥C =(180°-⊥A )=45°⊥BD 为△ABC 的角平分线⊥DE =AD =x -2⊥sin sin 452DE C CD ︒===⊥22x -⊥2x ,即2AB =.故选D .【点睛】本题主要考查了等腰直角三角形,角平分线,解直角三角形,熟练掌握等腰直角三角形的性质,角平分线的性质,正弦的定义和45°的正弦值,是解决问题的关键.11.92或9或3 【分析】分⊥ABC =60、⊥ABC =30°两种情况,利用数形结合的方法,分别求解即可.【详解】解:当⊥ABC =60°时,则⊥BAC =30°⊥132BC AB ==⊥AC ==当点P 在线段AB 上时,如图⊥30PCB ∠=︒⊥⊥BPC =90°,即PC ⊥AB⊥9cos 2AP AC BAC =⋅∠==;当点P 在AB 的延长线上时⊥30PCB ∠=︒,⊥PBC =⊥PCB +⊥CPB⊥⊥CPB =30°⊥⊥CPB =⊥PCB⊥PB =BC =3⊥AP =AB +PB =9;当⊥ABC =30°时,则⊥BAC =60°,如图⊥132AC AB ==⊥30PCB ∠=︒⊥⊥APC =60°⊥⊥ACP =60°⊥⊥APC =⊥P AC =⊥ACP⊥⊥APC 为等边三角形⊥P A =AC =3.综上所述,AP 的长为92或9或3. 故答案为:92或9或3 【点睛】本题是解直角三角形综合题,主要考查了含30度角的直角三角形、解直角三角形,等边三角形的判定和性质等,分类求解是本题解题的关键.12.3π【分析】设A O '与扇形AOB 交于点C ,连接OC ,解Rt OCO ',求得60O C COB '=∠=︒,根据阴影部分的面积为()OCO A O B OCB S S S ''''--扇形扇形,即可求解.【详解】如图,设A O '与扇形AOB 交于点C ,连接OC ,如图O '是OB 的中点11122OO OB OA '∴===, OA =2 AOB ∠=90°,将扇形AOB 沿OB 方向平移90A O O ''∴∠=︒1cos 2OO COB OC '∴∠== 60COB ∴∠=︒sin 60O C OC '∴=︒=∴阴影部分的面积为()OCO A O B OCB S S S''''--扇形扇形 OCO AOB OCB S S S ''=-+扇形扇形22906012213603602ππ=⨯-⨯+⨯3π=故答案为:3π+【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB ∠=︒是解题的关键.13.(20m +【分析】过D 作DF ⊥BC 于F ,DH ⊥AB 于H ,设DF =x m ,CF m ,求出x =10,则BH =DF =,CF =,DH =BF ,再求出AH DH ,即可求解. 【详解】解:过D 作DF ⊥BC 于F ,DH ⊥AB 于H⊥DH =BF ,BH =DF⊥斜坡的斜面坡度i =1⊥:DF CF =设DF =x m ,CFm⊥CD 220x ==⊥x =10⊥BH =DF =10m ,CF =⊥DH =BF =(m )⊥⊥ADH =30°⊥AH 10=+m ) ⊥AB =AH +BH =20103(m )故答案为:(20m +【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.14.y【分析】证明⊥ABO ⊥⊥ABC ,于是可知⊥CBA =⊥ABO =30°,得出OB =3即可求出直线AB 的函数表达式.【详解】解:⊥⊥ABO 与⊥ABC 关于直线AB 对称⊥⊥ACB =⊥AOB =90°⊥点E 是AB 的中点⊥CE =BE =EA⊥⊥EAC =⊥ECA⊥⊥ECA +⊥ECF =90°,⊥ECF +⊥CFE =90°⊥⊥CFE =⊥BAC而点D ,E 分别为AO ,AB 的中点⊥DF ∥OB⊥⊥CFE =⊥CBO =2⊥CBA =2⊥ABO⊥⊥ABO 与⊥ABC 关于直线AB 对称⊥⊥ABO ⊥⊥ABC⊥⊥OAB =⊥CAB =2⊥ABO⊥⊥ABO =30°而点A 的坐标为(0,即OAAB ∴=⊥OB =3即点B 的坐标为(3,0)于是可设直线AB 的函数表达式为y =kx +b ,代入A 、B 两点坐标得30b k b ⎧=⎪⎨+=⎪⎩解得kb故答案为y【点睛】本题考查的是三角形的全等,并考查了用待定系数法求函数解析式,找到两个已知点的坐标是解决本题的关键.15.3【分析】过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E ,先证四边形CDEB 为矩形,得出CD =BE ,再证Rt △COD ⊥Rt △BAE (HL ),根据S 平行四边形OCBA =4S △OCD =2,再求S △OBA =112OCBA S =平行四边形即可. 【详解】解:过点C 作CD ⊥OA 于D ,过点B 作BE ⊥x 轴于E⊥CD ⊥BE⊥四边形ABCO 为平行四边形⊥CB OA ∥ ,即CB DE ∥,OC =AB⊥四边形CDEB 为平行四边形⊥CD ⊥OA⊥四边形CDEB 为矩形⊥CD =BE⊥在Rt △COD 和Rt △BAE 中OC AB CD EB =⎧⎨=⎩⊥Rt △COD ⊥Rt △BAE (HL )⊥S △OCD =S △ABE⊥OC =AC ,CD ⊥OA⊥OD =AD⊥反比例函数1yx=的图象经过点C⊥S△OCD=S△CAD=12⊥S平行四边形OCBA=4S△OCD=2⊥S△OBA=11 2OCBAS=平行四边形⊥S△OBE=S△OBA+S△ABE=13 122 +=⊥3232k=⨯=.故答案为3.【点睛】本题考查反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.16.3或3【分析】画出图形,分⊥ABC为锐角三角形和钝角三角形两种情况讨论即可.【详解】解:情况一:当⊥ABC为锐角三角形时,如图1所示:过A点作AH⊥BC于H⊥⊥B=45°⊥⊥ABH为等腰直角三角形⊥363322ABAH BH在Rt⊥ACH中由勾股定理可知:2236273CH AC AH⊥333BC BH CH.情况二:当⊥ABC为钝角三角形时,如图2所示:由情况一知:363322ABAH BH2236273CH AC AH⊥333BC BH CH .故答案为:3或3.【点睛】本题考察了等腰直角三角形的性质及勾股定理的应用,本题的关键是能将⊥ABC 分成锐角三角形或钝角三角形分类讨论.17.【分析】根据坡面AB 的坡比以及AC 的值,求出BC ,再利用勾股定理即可求出斜面AB 的长.【详解】解:⊥大坝横截面的迎水坡AB 的坡比为1:2,AC=12米⊥1212BC BC AC == ⊥BC=6⊥AB =故答案为:【点睛】本题主要考查学生对坡度坡角的掌握及三角函数的运用能力,能根据坡度求出BC 是解题关键. 18.55°,60°,65°.【分析】通过旋转AOB 至CDB △,可得BOD 是等边三角形,将,,OA OB OC 放在一个三角形中进而求出各角大小。
解三角形专项练习以及答案

解三角形专项练习以及答案一、选择题1.在△ABC中,sinA=sinB,则△ABC是A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形答案D2.在△ABC中,若acosA=bcosB=ccosC,则△ABC是A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形答案B解析由正弦定理知:sinAcosA=sinBcosB=sinCcosC,∴tanA=tanB=tanC,∴A=B=C.3.在△ABC中,sinA=34,a=10,则边长c的取值范围是A.152,+∞B.10,+∞C.0,10D.0,403答案D解析∵csinC=asinA=403,∴c=403sinC.∴04.在△ABC中,a=2bcosC,则这个三角形一定是A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案A解析由a=2bcosC得,sinA=2sinBcosC,∴sinB+C=2sin Bcos C,∴sin Bcos C+cos Bsin C=2sin Bcos C,∴sinB-C=0,∴B=C.5.在△ABC中,已知b+c∶c+a∶a+b=4∶5∶6,则sin A∶sin B∶sin C等于A.6∶5∶4B.7∶5∶3C.3∶5∶7D.4∶5∶6答案B解析∵b+c∶c+a∶a+b=4∶5∶6,∴b+c4=c+a5=a+b6.令b+c4=c+a5=a+b6=k k>0,则b+c=4kc+a=5ka+b=6k,解得a=72kb=52kc=32k.∴sinA∶sinB∶sinC=a∶b∶c=7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为A.1B.2C.12D.4答案A解析设三角形外接圆半径为R,则由πR2=π,得R=1,由S△=12absinC=abc4R=abc4=14,∴abc=1.二、填空题7.在△ABC中,已知a=32,cosC=13,S△ABC=43,则b=________.答案23解析∵cosC=13,∴sinC=223,∴12absinC=43,∴b=23.8.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60°,a=3,b=1,则c=________.答案2解析由正弦定理asinA=bsinB,得3sin60°=1sinB,∴sinB=12,故B=30°或150°.由a>b,得A>B,∴B=30°,故C=90°,由勾股定理得c=2.9.在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则asinA+b2sinB+2csinC=________.答案7解析∵△ABC的外接圆直径为2R=2,∴asinA=bsinB=csinC=2R=2,∴asinA+b2sinB+2csinC=2+1+4=7.10.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.答案12 6解析a+b+csinA+sinB+sinC=asinA=6332=12.∵S△ABC=12absinC=12×63×12sinC=183,∴sinC=12,∴csinC=asinA=12,∴c=6.三、解答题11.在△ABC中,求证:a-ccosBb-ccosA=sinBsinA.证明因为在△ABC中,asinA=bsinB=csinC=2R,所以左边=2RsinA-2RsinCcosB2RsinB-2RsinCcosA=sinB+C-sinCcosBsinA+C-sinCcosA=sinBcosCsinAcosC=sinBsinA=右边.所以等式成立,即a-ccosBb-ccosA=sinBsinA.12.在△ABC中,已知a2tanB=b2tanA,试判断△ABC的形状.解设三角形外接圆半径为R,则a2tanB=b2tanA⇔a2sinBcosB=b2sinAcosA⇔4R2sin2AsinBcosB=4R2sin2BsinAcosA⇔sinAcosA=sinBcosB⇔sin2A=sin2B⇔2A=2B或2A+2B=π⇔A=B或A+B=π2.∴△ABC为等腰三角形或直角三角形.能力提升13.在△ABC中,B=60°,最大边与最小边之比为3+1∶2,则最大角为A.45°B.60°C.75°D.90°答案C解析设C为最大角,则A为最小角,则A+C=120°,∴sinCsinA=sin120°-AsinA=sin120°cosA-cos120°sinAsinA=32tanA+12=3+12=32+12,∴tanA=1,A=45°,C=75°.14.在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=π4, cosB2=255,求△ABC的面积S.解cosB=2cos2B2-1=35,故B为锐角,sinB=45.所以sinA=sinπ-B-C=sin3π4-B=7210.由正弦定理得c=asinCsinA=107,所以S△ABC=12acsinB=12×2×107×45=87.1.在△ABC中,有以下结论:1A+B+C=π;2sinA+B=sin C,cosA+B=-cos C;3A+B2+C2=π2;4sin A+B2=cos C2,cos A+B2=sin C2,tan A+B2=1tan C2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.感谢您的阅读,祝您生活愉快。
解三角形练习题-精品.pdf

5 ,求 A 的值. 5
-3-
( 1)∵ AB AC 3BA BC ,∴ AB AC cosA=3BA BC cos B ,即 AC cosA=3BC cosB 。
由正弦定理,得 AC = BC ,∴ sin B cos A=3sin A cosB 。 sin B sin A
又∵ 0 < A B<
.
8 4 8 8 16
-4-
7、在△ ABC 中,角 A,B,C 所对的边分别为 a,b,c,且满足 csinA=acosC . (Ⅰ)求角 C 的大小;
(Ⅱ)求 3 sinA-cos ( B+ )的最大值,并求取得最大值时角 4
解析:( I)由正弦定理得 sin C sin A sin A cosC.
-2-
【解析】(1) bsinA= 3 acosB,由正弦定理可得 sin B sin A 3 sin A cos B ,即得 tan B 3 ,
B. 3
( 2 ) sinC=2sinA , 由 正 弦 定 理 得 c 2a , 由 余 弦 定 理 b 2 a 2 c2 2 a cc o s ,B
1 2 AC sin 60
2
3, AC 2 ,
所以△ ABC 为等边三角形,故边 AB 的长度等于 2.答案应填 2.
8、 如图,△ ABC 中, AB=AC=2 , BC= 2 3 ,
点 D 在 BC 边上,∠ ADC=4°5 ,则 AD 的长度等于 ______。
解析:在△ ABC 中, AB=AC=2 , BC= 2
(1 3) a .
2c
2 a.
可得 cos2 B 1 , 又 cos B 0, 故 cos B 2
2 ,所以 B 45 2
解三角形练习题及答案

解三角形练习题及答案1.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.则△ABC是()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形2.△ABC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=ccosB,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.在△ABC中,若•=•=•,则该三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.在△ABC中,acosA=bcosB,则三角形的形状为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形6.在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.在△ABC中,角A、B、C所对的边分别是a、b、c,若==则△ABC的形状是()A.等边三角形B.等腰直角三角形C.直角非等腰三角形D.等腰非直角三角形8.在△ABC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形9.在△ABC中,若(b﹣bcosB)sinA=a(sinB﹣sinCcosC),则这个三角形是()A.等腰直角三角形B.底角不等于45°的等腰三角形C.等腰三角形或直角三角形D.锐角不等于45°的直角三角形10.在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11.△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A.直角三角形B.等边三角形C.非等边锐角三角形D.钝角三角形12.若O是△ABC所在平面内的一点,且满足,则△ABC的形状是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形13.设△ABC的内角A,B,C的对边分别为a,b,c,若a=(b+c)cosC,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形14.在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或15.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是()(单位:m)A.10B.10C.10D.1016.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30米,并在C测得塔顶A的仰角为60°,则塔的高度AB为()A.15米B.15米C.15(+1)米D.15米17.在△ABC中,已知AB=4,cosB=,AC边上的中线BD=,则sinA=()A. B.C. D.18.在△ABC中,AB=AC,AC边上的中线长为9,当△ABC的面积最大时,AB的长为()A.9 B.9C.6D.619.在△ABC中,如果cos(B+A)+2sinAsinB=1,那么△ABC的形状是.20.给出下列命题:①在△ABC中,若,则△ABC是钝角三角形;②在△ABC中,若cosA•tanB•cotC<0,则△ABC是钝角三角形;③在△ABC中,若sinA•sinB<cosA•cosB,则△ABC是钝角三角形;④在△ABC中,若acosA=bcosB,则△ABC是等腰三角形.其中正确的命题序号是.21.在△ABC中,点D是BC的中点,若AB⊥AD,∠CAD=30°,BC=2,则△ABC的面积为.22.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.23.在△ABC中,已知=,且cos(A﹣B)+cosC=1﹣cos2C.(1)试确定△ABC的形状;(2)求的范围.24.设△ABC中的内角A,B,C所对的边分别为a,b,c,已知a=2,(a+b)(sinA﹣sinB)=(c﹣b)sinC.(Ⅰ)若b=2,求c边的长;(Ⅱ)求△ABC面积的最大值,并指明此时三角形的形状.25.设△ABC的内角A,B,C所对的边a,b,c,=,=若,共线,请按以下要求作答:(1)求角A的大小;(2)当BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.26.如图,某炮兵阵地位于A点,两观察所分别位于C,D两点.已知△ACD为正三角形,且DC=km,当目标出现在B点时,测得∠BCD=75°,∠CDB=45°,求炮兵阵地与目标的距离.27.在数学研究性学习活动中,某小组要测量河对面C和D两个建筑物的距离,作图如下,所测得的数据为AB=50米,∠DAC=75°,∠CAB=45°,∠DBA=30°,∠CBD=75°,请你帮他们计算一下,河对岸建筑物C、D的距离?28.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.【答案】1-5BDCDB 6-10CBACB 11-15BDAAB 16-18DAD 19.等腰三角形20.①②③21.222.7+23.解:(1)由=,可得cos2C+cosC=1﹣cos(A﹣B)得cosC+cos(A﹣B)=1﹣cos2C,cos(A﹣B)﹣cos(A+B)=2sin2C,即sinAsinB=sin2C,根据正弦定理,ab=c2,①,又由正弦定理及(b+a)(sinB﹣sinA)=asinB可知b2﹣a2=ab,②,由①②得b2=a2+c2,所以△ABC是直角三角形,且B=90°;(2)由正弦定理化简==sinA+sinC=sinA+cosA=sin(A+45°),∵≤sin(A+45°)≤1,A∈(0,)即1<sin(A+45°),则的取值范围是(1,].24.解:(I)由正弦定理得:(a+b)(a﹣b)=(c﹣b)c,即a2﹣b2=c2﹣bc因为a=2且b=2,所以解得:c=2.(II)由(I)知,则A=60°因为a=2,∴b2+c2﹣bc=4≥2bc﹣bc=bc,∴,此时三角形是正三角形25.解:(1)∵∥,∴sinA•(sinA+cosA)﹣=0.∴+sin2A﹣=0,即sin2A﹣cos2A=1,即sin(2A﹣)=1,∵A∈(0,π),∴2A﹣∈(﹣,),∴2A﹣=,A=.(2)由余弦定理得:4=b2+c2﹣bc,又S△ABC=bcsinA=bc,而b2+c2≥2bc⇒bc+4≥2bc⇒bc≤4,(当且仅当b=c时取等号)∴S△ABC=bcsinA=bc≤×4=.当△ABC的面积取最大值时,b=c,又A=,∴此时△ABC为等边三角形.26.解:∠CBD=180°﹣∠CDB﹣∠BCD=180°﹣45°﹣75°=60°,在△BCD中,由正弦定理,得:BD==.在△ABD中,∠ADB=45°+60°=105°,由余弦定理,得AB2=AD2+BD2﹣2AD•BDcos105°=3+()2﹣2×××=5+2.∴AB=.27.解:在ABD中,∴,∵A+B+C=π,∴,所以a2=b2+c2﹣2bc•cosA,△ABD为为等腰三角形,即在中,∴bc=4,∴,由于∠ACB=30°,由正弦定理可得,计算得;在△ACD中,∠DAC=75°,,AD=50,根据余弦定理可得=28.解:(1)在△CDE中,CD==,解得CD=1,在直角三角形ABD中,∠ADB=60°,AD=2,AE=1,S△ACE===;(2)设CD=a,在△ACE中,=,CE==()a,在△CED中,=,sin∠CDE===﹣1,则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k ,k Z}
3
(2)周期 T 2 2
2
要使函数单调递增,则满足
2k 2x
2k
3
∴ 函数 f (x) 的单调增区间为 [ 2
3
2 k
3 k,
6
x
k
6
k ] (k Z )
16、解:( 1) ∵ c 2Rsin C , b 2Rsin B , a 2Rsin A
∴ 2c cosC b cos A a cos B 有 2s i nC c o Cs s i nB c o sA s i nA c o sB
7、 sin 7 cos37 sin 83 sin 37 的值为 (
)
A. 3
2
B. 1
2
C. 1
2
D. 328、化简 1 ta来自15 等于()
1 tan15
第 1页共 6页
A. 3
B. 3
2
C. 3
D. 1
二、填空题(每题 5 分,共 20 分)
9、已知 cos -cosβ= 1 ,sin -sin β= 1 ,则 cos( -β)=_______.
16、( 18 分)在△ ABC 中,角 A , B , C 的对边分别为 a, b, c,已知
第 3页共 6页
2c cosC b cos A a cos B
(1)求角 C; (2)若 a 9 , cos A
4 ,求 c 。.
5
第 4页共 6页
第一章 解三角形
参考答案
一、选择题
1.B 2.B 3.B 4.C 5. C 6. C 7.B 8.A
2
所以∠ B=75°或∠ B=15°.
∴ b= 3 + 1,∠ C=60°,∠ B= 75°或 b= 3 -1,∠ C= 120°,∠ B=15°.
14、解:∵ tan(
∵ tan
1
7
1 )
2
∴ tan(2 ) tan[2(
∴ tan 2(
2 tan( ) 1 tan2 (
tan 2( ) tan )]
2sin C cosC sin( A B) sin(1800 C) sin C
(2) ∵ cos A
4 得 sin A
5
1 cos2 A 3 5
1 cos C
2
C 600
又∵ a 9, C 600 ,由正弦定理得 c a sin C 15 3
sin A 2
第 6页共 6页
2
3
10、在△ ABC 中,∠ A=105°,∠ B=45°,c= 2 ,则 b=
.
abc
11、在△ ABC 中,∠ A=60°,a=3,则 sin A sin B sin C =
.
12、在△ ABC 中,若 sin A∶sin B∶sin C=2∶3∶4,则最大角的余弦值等
于
.
班别:
姓名:
序号:
得分:
解三角形习题及答案
一、选择题(每题 5 分,共 40 分)
1、己知三角形三边之比为 5∶7∶8,则最大角与最小角的和为 (
).
A . 90°
B.120° C.135° D.150°
2、在△ ABC 中,下列等式正确的是 (
).
A.a∶b=∠ A∶∠ B
B.a∶b=sin A∶sin B
C.a∶ b=sin B∶sin A
D.asin A=bsin B
3、若三角形的三个内角之比为 1∶2∶3,则它们所对的边长之比为 (
).
A . 1∶ 2∶3
B.1∶ 3 ∶2
C.1∶ 4∶9
D.1∶ 2 ∶ 3
4、在△ ABC 中, a= 5 ,b= 15 ,∠ A=30°,则 c 等于 (
).
A.2 5
B. 5
C. 2 5 或 5
1 tan 2( ) tan
)
21 2
4
)
1 1
3
4
41
37
1
41
1 ()
37
第 5页共 6页
15、解: f (x)
2
2cos x
2 3 sin xcos x
cos 2 x
3sin 2x 1 2cos(2x
)1
3
(1) ∴函数 f ( x) 的取最小值时满足 2x
3
2k x
k (k Z )
3
∴函数 f (x) 的取最小值时 x 的集合 { x | x
二、填空题 9. 59 . 10.2.
72 三、解答题
11.2 3 .
12. 1 . 4
13.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.
解法 1:由正弦定理得 sin C= 6 sin 45°= 6 · 2 = 3 .
2
2
2
2
∵ csin A= 6 × 2 = 3 ,a=2,c= 6 , 3 <2< 6 ,
题号
1
2
3
4
5
6
7
8
选项
9、
10、
11、
12、
三、解答题
13、(12 分)已知在△ ABC 中,∠ A=45°,a= 2,c= 6 ,解此三角形.
14、( 14 分)已知 tan(
) 1 , tan
2
1 ,求 tan(2
7
) 的值
第 2页共 6页
15、( 16 分)已知 f (x) 2cos2 x 2 3 sin x cosx , (1) 求函数 f ( x) 的取最小值时 x 的集合; (2) 求函数单调增区间及周期 .
D. 10 或 5
5、已知△ ABC 中,∠ A=60°,a= 6 ,b=4,那么满足条件的△ ABC 的形
状大小 (
).
A .有一种情形
B.有两种情形
C.不可求出
D.有三种以上情形
6、在△ ABC 中,若 a2+b2-c2<0,则△ ABC 是(
).
A .锐角三角形
B.直角三角形
C.钝角三角形
D.形状不能确定
2
∴本题有二解,即∠ C=60°或∠ C=120°,
∠ B= 180°-60°- 45°= 75°或∠ B=180°-120°- 45°=15°. 故 b= a sin B,所以 b= 3 +1 或 b= 3 - 1,
sin A
∴ b= 3 +1,∠ C= 60°,∠ B=75°或 b= 3 - 1,∠ C=120°,∠ B=15°. 解法 2:由余弦定理得 b2+ ( 6 ) 2- 2 6 bcos 45°=4, ∴ b2-2 3 b+2=0,解得 b= 3 ±1. 又 ( 6 ) 2=b2+22-2×2bcos C,得 cos C=± 1 ,∠ C=60°或∠ C= 120°,